Cyclizations of Substituted Benzylidene-3-alkenylamines: Synthesis of the Tricyclic Core of the Martinellines

Kristine E. Frank ${ }^{\dagger}$ and J effrey Aubé*
Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-2506

Received May 24, 1999

Abstract

The martinellines ($\mathbf{1}$ and $\mathbf{2}$) are natural products that possess both interesting biological activity and chemi cal structure. During the investigation of a hetero Diels-Alder route to these molecules, alternate Lewis acid-dependent cyclizations of (2'-amino-N'-tert-butoxycarbonyl-5'-chloroben-zylidene)-3-butenylamine (10) were observed. The reaction of a variety of imines with TMSOTf or TiCl_{4} led to the formation of different heterocycles including iminodibenzo[b,f][1,5]diazocines, hexahydropyrido[1,2-c]quinazolin-6-ones, tetrahydropyrrolo[1,2-c]quinazolin-5-ones, 2-arylpiperidines, and 2-arylpyrrolidines. Tetrahydropyrrolo[1,2-c]quinazolin-5-one 54, obtained via this new methodology, was used as an intermediate in the synthesis of the tricyclic ring system (65) of the martinellines.

Preparations from the root bark of Martinella species have been used by Amazon Indian tribes for the treatment of a variety of eye ailments including conjunctivitis. ${ }^{1}$ Fractionation of an ethanolic extract of Martinella iquitosensis root bark by workers at Merck led to the isolation of martinelline (1) and martinellic acid (2) (Figure 1). These compounds showed modest activity as bradykinin receptor antagonists, which could contribute to the antiinflammatory effect of the root bark preparations. Additionally, martinelline demonstrated antagonist activity at histaminergic, α-adrenergic, and muscarinic receptors as well as weak antibacterial activity, which could further contribute to the efficacy of the folkloric preparations.

The martinellines are interesting from a chemical standpoint due to the pyrroloquinoline ring system, which had not been previously detected in a natural product. ${ }^{1}$ Several groups have recently published synthetic approaches to the tricyclic core of these natural products, but the total synthesis of $\mathbf{1}$ or $\mathbf{2}$ has not yet been achieved. ${ }^{2}$ Our initial retrosynthetic analysis revolved around an intramolecular Diels-Alder reaction of an o-quinone methide imide (o-azaxylene) formed in situ from an imine (Scheme 1). This material could concei vably arise from the deprotonation of the aniline or via Lewis acid activation of same. The appeal of this disconnection was that it would set all three stereocenters of the martinellines in one step. The relative stereochemistry at C-2 and C-2a would be controlled by the double bond geometry of the dienophile and it was proposed that the 5,6 -fused ring system would prefer to be cis, which would set the desired relative stereochemistry at C-2a

[^0]

Figure 1. Martinellines and their numbering system.
Scheme 1

and C-5a. Although numerous examples of Diels-Alder reactions of o-quinone imides ${ }^{3}$ or o-quinone methides ${ }^{4}$ with terminal amido substitution exist, only a single example of a species containing nitrogen atoms at both positions has been reported.5,6

Results and Discussion

Model Reactions. A model imine was prepared to study the proposed Diels-Alder reaction. A para-

Scheme 2

substituted aniline ($\mathbf{3}$ or $\mathbf{4}$) was protected as the tert-butyl carbamate (5 or 6) in order to direct ortho-lithiation with sec-butyllithium (Scheme 2). When ethyl p-aminobenzoate (3) was used as the starting material the olithiation was unsuccessful. Thus, p-chloroaniline (4) was used to rapidly enter into an appropriately substituted aldehyde (8) for the model system. The reduction of 3-butenenitrile with lithium aluminum hydride gave amine 9, which was condensed with aldehyde 8 to give imine 10

Figure 2. ${ }^{1} \mathrm{H}$ NMR evidence for intramolecular hydrogen bonding

The Diels-Alder adduct (11) was not observed under a variety of reaction conditions including heat, acid, and base (eq 1). Also unsuccessful were attempts to activate the imine using a variety of electrophiles including acetic anhydride, methylchloroformate, 2,2,2-trichloroethylchloroformate, chlorotrimethylsilane, methyl iodide, boron trifluoride diethyl etherate, and ytterbium triflate.

The inability to externally activate the imine may be due to intramolecular hydrogen bonding as shown in Figure 2. This hypothesis is supported by the observations that the ${ }^{1} \mathrm{H}$ NMR signal of the aniline hydrogen shifts significantly downfield when $\mathbf{6}$ is formylated at the

[^1]ortho position (8), and shifts even further downfield after imine formation (10). If this hydrogen bond is indeed responsible for the lack of electrophile activation at the imine nitrogen lone pair (and therefore lack of diene formation), then use of an alternate aniline protecting group might ultimately permit [4 + 2] cyclization. In light of other developments, however, this tactic was not pursued.
Although $\mathbf{1 1}$ was not formed in any of the reactions of imine 10, two alternate products were observed. The reaction of $\mathbf{1 0}$ with TMSOTf in the presence of triethylamine gave iminodibenzo[b,f][1,5]diazocine 12 in 85\% yield (eq 2). The reaction of $\mathbf{1 0}$ with $\mathrm{TiCl}_{4} / \mathrm{Ti}(\mathrm{OiPr})_{4}$ gave hexahydropyrido[1,2-c]quinazolin-6-ones $\mathbf{1 3}$ and 14, in a total of 47% yield (eq 3). The Lewis acid-dependent formation of both heterocycles from imine $\mathbf{1 0}$ warranted further investigation. ${ }^{6}$

12

13, 34\% (α)
14, 13\% (β)
The iminodibenzo[b,f][1,5]diazocine ring system has been observed in a variety of reactions involving oaminobenzaldehydes. ${ }^{7}$ Recent reports have described the preparation of this ring system from the reaction of primary amines with the iminophosphorane derived from 2-azidobenzaldehyde. ${ }^{8}$ In the present case, 12 probably arises from the pseudodimerization of the deprotected ${ }^{9}$ aniline derived from imine 10 (Scheme 3).
The formation of the hexahydropyrido[1,2-c]quinazol in6 -one ring system was interesting primarily because it appeared to occur via an imine-olefin cydlization with an unusual acyl iminium intermediate (Scheme 4). This intermediate may close directly as shown but may also involve an isocyanate intermediate. Chloride addition could occur along with $\mathrm{C}-\mathrm{C}$ bond formation to give the isomer shown. Alternatively, nonstereospecific trapping of an initially formed cation could account for the formation of both stereoisomers.
Many methods for the addition of alkenes to iminium species have been devel oped for the formation of a variety of heterocycles. ${ }^{10} \mathrm{~A}$ key feature in a number of applications of such olefin cyclizations is the use of a silyl group to direct the ring closure via stabilization of the develop-

[^2]
Scheme 3

Scheme 4

ing β-carbocation. The use of a silyl directing group in quinazolinone formation merited exploration for its potential application toward the formation of the pyrroloquinol one ring system.

A number of additional imines were prepared to explore the formation of iminodi benzo[b,f][1,5]diazocines, hexahydropyrido[1,2-c]quinazolin-6-ones, and related heterocycles (Table 1). Imine $\mathbf{2 5}$ was formed via condensation of aldehyde 8 with amine 15. Imines 26-31 were formed from reaction of the corresponding aldehyde with amine 9. The preparation of imines 32-36 required allyl silanes 21 and 24, which were themselves prepared from known precursors (Scheme 5). Thus, alcohols 19^{11} and $\mathbf{2 2}^{12}$ were converted to the corresponding azides (21 and 24, respectively) via mesylation followed by azide displacement. In a one-pot Staudinger/aza-Wittig reaction, each azide was reacted with triphenylphosphine to form the corresponding iminophosphorane prior to the addition of an aldehyde to give imines $32-36$. These reactions afforded imines in high yields, which were used without further purification.

[^3]Table 1. Formation of Imines 25-36

a Reaction conditions: (a) DHP, p-TsOH, 88\%; (b) n-BuLi, then TMSCH2OTf or TMSCH $21,50-81 \%$; (c) $\mathrm{MeOH}, \mathrm{p}-\mathrm{TsOH}, 84 \%$; (d) H_{2}, Lindlar's catalyst, quinoline, 90%; (e) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, 97 \%$; (f) $\mathrm{NaN}_{3}, 91 \%$; (g) LAH, 61%; (h) MsCl, $\mathrm{Et}_{3} \mathrm{~N}, 95 \%$; (f) $\mathrm{NaN}_{3}, 91 \%$.

The first set of imines ($\mathbf{1 0}, \mathbf{2 5}$, and $\mathbf{2 6}$) were investigated for their differential reactivity with a variety of Lewis acids (Table 2). The reaction of TMSOTf with either imine $\mathbf{1 0}$ or $\mathbf{2 5}$ gave iminodi benzo[b,f][1,5]diazocine 12 or 37, respectively (entries 1 and 4). The absence of triethylamine lowered the yield of this transformation

Table 2. Lewis Acid-Promoted Cyclization of Imines 10, 25, and 26

a Formed as a $>9: 1$ ratio of α / β chloride epimers (based on ${ }^{1} \mathrm{H}$ NMR). ${ }^{\text {b }}$ Not isolated. ${ }^{\text {c }}$ Reaction run in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(cf. entry 1 vs eq 2). The reaction of these imines with TiCl_{4} led to varying mixtures of iminodibenzo[b,f][1,5]diazocines and hexahydropyrido[1,2-c]quinazolin-6-ones (entries 2, 5, and 6). However, in contrast to the results with $\mathrm{TiCl}_{4} / \mathrm{Ti}(\mathrm{OiPr})_{4}$ (eq 3), the hexahydropyrido[1,2-c]-quinazolin-6-one diastereomeric ratio was >9:1. This suggests that the lower Cl^{-}concentration in the mixed Lewis acid system may favor stepwise addition (Scheme 4). Additionally, treatment of imine $\mathbf{1 0}$ with $\mathrm{Ti}(\mathrm{OiPr})_{4}$ alone did not promote either reaction pathway (entry 3).

