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Abstract: Total synthesis of stevastelin B is described. Evans
asymmetric aldol methodology and Roush asymmetric allylation
were used to construct four consecutive stereo-centers on the octa-
decanoic acid moiety of stevastelin B. Subsequent coupling with a
dipeptide and macrolactamization gave stevastelin B. The flexibili-
ty of this route could allow the synthesis of many analogues for bi-
ological tests, which cannot be obtained from natural sources.
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Stevastelins are novel depsipeptides, isolated from a cul-
ture broth of penicillium sp. NK374186 as immunosup-
pressants in 1994.1 Among stevastelins, stevastelin B is
the most abundant. Stevastelin B (1) contains four compo-
nents, namely valine, threonine, O-acetyl-serine and 3,5-
dihydroxy-2,4-dimethyloctadecanoic acid. The absolute
structure of stevastelin B was determined in 1996.2 Stev-
astelin B shows the inhibitory activity not only against T
cell activation but also B cell.1 Together with its low tox-
icity, stevastelins may be useful tools for investigation of
T cell and B cell activation mechanisms and have applica-
tions as immunosuppressants.1,3

Total synthesis of stevastelin B has not been reported yet,
although it has a very interesting structure and biological
activity. So we decided to make stevastelin B our target of
total synthesis. The synthetic plans are shown in Scheme
1. For the appropriate construction of four consecutive
stereo-centers in synthetic intermediate 3, which was a
crucial point in this total synthesis, we decided to use
Evans asymmetric aldol methodology4 and Roush asym-
metric allylation.5

Evans asymmetric aldol reaction followed by hydrolysis
and esterification gave methyl ester 4 (Scheme 2). MTPA
ester derived from methyl ester 4 was used to determine
the enantiomeric purity. By 19F NMR, methyl ester 4
proved to be >99% ee. Reduction of 4 with LiBH4 gave a
diol,6 whose primary alcohol was selectively protected
with a TBS group to give alcohol 5. Coupling of 5 with
Boc-Ser(Bn)-OH followed by deprotection of the TBS
group under acidic conditions gave alcohol 6. Alcohol 6
was oxidized to the corresponding aldehyde by TPAP,7

which was converted to homoallyl alcohol 3 by Roush
asymmetric allylation using (R,R)-boronate 7. The diaste-
reomers, which might be yielded by the asymmetric ally-
lation, were not found at all. This boronate 7 can construct
the 3,4-anti configuration, regardless of the configuration
of aldehydes.5 In fact, the desired stereochemistry was
correctly constructed as described below. Olefin 3 was

oxidized to acid 8 by ozonolysis and subsequent NaClO2-
NaH2PO4 oxidation.

Acid 8 was reduced to triol 128 which had been derived
from stevastelin B itself (Scheme 3). The 1H NMR spectra
and the specific rotation of 12 thus obtained were identical
with the reported data.2b Moreover, benzyl ether 13, pre-
pared by the same method for 3, was converted to ace-
tonide 14 to confirm the syn-stereochemistry of two
hydroxyl groups, independently. The gem-methyl groups
of 14 were observed at 19.55 and 30.11 ppm, respectively
(in 13C NMR). The 13C NMR spectra of syn-1,3-diol ace-
tonides are reported to show an axial methyl group at 19
ppm and an equatorial methyl group at 30 ppm, while the
two methyl groups of anti-1,3-diol acetonides appear at
24 ppm.9 Therefore, the relative stereochemistry of this
1,3-diol was unambiguously determined as syn (Scheme
4). 

Coupling of acid 8 with dipeptide 9 gave 10. Removal of
the benzyl groups in 10 by hydrogenation with Pd/C gave
11. After removal of the Boc group in 11, macrolactam-
ization under several conditions was examined, but the
desired macrocyclic product was not obtained. The free
serine hydroxyl group seemed to affect the cyclization re-
action. When we changed the position in which the Val-
Thr dipeptide was introduced, hydroxyl group of serine
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was successfully protected until the completion of macro-
lactamization. 

Removal of the Boc group in homoallyl alcohol 3 fol-
lowed by coupling with dipeptide 15 gave 16 (Scheme 5).
Olefin 16 was oxidized to acid 17 by ozonolysis and
NaClO2-NaH2PO4 oxidation. Esterification of 17 with
pentafluorophenol and DCC gave active ester 18. Remov-
al of the Boc group followed by macrolactamization in the
presence of large excess of triethylamine gave the desired
macrocyclic benzyl ether 19.10 Hydrogenation of 19 with
Pd(OH)2/C followed by selective acetylation of the prima-
ry hydroxyl group in the serine residue gave stevastelin B
(1).11 The 1H and 13C NMR spectra were coincident with
those of the natural compound.

Thus, the total synthesis of stevastelin B has been
achieved (18 steps, overall yield 3% from tetradecanal)
and the present synthetic strategy of stevastelin B allows
systematic syntheses of not only other natural stevastelins
but also other unnatural analogues which may show activ-
ities of biological interest. The total synthesis of stevaste-
lin B3, our next target, is now under course.
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Scheme 5 Reagents and conditions: a) Boc-Val-Thr-OH (15), DCC, HOBt, quant.; b) O3, Ph3P, -78 °C, 87%; c) NaClO2, NaH2PO4, 2-
Methyl-2-butene, THF/ t-BuOH/ H2O, 62%; d) C6F5OH, DCC, 66%; e) high dilution, Et3N (20 equiv), 47% for 2 steps; f) Pd(OH)2/ C, H2,
56%; g) Ac2O, pyridine, 81%.
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