Imines 27-31 allowed for exploration of the imineolefin reaction in the absence of urea formation (Table 3). This series of reactions was carried out at $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reflux for 72 h . This increased reaction time and temperature was needed for product formation. Although some product (40-44) was obtained from each of these examples, none approached efficiencies consistent with synthetic utility. Neither starting material nor other products could be cleanly isolated from these low-yielding cases. On the other hand, those examples containing an o-N HBoc substituent gave consistently higher yields and cleaner products, observations that are consistent with the mechanism for the examples involving acyl iminium ion formation prior to attack by the olefin as shown in Scheme 4. Interestingly, the stereochemistry of the piperidine products depended upon the electronic nature of the aromatic ring, with trans products preferred from $\mathrm{Ar}=\mathrm{Ph}$ and for electron-rich aromatics. As the electronicwithdrawing character of the aromatic ring was increased, the amount of cis isomer went up. The trans isomer favored in the former cases might arise from a transition structure in which the aryl group occupies a pseudoaxial orientation to avoid steric interactions with the titanium presumably bound to the nitrogen atom (Figure 3). The cis isomers could result from an increasing incursion of a stepwise process, possibly invol ving a ring flip of the initially formed carbocation adduct. These points were not further examined due to the relatively poor yields of these processes.

The final set of imines investigated contained the allyl silane substituent (Table 4). The cis-allyl silane gave a higher yield and higher diastereomeric ratio than the trans-allyl silane (entries 1 and 2). In the case of the

(a)

)

(c)

Figure 3. Comparison of possible transition structures for cyclization reactions: synchronous cyclization/trapping cases resulting from (a) carbamate activation or (b) Lewis acid activation, or (c) stepwise cyclization followed by trapping via conformationally mobile intermediates (trapping step not shown; however, see Scheme 4 for an anal ogous example).

Table 3. $\mathbf{T i C l}_{4}$-Promoted Cyclization Reactions of Imines 27-31

entry	imine	R_{1}	R_{2}	R_{3}	product	yield (\%)	trans/cis ${ }^{\text {a }}$
$\mathbf{1}$	$\mathbf{2 7}$	H	H	H	$\mathbf{4 0}$	25	$19: 1$
$\mathbf{2}$	$\mathbf{2 8}$	H	OCH_{3}	H	$\mathbf{4 1}$	18	$9: 1$
3	$\mathbf{2 9}$	H	NO_{2}	H	$\mathbf{4 2}$	31	$1: 3$
$\mathbf{4}$	$\mathbf{3 0}$	H	$\mathrm{CO}_{2} \mathrm{CH}_{3}$	H	$\mathbf{4 3}$	52	$7: 3$
$\mathbf{5}$	$\mathbf{3 1}$	NO_{2}	H	Cl	$\mathbf{4 4}$	$\leq 21^{\mathrm{b}}$	$1: 19$

${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR integration. ${ }^{\mathrm{b}}$ Product impure.
unprotected aniline, an imine-olefin reaction was not seen, instead iminodibenzo[b,f][1,5]diazocine 46 was formed (entry 3). Once again, imine-olefin cyclizations in the absence of urea formation gave lower yields (entries 4 and 5). Also, both pyrrolidine products (47 and 48) appeared to be unstable on silica gel and were therefore not obtained cleanly.

Although imine $\mathbf{3 4}$ underwent pseudodimerization in the presence of TiCl_{4}, it was worthy of further study because the aniline hydrogens showed no evidence of hydrogen bonding to the imine nitrogen (2 H at $\delta 6.39$ in the ${ }^{1} \mathrm{H}$ NMR). When trichloroacetic anhydride (TCAA) was used in an attempt to activate the imine to initiate diene formation, two different heterocycles were observed depending on the amount of TCAA present. When 1.1 equiv of TCAA was used, the product was not readily identified by spectroscopic methods. Instead, it was necessary to prepare imine 49 which underwent cyclization with TCAA to give a product (50) that was unambiguously identified by X-ray crystallography (Scheme 6). Spectral comparisons with 50 allowed for the identification of urea 52 as the product of the reaction shown in Scheme 7. When this reaction was run at lower temperatures $\left(83^{\circ} \mathrm{C}\right)$, it was possible to isolate imine 51 which could then be carried on to urea 52 upon heating at 130 ${ }^{\circ} \mathrm{C}$. These results further support the intermediacy of an acyl iminium ion in the previously described imine-ol efin cyclizations. However, in this case, the acyl iminium ion intermediate is trapped by the trichloromethyl group liberated from the amide intermediate (51) upon urea formation.

Table 4. TiCl_{4}-Promoted Cyclization Reactions of Imines 32-36

		$\frac{\mathrm{TiCl}_{4}, \mathrm{CH}}{\mathrm{r}}$	 45			$\begin{aligned} & 3^{1}=\mathrm{NO}_{2} \\ & 3^{1}=\text { NHPiv } \end{aligned}$
entry	imine	R_{1}	alkene geometry	product	yield (\%)	diastereomeric ratio ${ }^{\text {a }}$
1	32	NHBoc	Z	45	62-75	19:1
2	33	NHBoc	E	45	55	3:1
3	34	NH_{2}	Z	46	39	b
4	35	NO_{2}	Z	47	$\leq 23^{\circ}$	d
5	36	NHPiv	Z	48	$\leq 31^{\text {c }}$	17:3

Scheme 6

Having seen that the first equivalent of TCAA reacted with the aniline nitrogen and that higher temperatures ($>83^{\circ} \mathrm{C}$) were needed for amide 51 to react further, an excess of TCAA (5 equiv) was used at room temperature in an attempt to activate the imine prior to urea formation. Apparently the excess TCAA successfully activated the imine, since imine-olefin product 53 was formed (Scheme 8). This product was identified as the trans diastereomer when basic hydrolysis led to the formation of urea 54, previously seen as the minor product of the cyclization of imines 32 and 33 (Table 4).

Scheme 8

Scheme 9a

> a Reaction conditions: (a) $\mathrm{NaH}, \mathrm{TsCl}, 90 \%$; (b) 50% aq NaOH , 65%; (c) AcCl, DMAP, Pyr, 85%; (d) $\mathrm{I}_{2}, 84 \%$.

Application to the Synthesis of the Martinelline Ring System. Imine-olefin product 45, obtained in up to 75% yield from imine 32, was seen as a useful intermediate in martinelline synthesis due to the cis relationship of the pyrrolidine substituents. The urea moiety in 45 was hydrolyzed by activation with p-toluenesulfonyl chloride followed by NaOH treatment to give pyrrolidine 56 (Scheme 9). After acylation of the pyrrolidine nitrogen, iodoamidation gave pyrroloquinoline 58. The tricydic core of martinelline was thus obtained with complete control over relative stereochemistry, as established by an X-ray crystallographic analysis of pyrroloquinoline 58.

A similar sequence was also carried out in a series including the carbomethoxy group present in the natural product (Scheme 10). Aldehyde 61 was formed from carbamate 5 in three steps and 66\% overall yield. In these experiments, a ca. 2:1 mixture of cis- and trans-alkene

Scheme 10 ${ }^{\text {a }}$

a Reaction conditions: (a) $\mathrm{Br}_{2}, \mathrm{HOAc}, 100 \%$; (b) $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{Sn}-$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, 85 \%$; (c) O_{3}, then DMS, 78%; (d) $\mathbf{2 1 / 2 4}$, $\mathrm{PPh}_{3}, 100-123 \%$ (crude); (e) $\mathrm{TiCl}_{4}, 80 \%$; (f) $\mathrm{NaH}, \mathrm{TsCl}, 91 \%$; (g) 50% aq NaOH , (h) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 57 \%$ over two steps, (i) $\mathrm{I}_{2}, 44 \%$.
isomers (21/24) was used in the synthesis of 62. The cyclization of imine $\mathbf{6 2}$ gave urea $\mathbf{6 3}$ as an inseparable mixture of diastereomers (17:3, cis/trans). Tosylation of urea 63 gave 64, which was subjected to basic hydrolysis conditions. Hydrolysis of the ester accompanied urea hydrolysis; thus, re-esterification was required prior to the iodoamination reaction which gave pyrroloquinoline 66 (isolated as a single diastereomer).

Summary

A variety of interesting heterocycles can be formed from the Lewis acid-mediated cyclizations of imines. In respect to the martinellines, the in situ formation of an acyl iminium ion aided in imine-olefin cyclization yield and diastereoselectivity, while the use of an allyl silane directed ring dosure for pyrrolidineformation. In another key step, haloamidation gave the tricydic core ring system. This advanced intermediate is suitably functionalized for the el ongation of the C-2 side chain and further elaboration to form the martinellines.

Experimental Section

General methods have been published. ${ }^{13}$
Materials. Except where noted, all starting materials were purchased from Aldrich, Fluka, Fisher, Lancaster, or TCI chemi cal companies and used as received. The following known compounds were prepared by literature procedures: ethyl 4-(N-tert-butoxycarbonyl)aminobenzoate (5), ${ }^{14} \mathrm{~N}$-tert-butoxy-carbonyl-4-chloroaniline (6), ${ }^{15}$ 3-buten-1-amine (9), ${ }^{16} \mathrm{~N}$-tert-

[^4]butoxycarbonylaniline, ${ }^{15}$ 2-amino-N-tert-butoxycarbonylbenzaldehyde, ${ }^{17}$ 2-aminobenzal dehyde. ${ }^{18} \mathrm{~K}$ nown compounds prepared by modified procedures have been included in the supplemental information: 4-[(tetrahydropyran-2-yl)oxy]-1butyne (16), 5-[(tetrahydropyran-2-yl)oxy]-1-(trimethylsilyl)-2-pentyne (17), 5-(trimethylsilyl)-3-pentyn-1-ol (18), (Z)-5-(trimethylsilyl)-3-penten-1-ol (19), (Z)-1-methanesulfonyloxy-5-(trimethylsilyl)-3-pentene (20), (E)-5-(trimethylsilyl)-3-penten-1-ol (22), (E)-1-methanesulfonyloxy-5-(trimethylsilyl)-3-pentene (23), N -(4-chlorophenyl)-2,2-dimethyl propionamide, and N -(4-chloro-2-formylphenyl)-2,2-dimethylpropionamide.
2-Amino-N-tert-butoxycarbonyl-5-chlorobenzaldehyde (8). To a sol ution of $\mathbf{6}^{15}(3.00 \mathrm{~g}, 13.2 \mathrm{mmol})$ in THF (20.0 mL) at $-78{ }^{\circ} \mathrm{C}$ under argon was added s-BuLi (1.3 M in cyclohexane, $25.0 \mathrm{~mL}, 32.5 \mathrm{mmol}$) dropwise over 5 min . The reaction was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and then at $-20^{\circ} \mathrm{C}$ for 3.5 h . DMF was added, and the reaction was stirred at $-20^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ (50 mL each). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (19: 1) to give 1.82 g of $\mathbf{8}(54 \%)$ as white plates: $\mathrm{mp} 115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51$ (s, 9H), 7.46 (dd, J = 9.1, 2.5 $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $9.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.1, 81.2, 119.9, 122.0, 126.4, 134.8, 135.6, 140.2, 152.5, 193.6; IR (KBr) 3370, 2980, $1715 \mathrm{~cm}^{-1}$; MS (CI) m/z 256 (M+ + H), 217, 156, 127, 57; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Cl} 256.0740$, found 256.0754.
(2-Amino-N'-tert-butoxycarbonyl-5'-chlorobenzylidene)-3-butenylamine (10). A mixture of $8(0.50 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $9^{16}(0.28 \mathrm{~g}, 3.9 \mathrm{mmol})$ was heated to $90^{\circ} \mathrm{C}$ for 1 h . The reaction was then cooled to room temperature, and the excess amine was removed under reduced pressure to give $0.60 \mathrm{~g}(99 \%)$ of crude imine as a paleyellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{td}, \mathrm{J}=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $5.04-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, J = 8.9, 2.5 Hz, 1H), $8.24(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, 1H), 11.92 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.3$, 35.6, 60.6, 80.1, 116.5, 119.5, 121.4, 125.8, 130.9, 132.2, 135.9, 139.3, 153.4, 162.6; IR (KBr) 2980, $1710 \mathrm{~cm}^{-1}$; MS (CI) m/z $309\left(\mathrm{M}^{+}+\mathrm{H}\right), 253,235,208,167,57$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$ 309.1370, found 309.1372.
(6R*,12S*)-2,8-Dichloro-13-(but-3-enyl)-6,12-imino-dibenzo[b,f][1,5]-5,6,11,12-tetrahydrodiazocine (12). To a solution of $\mathbf{1 0}(0.10 \mathrm{~g}, 0.32 \mathrm{mmol})$ in chlorobenzene (3.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added TMSOTf ($0.10 \mathrm{~mL}, 0.52 \mathrm{mmol}$) dropwise. The reaction was allowed to warm to room temperature over 1 h , and then triethylamine ($0.09 \mathrm{~mL}, 0.65 \mathrm{mmol}$) was added. After 4 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then washed with saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$, dried ($\mathrm{Na}_{2}-$ SO_{4}), decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (4:1) to give 47.9 mg (81%) of a white foam: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.75$ (m, 1H), 4.57 (br s, 1H), 4.90 (s, 2H), 5.01-5.11 (m, 2H), 5.81 $(\mathrm{m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=8.5,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $32.2,49.3,65.5,116.2,117.4,123.3,125.1,127.7,128.6,135.9$, 139.2; IR (film) 3390, 2930, $2840 \mathrm{~cm}^{-1}$; MS (CI) m/z 346 (M+ $+\mathrm{H}), 304,290,209,72$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3} 346.0878$, found 346.0882 .
$\mathrm{TiCl}_{4} / \mathrm{Ti}(\mathrm{OiPr})_{4}$-Promoted Imine-Olefin Cyclization of 10. To a solution of $\mathrm{Ti}(\mathrm{OiPr})_{4}(1.2 \mathrm{~mL}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(45 \mathrm{~mL})$ at room temperature was added $\mathrm{TiCl}_{4}(0.44 \mathrm{~mL}, 4.0$ mmol). After 10 min , the solution was cooled to $-78^{\circ} \mathrm{C}$. Then,

[^5]a solution of $\mathbf{1 0}(0.25 \mathrm{~g}, 0.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added, and the reaction was warmed to room temperature. After 6 h , the reaction was quenched with 10% aqueous NaOH $(50 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. Repeated silica gel chromatography with EtOAc/hexanes/2\% $\mathrm{Et}_{2} \mathrm{NH}$ (30/19/1) gave 76 mg (34\%) of 13 and 29 mg (13\%) of 14.
(10R*,11aS*)-2,10-Dichloro-5,8,9,10,11,11a-hexahydro-pyrido[1,2-c]quinazolin-6-one (13): yellow solid; mp 240$241.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86(\mathrm{qd}, \mathrm{J}=12.3,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, \mathrm{J}=4.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.69(\mathrm{td}, \mathrm{J}=13.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{tt}, \mathrm{J}=11.8,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, \mathrm{J}=11.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dq}, \mathrm{J}=13.9$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14 (dd, J $=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.4,43.2,44.2,55.7,57.5,115.3,120.9,125.4$, 127.1, 128.7, 134.3, 152.3; IR (KBr) 3180, 2280, $1655 \mathrm{~cm}^{-1}$; MS (EI) m/z 270 (${ }^{+}+\mathrm{H}$), 235, 181, 55; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ 271.0405, found 271.0395. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$: C, 53.16; $\mathrm{H}, 4.46 ; \mathrm{N}, 10.33$. Found: C, 52.99 ; H, 4.20; N, 10.00 .
(10R*,11aR*)-2,10-Dichloro-5,8,9,10,11,11a-hexahydro-pyrido[1,2-c]quinazolin-6-one (14): white solid; $\mathrm{mp} 242.5-$ $243^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta 1.79(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}$, 1H), 1.96 (m, 1H), $2.08(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{td}, \mathrm{J}=12.7,2.2 \mathrm{~Hz}$, 1H), 4.21 (dd, J $=13.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.79 (br s, 1H), 4.86 (dd, $\mathrm{J}=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H})$, 9.49 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (100.6 M Hz, d-acetone) δ 31.6, 37.6, 40.1, 51.9, 58.5, 115.0, 121.7, 124.8, 125.3, 128.1, 135.7, 151.6; IR (KBr) 3180, $1660 \mathrm{~cm}^{-1}$; MS (CI) m/z $271\left(\mathrm{M}^{+}+\mathrm{H}\right), 235$, 181, 74; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ 271.0405, found 271.0379.
(Z)-5-Azido-1-(trimethylsilyl)-2-pentene (21). To a solution of $\mathbf{2 0}^{11}(3.20 \mathrm{~g}, 13.5 \mathrm{mmol})$ in DMF (50.0 mL) at room temperature was added sodium azide ($3.52 \mathrm{~g}, 54.1 \mathrm{mmol}$). The reaction was heated to $110^{\circ} \mathrm{C}$ over 45 min . The reaction was cool ed to room temperature and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ (50 mL each). The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure at room temperature. The crude product was purified by silica gel chromatography with pentane/ $\mathrm{Et}_{2} \mathrm{O}$ (9:1) to give 2.25 g (91\%) of a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.31(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.8,18.8,26.8,51.2$, 122.2, 128.9; IR (film) 3005, $2080 \mathrm{~cm}^{-1}$; MS (CI) m/z 184 (M+ $+\mathrm{H}), 156,90,73$; HRMS cal cd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Si}$ 184.1270, found 184.1283.
(E)-5-Azido-1-(trimethylsilyl)-2-pentene (24). To a solution of $23^{12}(0.65 \mathrm{~g}, 2.7 \mathrm{mmol})$ in DMF (10 mL) at room temperature was added sodium azide ($0.71 \mathrm{~g}, 11 \mathrm{mmol}$). The reaction was heated to $110^{\circ} \mathrm{C}$ over 1 h . The reaction was cool ed to room temperature and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ (10 mL each). The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure at room temperature. The crude product was purified by silica gel chromatography with pentane/Et $\mathrm{t}_{2} \mathrm{O}$ (19:1) to give $0.45 \mathrm{~g}(91 \%)$ of a col orless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.00(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.1,22.9,32.3,51.5,123.8,130.0$; IR (film) 2940, $2080 \mathrm{~cm}^{-1}$; MS (CI) m/z 184 (M+ + H), 156, 90, 73; HRMS cal cd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Si}$ 184.1270, found 184.1252.
(E)-3-Penten-1-amine (15). Prepared based on literature procedure. ${ }^{16}$ The crude product was purified by distillation: bp $93-95^{\circ} \mathrm{C}$; col orless liquid, $3.25 \mathrm{~g}(62 \%)$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.54(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7,36.5,41.4,127.0,128.3$; IR (film)

3400 (br), $2920 \mathrm{~cm}^{-1}$; MS (CI) m/z 86 (M+ + H), 69; HRMS calcd for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}$ 86.0970, found 86.0963 .
(2-Amino-N'-tert-butoxycarbonyl-5'-chlorobenzylidene)-trans-3-pentenylamine (25). A mixture of 8 ($0.50 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ and $\mathbf{1 5}(0.33 \mathrm{~g}, 3.9 \mathrm{mmol})$ was heated to $90^{\circ} \mathrm{C}$ for 1.5 h. The reaction was then cooled to room temperature, and the excess amine was removed under reduced pressure to give 0.63 g of crude imine as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.38(\mathrm{q}, \mathrm{J}=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28 (dd, J = 9.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.21(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 11.91$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.0$, $28.3,34.2,61.2,80.1,119.5,121.5,125.7,127.1,128.2,130.8$, 132.2, 139.3, 152.4, 162.5; IR (KBr) 2970, 1705, $1635 \mathrm{~cm}^{-1}$; MS (CI) m/z $323\left(\mathrm{M}^{+}+\mathrm{H}\right), 267,249,167,57$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl} 323.1526$, found 323.1509.

General Procedure for the Synthesis of Imines with Amine 9. A mixture of the aldehyde ($0.10-0.50 \mathrm{~g}$) and 9 (1.5 equiv) was heated to $90^{\circ} \mathrm{C}$ for 2 h . The reaction was then cooled to room temperature, and the excess amine was removed under reduced pressure to give the crude imine, which was used without further purification.

3-Butenyl-(2-amino-N'-tert-butoxycarbonylbenzylidene)amine (26). Prepared by the general procedure: yellow oil, $0.12 \mathrm{~g} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54(\mathrm{~s}, 9 \mathrm{H}), 2.47$ (m, 2 H), $3.68(\mathrm{~m}, 2 \mathrm{H}), 5.05-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~m}$, 1 H), 7.27 (dd, J $=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 12.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.7 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4,35.4,60.6,79.7,116.3,118.0,120.2,120.9$, 131.2, 133.0, 136.2, 140.8, 153.6, 163.9; IR (film) 3400 (br) 3060, 1710, $1625 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 275$ (M+ + H), 219, 201, 174, 133, 57; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ 275.1760, found 275.1765.
(N^{\prime}-tert-Butoxycarbonyl-2-amino-5'-chlorobenzylidene)-[(Z)-5-(trimethylsilyl)-3-pentenyl]amine (32). A solution of $21(0.51 \mathrm{~g}, 2.8 \mathrm{mmol})$ and triphenylphosphine ($0.76 \mathrm{~g}, 2.9$ mmol) in THF (5.0 mL) was stirred at room temperature for 2 h. Next, $8(0.71 \mathrm{~g}, 2.8 \mathrm{mmol})$ was added, and the reaction was heated at reflux for 16 h . The reaction was then cooled to room temperature, concentrated under reduced pressure, triturated with ether, filtered through Florisil, and concentrated under reduced pressure to give 1.12 g of a crude yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (dd, J $=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 ($\mathrm{s}, 1 \mathrm{H}$), $8.37(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 12.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.86,18.6,28.2,28.6,61.0,79.8,119.3$, 121.3, 123.8, 125.6, 127.4, 130.7, 132.1, 139.3, 153.3, 162.3; IR (film) 2990, 1710, $1625 \mathrm{~cm}^{-1}$; MS (CI) m/z 395 (M+ + H), 339, 321, 167, 73, 57; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{CIN}_{2} \mathrm{O}_{2} \mathrm{Si} 395.1922$, found 395.1939.
(N^{\prime}-tert-Butoxycarbonyl-2-amino- 5^{\prime}-chlorobenzylidene)[(E)-5-(trimethylsilyl)-3-pentenyl]amine (33). A solution of $24(0.25 \mathrm{~g}, 1.4 \mathrm{mmol})$ and triphenyl phosphine ($0.36 \mathrm{~g}, 1.4$ mmol) in THF (3.0 mL) was stirred at room temperature for 2.5 h . Next, 8 was added, and the reaction was heated at reflux for 18 h . The reaction was then cooled to room temperature, concentrated under reduced pressure, triturated with ether, filtered through Florisil, and concentrated under reduced pressure to give 0.57 g of a crude yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta-0.03(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 2.43(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.31(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 8.23(\mathrm{~s}$, $1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.1,22.8,28.2,34.4,61.8,80.0,119.5,121.5$, 125.4, 125.7, 128.7, 130.8, 132.1, 139.3, 153.4, 162.4; IR (film) 2960, 1710, $1630 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 395\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 339, 263; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Si} 395.1921$, found 395.1949.
(2'-Amino-5'-chlorobenzylidene)-[(Z)-5-(trimethylsilyl)-3-pentenyl]amine (34). A solution of 21 ($1.41 \mathrm{~g}, 7.71 \mathrm{mmol}$) and triphenylphosphine ($2.02 \mathrm{~g}, 7.71 \mathrm{mmol}$) in THF (50 mL) was stirred at room temperature for 4 h . Next, 2-amino-5chlorobenzaldehyde ${ }^{18}$ was added and the reaction was heated at reflux for 16 h . The reaction was then cooled to room
temperature, concentrated under reduced pressure, triturated with ether, filtered through Florisil, and concentrated under reduced pressure to give 3.09 g of a crude dark yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.37(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{td}, \mathrm{J}=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.32(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07$ (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.25 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.8,18.6,29.1$, $61.5,116.7,124.2,127.2,128.4,128.5,130.3,132.1,146.9$, 162.5; IR (film) 3460, 3250, 3005, $1630 \mathrm{~cm}^{-1}$; MS (CI) m/z 295 $\left(\mathrm{M}^{+}+\mathrm{H}\right), 279,263,167,73$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{Si}$ 295.1397, found 295.1410.
TiCl_{4}-Promoted Imine-Olefin Cyclization of 10. To a solution of $\mathbf{1 0}(0.10 \mathrm{~g}, 0.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$. The reaction was allowed to warm slowly to room temperature. After 24 h , the reaction was quenched with 10% aqueous $\mathrm{NaOH}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (2:1 to 1:3) to give 31.1 mg (35\%) of $\mathbf{1 3}$ and 7.4 mg (13\%) of 12.
(6R*,12S*)-2,8-Dichloro-13-((E)-pent-3-enyl)-6,12-iminodibenzo[b,f][1,5]-5,6,11,12-tetrahydrodiazocine (37). To a solution of $25(0.10 \mathrm{~g}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TMSOTf ($0.09 \mathrm{~mL}, 0.47 \mathrm{mmol}$). The reaction was allowed to warm slowly to room temperature. After 3 h , the reaction was quenched with 10% aqueous $\mathrm{NaOH}(5 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (3:1) to give 36 mg (64\%) of a tan foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.62$ $(\mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H})$, 4.57 (br s, 2H), $4.89(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 6.51$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (dd, J $=8.5,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (d, J $=2.3 \mathrm{~Hz}, 2 \mathrm{H}$; ; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,31.0,49.9$, $65.5,117.3,123.2,125.1,126.7,127.6,128.2,128.5,139.2$; IR (KBr) 3390, 2920, $1600 \mathrm{~cm}^{-1}$; MS (CI) m/z 360 (M++H), 49; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3} 360.1034$, found 360.1023. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3}$: C, 63.34; $\mathrm{H}, 5.32 ; \mathrm{N}, 11.66$. Found: C, 62.88; H, 5.59; N, 11.15.
(10R*,11R*,11aS*)-2,10-Dichloro-5,8,9,10,11,11a-hexahy-dro-11-methylpyrido[1,2-c]quinazolin-6-one (38). To a solution of $25(0.10 \mathrm{~g}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(0.14 \mathrm{~mL}, 1.3 \mathrm{mmol})$. The reaction was allowed to warm slowly to room temperature. After 24 h , the reaction was quenched with 10% aqueous $\mathrm{NaOH}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (2:1) to give 23 mg (40\%) of 38 as a tan foam and 26 mg (30\%) of 37 a tan solid. An analytical sample of 38 was crystallized from $\mathrm{EtOH} / \mathrm{CH}_{3} \mathrm{CN}$: colorless prisms; mp $245-246{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{qd}, \mathrm{J}=12.6,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{td}, \mathrm{J}=13.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{td}$, $J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=$ $8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.4,35.3,44.1,44.3,63.6,64.1,115.4,119.7,126.4,127.6$, 128.8, 135.1, 154.0; IR (KBr) 3180, 3070, $1645 \mathrm{~cm}^{-1}$; MS (CI) $\mathrm{m} / \mathrm{z} 285\left(\mathrm{M}^{+}+\mathrm{H}\right), 249,181,85$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14}{ }^{-}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 54.75 ; \mathrm{H}, 4.95 ; \mathrm{N}, 9.82$. Found: C, 55.02 ; H, 5.04; $\mathrm{N}, 9.56$. X-ray data for this compound are available in the Supporting Information.

General Procedure for Imine-Olefin Cyclizations of Imines. To a solution of the imine $(0.10 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was added TiCl_{4} (5.0 equiv). The reaction was heated at reflux for 72 h and then cooled to room temperature. The reaction was quenched by slow addition of 10% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$. The combined organic layers were then dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), decanted, and concentrated under reduced pressure to give cyclized product after silica gel chromatography.
(10R*,11aS*)- and (10R*,11aR*)-2-Chloro-5,8,9,10,11,-11a-hexahydropyrido[1,2-c]quinazolin-6-one (39). Pre pared by the general procedure except the reaction was run for 24 h . The crude product was purified by silica gel chromatography with EtOAc/hexanes (1:1) to give 0.056 g (65\%) of a white solid as a 19:1 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration, mp $214-214.5{ }^{\circ} \mathrm{C}$ dec. Major isomer, (10R*, 11aS*)-39: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87$ (qd, J = $12.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{q}, \mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{td}, \mathrm{J}=13.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{tt}, \mathrm{J}=11.8,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=11.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dq}, \mathrm{J}=13.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{br} \mathrm{s}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.5,43.2,44.4,56.1,57.9$, 114.0, 119.4, 122.2, 125.3, 128.7, 135.6, 152.6; IR (film) 3165, 3015, $1640 \mathrm{~cm}^{-1}$; MS (CI) m/z 237 (M+ + H), 201, 147; HRMS cal cd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}$ 237.0794, found 237.0812. Minor isomer, (10R*, 11aR*)-39 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.16(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H})$.
($2 \mathbf{R}^{*}, 4 \mathrm{SS}^{*}$)- and ($2 \mathrm{R}^{*}, 4 \mathbf{R}^{*}$)-4-Chloro-2-phenylpiperidine (40). Prepared by the general procedure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give $0.030 \mathrm{~g}(25 \%)$ of a pale yellow solid as a 94:6 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration, mp $58-59^{\circ} \mathrm{C}$. Major isomer, (2R*,4S*)-40: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dq}$, $\mathrm{J}=11.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{td}, \mathrm{J}=11.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $\mathrm{J}=10.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.5, 41.3, 42.1, 55.3, 58.2, 126.7, 127.3, 128.5, 144.0; IR (film) 3440 (br), 3240, $2930 \mathrm{~cm}^{-1}$; MS (CI) m/z 196 (M+ + H), 160, 131, 118, 91; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{CIN}$ 195.0893, found 196.0909. Minor isomer, ($\left.2 \mathrm{R}^{*}, 4 \mathrm{R} *\right)$ - 40 (diagnostic peaks only): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H})$.
($2 R^{*}, 4 \mathbf{S}^{*}$)- and ($2 R^{*}, 4 \mathbf{R}^{*}$)-4-Chloro-2-(4'-methoxyphen$\mathbf{y l})$ piperidine (41). Prepared by the general procedure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 0.022 g (18\%) of a pale yellow solid as a 9:1 mixture of diastereomers, based on ${ }^{1}$ H NMR integration, mp 71-74 ${ }^{\circ} \mathrm{C}$. Major isomer, ($2 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}$)-41: ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.75-2.34(\mathrm{~m}, 5 \mathrm{H}), 3.30(\mathrm{dt}, \mathrm{J}=11.7,2.7 \mathrm{~Hz}$, 1 H), $3.32(\mathrm{td}, \mathrm{J}=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{dd}, \mathrm{J}=$ $10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 7.28$ $(\mathrm{m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.3,41.3,41.9,54.7$, 55.3, 58.1, 113.8, 127.7, 127.9, 158.9; IR (KBr) 3420 (br), 3305, $2935 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}+\mathrm{H}\right), 190,161 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{CINO}$ 226.0998, found 226.0985. Minor isomer, ($2 \mathrm{R}^{*}, 4 \mathrm{R}^{*}$)-41 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H})$.
($2 \mathbf{R}^{*}, 4 \mathbf{4 S}^{*}$)- and ($2 \mathbf{R}^{*}, 4 \mathbf{R}^{*}$)-4-Chloro-2-(4'-nitrophenyl)piperidine (42). Prepared by the general procedure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 0.037 g (31\%) of a light orange solid as a 3:1 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration: $\mathrm{mp} 77-80^{\circ} \mathrm{C}$. Major isomer, ($2 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}$)-42: ${ }^{1 \mathrm{H}}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.77(\mathrm{q}, \mathrm{J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}$, $2 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{td}, \mathrm{J}=12.3,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dq}, \mathrm{J}=12.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=11.3,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~m}, 2 \mathrm{H}), 8.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ \& $37.0,45.6,46.6,57.4,61.3,124.3,127.9$, 151.1; IR (film) $3300 \mathrm{~cm}^{-1}$; MS (CI) m/z $241\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 205; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}$ 241.0744, found 241.0753. Minor isomer, (2R*,4R*)-42 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H})$, 3.36 (dd, J $=11.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=11.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $33.6,41.4,42.7,55.3,57.9,124.2,128.0,147.7,152.1$.
($2 \mathbf{R}^{*}, \mathbf{4 S}$) - and ($2 \mathbf{R}^{*}, 4 \mathbf{R}^{*}$)-4-Chloro-2-(4'-carbomethoxyphenyl)piperidine (43). Prepared by the general procedure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 0.062 g (52\%) of a light orange solid as a 7:3 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration, $\mathrm{mp} 58.5-61{ }^{\circ} \mathrm{C}$. Major isomer, ($2 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}$)43: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H})$,
$2.06(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{td}, \mathrm{J}=11.9,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 4.22$ (dd, J $=11.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, \mathrm{J}=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , CDCl_{3}) $\delta 33.3,41.0,42.1,51.9,55.0,57.8,126.6,129.1,129.7$, 149.3, 166.8; IR (film) 3400 (br), 3300, 2930, $1695 \mathrm{~cm}^{-1}$; MS (CI) m/z $254\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 218; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{2}$ 254.0948, found 254.0948. Minor isomer, ($2 R^{*}, 4 R^{*}$)-43 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.20(\mathrm{~m}, 1 \mathrm{H})$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{td}, \mathrm{J}=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H})$, 3.70 (dd, J = 11.2, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.01(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.7 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.7,45.1,46.2,52.0,57.3,61.2,126.5,129.3$, 129.8, 148.4, 166.7.
($2 R^{*}, 4 S^{*}$)- and ($2 R^{*}, 4 R^{*}$)-4-Chloro-2-(5'-chloro-2 -nitrophenyl)piperidine (44). Prepared by the general procedure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 0.025 g (21\%) of a yellow oil as an approximately 9:1 mixture of product to impurity which may include the minor diastereomer, based on ${ }^{1} \mathrm{H}$ NMR integration: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor impurities present) $\delta 1.77$ (q, J $=11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89 (qd, J $=12.4,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{td}, \mathrm{J}=12.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=11.0,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37$ (dd, J $=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.4$, 44.0, 46.1, 55.7, 56.4, 125.8, 128.5, 129.1, 139.6, 140.0, 147.0; IR (film) 3300, $3080 \mathrm{~cm}^{-1}$; MS (CI) m/z 275 (M+ + H); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ 275.0354, found 275.0333.
(1R*,10bR*)-9-Chloro-1-ethenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[1,2-c]quinazolin-5-one (45). To a sol ution of 32 (0.50 g , ca. 1.3 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) at room temperature was added $\mathrm{TiCl}_{4}(0.70 \mathrm{~mL}, 6.4 \mathrm{mmol})$. The reaction was quenched after 18.5 h with 10% aqueous $\mathrm{NaOH}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 0.23 g (75\%) of a pale yellow solid as a 19:1 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR. This solid was crystallized from acetone/ $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ to get an analytical sample of 45. Colorless or light yellow prisms, respectively: mp 213.5-215 ${ }^{\circ} \mathrm{C}$ (after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 2.01$ (ddd, J = 12.6, 8.0, $\left.1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23(\mathrm{~m}, 1 \mathrm{H})$, $3.24(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}$, 1H), 5.07-5.19 (m, 2H), $5.59(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.4, 43.0, 45.6, 61.4, 115.3, 117.5, 119.8, 126.4, 126.7, 128.1, 135.6, 136.3, 153.1; IR (KBr) 3270, $3065 \mathrm{~cm}^{-1}$; MS (CI) m/z $249\left(\mathrm{M}^{+}+\mathrm{H}\right), 194,165$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 62.78$; H, 5.27; N, 11.26. Found: C, 62.82; H, 5.40; N, 11.24. X-ray data for this compound are available in the Supporting Information.
(6R*,12S*)-2,8-Dichloro-13-(pent-4-enyl)-6,12-i mi no-dibenzo[b,f][1,5]-5,6,11,12-tetrahydrodiazocine (46). To a solution of $34(0.25 \mathrm{~g}, \mathrm{ca} .0 .62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature was added $\mathrm{TiCl}_{4}(0.34 \mathrm{~mL}, 3.1 \mathrm{mmol})$. The reaction was quenched with 10% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ after 16 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (4:1) to give 43.4 mg (39\%) of a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.70(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{dd}, \mathrm{J}=14.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H})$, $2.67(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.94-5.03(\mathrm{~m}, 2 \mathrm{H})$, $5.79(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=8.5,2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.8,31.3,49.3,65.5,114.9,117.3,123.2,125.2,127.6,128.5$, 138.1, 139.3; IR (film) 3400, 2930, $2850 \mathrm{~cm}^{-1}$; MS (CI) m/z 360 $\left(M^{+}+\mathrm{H}\right), 304,290,206,84$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{3}$ 360.1034, found 360.1014. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3}$: C, 63.34; H, 5.32; N, 11.66. Found: C, 63.32; H, 4.87; N, 11.28.
(2R*,3R*)- and (2R*,3S*)-2-(5'-Chloro-2'-nitrophenyl)-3-ethenylpyrrolidine (47). To a solution of 35 (0.20 g , ca. $0.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{TiCl}_{4}(0.27 \mathrm{~mL}$, 2.5 mmol). The reaction was quenched after 24 h with 10% aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100$
$\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAd hexanes (2:1) to give 33 mg (23\%) of a brown oil as a 19:1 mixture of product to impurity which may include the minor diastereomer, based on ${ }^{1} \mathrm{H}$ NMR integration: ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, minor impurities present) $\delta 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.05$ (m, 1H), $2.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 7.31$ (dd, J = 8.7, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.2,46.0,52.7$, 62.0, 115.6, 125.7, 127.6, 129.1, 138.6 (2 carbons), 139.3, 141.7; IR (film) $3060 \mathrm{~cm}^{-1}$; MS (CI) m/z 253 (M+ + H), 239; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}_{2}$ 253.0744, found 253.0766. Minor isomer (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.20(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H})$.
($2^{\prime} R^{*}, 3^{\prime} R^{*}$)- and ($2^{\prime} R^{*}, 3^{\prime} S^{*}$)-N-[4'-Chloro-2'-(3'-ethe-nylpyrrolidin-2'-yl)phenyl]-2,2-dimethylpropionamide (48). To a solution of $36(0.10 \mathrm{~g}, \mathrm{ca} .0 .23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) was added $\mathrm{TiCl}_{4}(0.15 \mathrm{~mL}, 1.4 \mathrm{mmol})$. The reaction was heated at reflux for 24 h , then quenched with 10% aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2: 1) to give 22 mg (31\%) of a brown oil as a 17:3 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration. Major isomer, ($2^{\prime} \mathrm{R}^{*}, 3^{\prime} \mathrm{R}^{*}$)-48: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.90$ $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{J}=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (td, J $=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$, 1H), 5.06 (d, J $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ $(\mathrm{m}, 1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=$ $8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$). Minor isomer, ($2^{\prime} \mathrm{R}^{*}, 3^{\prime} \mathrm{S}^{*}$)-48 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33$ (s, 9 H), $2.68(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H})$. This compound was not characterized further
(2R*,3S*)-2-(5'-Chloro-2'-(2,2,2-trichloroacetyl)ami-nophenyl)-1-(2,2,2-trichloroacetyl)-3-ethenylpyrrolidine (53). To a solution of 34 (0.10 g , ca. 0.30 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ $(5.0 \mathrm{~mL})$ was added trichloroacetic anhydride ($0.27 \mathrm{~mL}, 1.5$ mmol). After 16.5 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and washed with saturated aqueous NaHCO_{3} $(3 \times 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. Silica gel chromatography with hexanes/EtOAc (15:1) gave impure product (67 mg) which was crystallized from acetone/hexane to give 50 mg (33\%) of waxy colorless prisms: mp 200.5-202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H} 0,3.04(\mathrm{~m}, 1 \mathrm{H})$, 3.95 (td, J = 11.4, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (ddd, J = 11.4, 7.2, 1.8 $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~m}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.48$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , CDCl_{3}) $\delta 32.3,50.2,51.1,63.3,92.6,92.7,117.6,126.6,127.4$, 129.0, 133.2, 133.3, 135.3, 135.9, 160.1, 160.6; IR (KBr) 3310 (br), 2970, 1700, $1650 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 518\left(\mathrm{M}^{+}+\mathrm{NH}_{4}\right), 511$ $\left(M^{+}+H\right), 479,367,117,96$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$ 510.8875, found 510.8862.
(1R*,10bS*)-9-Chloro-1-ethenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[1,2-c]quinazolin-5-one (54). To a solution of 53 ($0.050 \mathrm{~g}, 0.097 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The reaction was heated at reflux for 20 h , then cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give 14 mg (59\%) of light yellow flakes: mp 213-214 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}$ $=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, J $=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, 1H), 7.90 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.9,43.5$, $49.8,60.3,114.8,117.9,123.2,124.6,127.0,128.3,135.9,138.1$,
152.8; IR (film) 3430, 3190, 3080, $1670 \mathrm{~cm}^{-1}$; MS (CI) m/z 249 $\left(\mathrm{M}^{+}+\mathrm{H}\right), 194,165$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}, 62.78$; H, 5.27; N, 11.26. Found: C, 62.42; H, 5.42; N, 10.95 .
(1R*,10bR*)-9-Chloro-6-p-toluenesulfonyl-1-ethenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[1,2-c]quinazolin-5-one (55). To a solution of $45(4.00 \mathrm{~g}, 16.1 \mathrm{mmol})$ in THF (400 mL) at $0^{\circ} \mathrm{C}$ was added NaH (60% dispersion in mineral oil, 2.00 g , 50.0 mmol). After $1 \mathrm{~h}, \mathrm{p}$-tol uenesulfonyl chloride ($3.40 \mathrm{~g}, 17.8$ mmol) was added, and the reaction was allowed to warm to room temperature while stirring for an additional 15 h . The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (1: 1) to give $5.80 \mathrm{~g}(90 \%)$ of a dark yellow solid. An analytical sample was prepared by crystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Dark tan cubes: $\mathrm{mp} 184-184.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.52$ (td, J $=11.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}$ 1H), 5.11 (dd, J = 11.1, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (dd, J = 17.1, 1.2 $\mathrm{Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=$ 8.8, 2.0 Hz, 1H), 7.37 (m, 3H), $8.10(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,30.6,44.3,45.2,59.5,118.4$ 122.4, 127.2, 127.7, 128.1, 128.3, 129.7, 130.5, 134.1, 134.9 137.5, 144.7, 149.4; IR (KBr) $2960 \mathrm{~cm}^{-1}$; MS (CI) m/z 403 (M+ +H); HRMS cal cd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S} 403.0883$, found 403.0861
(2R*,3R*)-2-(5'-Chloro-2'-p-toluenesulfonylamino-phenyl)-3-ethenylpyrrolidine (56). A solution of 55 (5.80 $\mathrm{g}, 14.4 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{MeOH} / 50 \%$ aqueous NaOH (3:2:1, 150 mL) was heated at reflux for 96 h . The reaction was cooled to $0^{\circ} \mathrm{C}$, acidified to $\mathrm{pH} \sim 1$ with $10 \% \mathrm{HCl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 200 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{EtNH}_{2}$ (97:2:1) to give $3.52 \mathrm{~g}(65 \%)$ of a tan solid: $\mathrm{mp} 61-62.5^{\circ} \mathrm{C}, \mathrm{mp}\left(\mathrm{HCl}\right.$ salt) 222-225 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.39$ ($\mathrm{s}, 3 \mathrm{H}$), $2.95(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dt}, \mathrm{J}=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~m}$, $1 \mathrm{H}), 4.37(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{dd}, \mathrm{J}=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.27 (dt, J $=16.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04$ (dd, J $=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,32.0,45.4,48.5,66.2,116.3$, 119.0, 127.0, 127.4, 127.6, 127.8, 129.4, 129.6, 137.0, 137.5 137.7, 143.4; IR (film) 3320, $3070,1475 \mathrm{~cm}^{-1}$; MS (CI) m/z 377 $\left(M^{+}+\mathrm{H}\right), 221,167$; HRMS cal cd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} 377.1090$ found 377.1112.
(2R*,3R*)-1-Acetyl-2-(5'-chloro-2-p-toluenesulfonylami-nophenyl)-3-ethenylpyrrolidine (57). To a solution of 56 $(0.50 \mathrm{~g}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at room temperature was added DMAP ($16 \mathrm{mg}, 0.13 \mathrm{mmol}$), pyridine ($0.16 \mathrm{~mL}, 2.0$ $\mathrm{mmol})$, and acetyl chloride ($0.14 \mathrm{~mL}, 2.0 \mathrm{mmol}$). After 3 h , saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2: 1) to give 0.48 g (85%) of a pale yellow solid as a $3: 2$ mixture of rotamers, based on ${ }^{1} \mathrm{H}$ NMR integration: mp $67.5-69^{\circ} \mathrm{C}$; Major rotamer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}$) $\delta 1.54$ ($\mathrm{s}, 3 \mathrm{H}$), $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}$ $1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H})$, $5.34(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 1H), 6.91 (d, J $=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (dd, J $=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.48(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz, d-DMSO) $\delta 21.0,22.0,26.4,45.5,47.1,59.2,116.6$, 126.5, 127.0, 127.8, 129.8, 130.9, 133.3, 135.5, 135.8, 136.8, 138.4, 143.6, 168.8; IR (KBr) 3060, $2950 \mathrm{~cm}^{-1}$; MS (CI) m/z $419\left(\mathrm{M}^{+}+\mathrm{H}\right), 263$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{O}_{3} \mathrm{~S} 419.1196$, found 419.1203. Minor rotamer: ${ }^{1} \mathrm{H}$ NMR (400 MHz , d-DMSO) $\delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.58$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=10.4,1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H})$, $5.10(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H})$,
7.71 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 9.79 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , d-DMSO) $\delta 20.9,22.4,28.6,45.0,46.6,57.2,116.1,123.9,126.6$, 126.9, 127.1, 127.2, 128.9, 129.7, 134.1, 135.2, 137.1, 143.3, 168.9.
(3aR*,4R*,9bS*)-1-Acetyl-8-chloro-4-(iodomethyl)-5-p-toluenesulfonyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2c]quinoline (58). To a solution of $57(0.10 \mathrm{~g}, 0.24 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ at room temperature was added $\mathrm{I}_{2}(0.61 \mathrm{~g}$, $2.4 \mathrm{mmol})$. The reaction was heated at reflux for 24 h and then cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The resulting solution was washed with saturated NaHCO_{3} (5 mL), 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/ hexanes (2:1) to give 0.11 g (84\%) of a yellow solid. An analytical sample was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$: thick colorless prisms; mp $189.5-190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.91(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.01$ $(\mathrm{m}, 1 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=10.3,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (dd, J = 9.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.45(\mathrm{~d}, \mathrm{~J}$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.1, 21.5, 22.5, 28.1, 38.0, 46.7, 52.0, 57.7, 121.7, 127.1, 128.4, 128.8, 129.9, 130.0, 131.5, 132.0, 137.5, 144.5, 171.1; IR (KBr) 3440 (br), 3130, 3015, $1625 \mathrm{~cm}^{-1}$; MS (CI) m/z 545 (M+ + H), 375, 263, 249, 219, 112, 91, 65, 43; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22}$ $\mathrm{ClIN}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 46.29 ; \mathrm{H}, 4.07 ; \mathrm{N}, 5.14$. Found: C, $46.08 ; \mathrm{H}, 4.23$; $\mathrm{N}, 5.44$. X-ray data for this compound are available in the Supporting Information.

Ethyl 3-Bromo-4-(N-tert-butoxycarbonyl)aminobenzoate (59). Bromine ($12.0 \mathrm{~mL}, 233 \mathrm{mmol}$) was added dropwise to a sol ution of $5^{14}(35.0 \mathrm{~g}, 132 \mathrm{mmol})$, sodium acetate (43.0 g , $524 \mathrm{mmol})$, and acetic acid (700 mL). After 41 h , the reaction was cooled to $0{ }^{\circ} \mathrm{C}, 50 \%$ aqueous $\mathrm{NaOH}(600 \mathrm{~mL})$ was added slowly, and the mixture was extracted with EtOAc (3×500 mL). The combined organic layers were washed with 10% aqueous $\mathrm{NaOH}(2 \times 150 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(150$ $\mathrm{mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (4:1) to give 45.9 g (100%) of a pale pink solid: $\mathrm{mp} 82.5-84{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 4.36(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.19 (d, J $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.27$ (d, J $=8.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,28.2,61.1,81.8,111.3,118.4,125.5$, 129.8, 133.6, 140.2, 151.8, 165.1; IR (KBr) 3380, 2960, 1720, $1690 \mathrm{~cm}^{-1}$; MS (CI) m/z 344 (M+ + H), 305, 288, 243, 224, 198, 57. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrNO}_{4}: \mathrm{C}, 48.55 ; \mathrm{H}, 5.27 ; \mathrm{N}, 4.07$. Found: C, 48.63; H, 5.18; N, 3.82.
Ethyl 4-(N-tert-Butoxycarbonyl)amino-3-ethenylbenzoate (60). A solution of 59 ($7.50 \mathrm{~g}, 21.8 \mathrm{mmol}$) and $2,6-\mathrm{di}-$ tert-butyl-4-methylphenol (50 mg) in toluene (50 mL) was deoxygenated with argon. The flask and reflux condenser were covered with aluminum foil. Next, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(1.25 \mathrm{~g}, 1.08$ mmol) and tributyl(vinyl)tin ($9.00 \mathrm{~mL}, 30.8 \mathrm{mmol}$) were added, and the mixture was heated at reflux for 24 h . The reaction was then cooled to room temperature, filtered through a short pad of silica gel and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (9:1) to give 5.40 g (85\%) of a thick pale yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.53(\mathrm{~s}, 9 \mathrm{H}), 4.36(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{dd}, \mathrm{J}=11.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.73$ (dd, J = 17.3, 1.0 Hz, 1H), 6.66 (br s, 1H), 6.77 (dd, J = 17.3, $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (dd, J $=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 (d, J $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.4,28.3,60.8,81.3,119.1,119.8,125.0$, 127.5, 128.9, 130.0, 131.4, 139.3, 152.3, 166.3; IR (film) 3320 (br), 2960, 1720 (sh), $1695 \mathrm{~cm}^{-1}$; MS (Cl) m/z $292\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 236,191, 57. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 65.96 ; \mathrm{H}, 7.27$; N , 4.81. Found: C, 65.81; H, 7.33; N, 4.53.

Ethyl 4-(N-tert-Butoxycarbonyl)amino-3-formylbenzoate (61). Alkene 60 ($4.00 \mathrm{~g}, 13.7 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cooled to $-78^{\circ} \mathrm{C}$, and then ozone was bubbled through the solution until it turned blue (ca. 30 min). The reaction was
quenched with DMS (2.0 mL), allowed to warm to room temperature, and then was concentrated under reduced pressure. The crude product was purified by silica gel chromatography with hexanes/EtOAc (5:1) to give $3.13 \mathrm{~g}(78 \%)$ as a white solid: mp 100.5-101 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 4.40(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.20$ (dd, J $=8.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, \mathrm{~J}$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}), 10.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.3,28.2,61.2,81.3,117.9,120.5,123.6,136.7$, 137.9, 145.3, 152.4, 165.1, 194.6; IR (KBr) 3250, 2985, 1715, $1695 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{Cl}) \mathrm{m} / \mathrm{z} 294\left(\mathrm{M}^{+}+\mathrm{H}\right), 255,238,194,57$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, 61.42; $\mathrm{H}, 6.53 ; \mathrm{N}, 4.78$. Found: C, 61.45; H, 6.83; N, 4.80.
(N^{\prime} 'tert-Butoxycarbonyl-2'-amino-5'-carbethoxyben-zylidene)-[(Z)-5-(trimethylsilyl)-3-pentenyl]amine (62). A solution of 21 ($0.12 \mathrm{~g}, 0.65 \mathrm{mmol})$ and triphenyl phosphine (0.17 $\mathrm{g}, 0.65 \mathrm{mmol}$) in THF (5.0 mL) was stirred at room temperature for 3 h . Next, $61(0.19 \mathrm{~g}, 0.65 \mathrm{mmol})$ was added, and the reaction was heated at reflux for 20 h . The reaction was then cooled to room temperature, concentrated under reduced pressure, triturated with ether, filtered through Florisil, and concentrated under reduced pressure to give 0.35 g of a crude colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.39$ $(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 2.40(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ $(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H})$, $5.50(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~m}, 2 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 12.38$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.8$, 14.4, 18.7, 28.3, 28.7, 60.8, 61.0, 80.3, 117.4, 119.6, 122.8, 123.9, 127.5, 132.4, 134.7, 144.7, 153.2, 163.1, 165.9; IR (film) 2960, 2940, 1715, $1700 \mathrm{~cm}^{-1}$; MS (CI) m/z 433 (M+ + H), 377, 279, 263, 208, 194, 183; HRMS cal cd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si} 433.2522$, found 433.2526. This compound was used immediately in the next step without further purification.
(1R*,10bR*)- and (1R*,10bS*)-9-Carbethoxy-1-ethenyl-2,3,6,10b-tetrahydro-1H-pyrrolo[1,2-c]quinazolin-5-one (63). To a solution of 62 (9.13 g , ca. 21.1 mmol , as a ca. 2:1 mixture of Z and E isomers, based on ${ }^{1} \mathrm{H}$ NMR integration) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at room temperature was added $\mathrm{TiCl}_{4}(12.0$ $\mathrm{mL}, 109 \mathrm{mmol}$). After $18 \mathrm{~h}, 10 \%$ aqueous $\mathrm{NaOH}(500 \mathrm{~mL}$) was added slowly, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:1) to give $4.83 \mathrm{~g}(80 \%)$ of a light yellow solid as a 17:3 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration, $\mathrm{mp} 161-164{ }^{\circ} \mathrm{C}$. Major isomer, (1R*,10bR*)-63: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.02$ (m, 1H), $2.24(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~m}$, $1 \mathrm{H}), 4.33(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}$, $\mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~m}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, \mathrm{J}=8.3,1.7 \mathrm{~Hz}$, 1H), $9.33(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,29.0$, $43.1,45.6,60.7,61.5,113.8,117.4,117.8,123.7,128.7,129.9$, 135.6, 141.7, 153.0, 166.1; IR (KBr) 3180, 2960, 1685, 1660 cm^{-1}; MS (CI) m/z 287 ($\mathrm{M}^{+}+\mathrm{H}$), 232. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.12; H, 6.34; N, 9.78. Found: C, 67.09; H, 6.32; N, 9.55. Minor isomer, (1R*, 10bS*)-63 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.91(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{J}=$ $8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.2,30.6,43.5,50.1,60.4,60.6,117.7,121.0,123.8,126.3$, 130.1, 138.3, 141.5, 153.3, 166.5.
($1 R^{*}, 10 b R^{*}$)- and ($1 R^{*}, 10 b S^{*}$)-9-Carbethoxy-6-p-tolu-enesulfonyl-1-ethenyl-2,3,6,10b-tetrahydro-1H-pyrrolo-[1,2-c]quinazolin-5-one (64). To a solution of 63 ($2.0 \mathrm{~g}, 7.0$ mmol) in THF (150 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $0.80 \mathrm{~g}, 20 \mathrm{mmol}$). After 45 min , p-toluenesulfonyl chloride ($1.6 \mathrm{~g}, 8.4 \mathrm{mmol}$) was added and the reaction was allowed to warm to room temperature. After an additional 22 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added slowly and the reaction mixture was extracted with EtOAc (3 $\times 150 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude
product was purified by silica gel chromatography with hexanes/EtOAc (2:1) to give 2.8 g (91\%) of a yellow solid as a 17:3 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration, mp $148.5-151.5^{\circ} \mathrm{C}$. Major isomer, (1R*,10bR*)-64: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{dd}, \mathrm{J}=12.6,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H})$, 7.94 (dd, J = 8.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.98(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.2,30.2,44.2$, 45.1, 59.4, 60.9, 118.2, 120.4, 126.2, 126.6, 128.0, 128.7, 128.8, 129.3, 129.5, 134.8, 137.1, 139.0, 144.6, 148.9; IR (KBr) 2960, 2880, 1705 (sh), $1690 \mathrm{~cm}^{-1}$; MS (CI) m/z 441 (M+ + H). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 62.71 ; \mathrm{H}, 5.49 ; \mathrm{N}, 6.36$. Found: C, 62.35; H, 5.72; N, 6.37. Minor isomer, (1R*,10bS*)-64 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.43(\mathrm{~s}, 3 \mathrm{H})$, $3.05(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,21.4,30.9,44.6$, 48.2, 59.0, 117.8, 120.2, 125.2, 126.1, 127.3, 128.1, 129.1, 130.2, 137.2, 139.2 .
($2 R^{*}, 3 R^{*}$)- and ($2 R^{*}, 3 S^{*}$)-2-(5'-Carbomethoxy-2'-p-tolu-enesulfonylaminophenyl)-3-ethenylpyrrolidine (65). A solution of $\mathbf{6 4}(2.50 \mathrm{~g}, 5.68 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH} / 50 \%$ aqueous NaOH (3:2:1, 120 mL) was heated at reflux for 67 h . The reaction was acidified to $\mathrm{pH} \sim 1$ with $10 \% \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure to give 2.41 g of crude 2-(5'-carboxy-2'-p-toluenesulfo-nylaminophenyl)-3-ethenylpyrrolidine as a brown oil: IR (KBr) 3650-2300 (br), 3400, 3050, $1645 \mathrm{~cm}^{-1}$; MS (CI) m/z 387 (M+ + H), 259, 189; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 387.1378$, found 387.1375. To a solution of the crude acid (2.41 g) in MeOH $(100 \mathrm{~mL})$ was added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL})$. The reaction was heated at reflux for 20 h , then cool ed to room temperature and concentrated. To the resulting residue was added saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. This aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (19:1) to give 1.31 g (57\% over two steps) of a white foam as a 17:3 mixture of diastereomers, based on ${ }^{1} \mathrm{H}$ NMR integration. Major isomer, ($2 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$)65: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 4.53(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (dd, J = 8.6, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,31.8,45.1,48.5,51.8$, $66.7,116.3,116.5,122.9,124.3,126.8,129.4,129.5,131.2$, 136.5, 137.9, 143.2, 144.4, 166.6; IR (KBr) 3440 (br), 2930, 1690, $1590 \mathrm{~cm}^{-1}$; MS (CI) m/z 401 (M+ + H), 191; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 401.1535, found 401.1559. Minor isomer, (2R*,3S*)-65 (diagnostic peaks only): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.74(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~m}$, $1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H})$, $5.52(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,31.2,44.2,49.2,51.9,68.9,116.9,118.3$, 123.4, 125.9, 126.7, 129.5, 129.7, 131.2, 137.1, 137.8, 143.4, 166.6.
(3aR*,4R*,9bS*)-8-Carbomethoxy-4-(iodomethyl)-5-p-toluenesulfonyl-2,3,3a,4,5,9b-hexahydro-1H-pyrrolo[3,2c]quinoline (66). To a solution of $65(0.50 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ at room temperature was added iodine (3.0 $\mathrm{g}, 12 \mathrm{mmol})$. The reaction was heated at reflux for 21 h , then cooled to room temperature, and diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$. The resulting solution was washed with saturated NaHCO_{3} (20 mL) and 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 25 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}$ (50 mL). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, decanted, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography with EtOAc/hexanes (2:

1) to give $0.29 \mathrm{~g}(44 \%)$ of a beige foam: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H})$, $2.92(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=8.6,2.1 \mathrm{~Hz}$, 1H), $7.99(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.5, 21.6, 32.8, 43.0, 46.1, 52.1, 56.4, 61.2, 122.9, 127.0, 127.5, 129.6, 129.9, 131.4, 131.7, 136.9, 138.7, 144.6, 166.2; IR (KBr) 3410, 2930, $1700 \mathrm{~cm}^{-1}$; MS (CI) m/z $527\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 401, 342, 91; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: 527.0501 , found 527.0511 .

Acknowledgment. This work was supported by the National Institutes of Health (GM 49093). We thank Lawrence Seib for carrying out the X-ray structure determinations, Martha Morton for assistance with

NMR spectroscopy, and Soo-Ho Ban for valuable assistance. Additionally, K.E.F. acknowledges receipt of a Madison A. and Lila Self-Graduate Fellowship.

Supporting Information Available: Experimental procedures for compounds 16-22, 23, 27-31, 35, 36, 40-44, 4952, N -(4-chlorophenyl)-2,2-dimethyl-propionamide, and N -(4chl oro-2-formyl phenyl)-2,2-dimethylpropionamide; X-ray data for compounds 38, 45, 50, and 58; and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compounds $8,10,12,14,15,21,24-36,39-44,47-53$, 55-57, 62, 64, and 65 (compounds 36 and 48 have ${ }^{1} \mathrm{H}$ data only). This material is available free of charge via the Internet at http://pubs.acs.org.
J 0990843C

[^0]: * To whom correspondence should be addressed. Tel: 1.785.864.4496. Fax: 1.785.864.5326. E-mail: jaube@ukans.edu.
 † Current Address: Pharmacia \& Upjohn, 7254-209-619, 301 Henreitta Street, Kalamazoo, MI 49007.
 (1) Witherup, K. M.; Ransom, R. W.; Graham, A. C.; Bernard, A. M.; Salvatore, M. J .; Lumma, W. C.; Anderson, P. S.; Pitzenberger, S M.; Varga, S. L. J. Am. Chem. Soc. 1995, 117, 6682-6685.
 (2) (a) Gurjar, M. K.; Pal, S.; Rao, A. V. R. Heterocycles 1997, 45, 231-234. (b) Ho, T. C. T.; J ones, K. Tetrahedron 1997, 53, 8287-8294. (c) Hadden, M.; Stevenson, P. J. Tetrahedron Lett. 1999, 40, 12151218. (d) Lovely, C. J.; Mahmud, H. Tetrahedron Lett. 1999, 40, 20792082. (e) Batey, R. A.; Simoncic, P. D.; Lin, D.; Smyj, R. P.; Lough, A. J. Chem. Commun. 1999, 651-652. (f) Snider, B. B.; Ahn, Y.; Foxman B. M. Tetrahedron Lett. 1999, 40, 3339-3342.

[^1]: (3) (a) Mao, Y.; Boekelheide, V. J. Org. Chem. 1980, 45, 1547-1548. (b) Ito, Y.; Nakajo, E.; Nakatsuka, M.; Saegusa, T. Tetrahedron Lett 1983, 24, 2881-2884. (c) Hodgetts, I.; Noyce, S. J.; Storr, R. C. Tetrahedron Lett. 1984, 25, 5435-5438. (d) Ito, Y.; Nakajo, E.; Saegusa T. Synth. Commun. 1986, 16, 1073-1080. (e) Migneault, D.; Bernstein M. A.; Lau, C. K. Can. J. Chem. 1995, 73, 1506-1513. (f) Steinhagen H.; Corey, E. J . Org. Lett. 1999, 1, 823-824. (g) Steinhagen, H.; Corey, E. J. Angew. Chem., Int. Ed. Engl. 1999, 38, 1928-1931.
 (4) (a) Oppolzer, W. Synthesis 1978, 793-802. (b) Gallagher, T.; Magnus, P. Tetrahedron 1981, 37, 3889-3897.
 (5) Gomper, R.; Lehmann, H.-D. Angew. Chem., Int. Ed. Engl. 1968, 7, 74-75.
 (6) Some of the work contained herein has been communicated Frank, K.; Aubé, J. Tetrahedron Lett. 1998, 39, 7239-7242.

[^2]: (7) Albert, A.; Yamamoto, H. J . Chem. Soc. B 1966, 956-963.
 (8) (a) Molina, P.; Arques, A.; Cartagena, I.; Obón, M. d. R. Tetrahedron Lett. 1991, 32, 2521-2524. (b) Molina, P.; Arques, A.; Tárraga, A.; Obón, M. d. R. Tetrahedron 1998, 54, 997-1004.
 (9) Sakaitani, M.; Ohfune, Y. Tetrahedron Lett. 1985, 26, 55435546.
 (10) Recent reviews: (a) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367-4416. (b) Schinzer, D. Synthesis 1988, 263-273. (c) Overman, L. E. Acc. Chem. Res. 1992, 25, 352-359.

[^3]: (11) Schinzer, D.; Allagiannis, C.; Wichmann, S. Tetrahedron 1988, 44, 3851-3868.
 (12) Hiemstra, H.; Sno, M. H. A. M.; Vijn, R. J.; Speckamp, W. N. J. Org. Chem. 1985, 50, 4014-4020.

[^4]: (13) Gracias, V.; Frank, K. E.; Milligan, G. L.; Aubé, J. Tetrahedron 1997, 53, 16241-16252.
 (14) Grehn, L.; Gunnarsson, K.; Ragnarsson, U. Acta Chem. Scand., Ser. B 1987, 41, 18-23.
 (15) Croce, P. D.; LaRosa, C.; Ritieni, A. J. Chem. Res., Synop. 1988, 346-347.

[^5]: (16) Sato, T.; Nakamura, N.; I keda, K.; Okada, M.; Ishibashi, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1'1992, 2399-2407.
 (17) Muchowski, J. M.;' Venuti, M. C. J . Org. Chem. 1980, 45, 47984801.
 (18) Horner, J. K.; Henry, D. W. J . Med. Chem. 1968, 11, 946-949.

