# Synthesis of Novel Biphenyltetrazole Derivatives Containing 5-Methylisoxazole Substituted 1,2,4-Triazole

De-Guang Sun<sup>a</sup> (孫德廣), Xin-Ping Hui<sup>a</sup> (惠新平), Peng-Fei Xu<sup>a</sup>\* (許鵬飛), Zi-Yi Zhang<sup>a</sup> (張自義) and Zuo-Wu Guan<sup>b</sup> (管作武) <sup>a</sup>State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China <sup>b</sup>School of Pharmaceutical Sciences, Peking University, Beijing 100083, P. R. China

An efficient route to synthesize the target compounds was developed. Fifteen new 5-[4'-(5-isoxazol-4-aryl-1,2,4-triazol-3-yl-sulfanylmethyl)-biphenyl-2-yl]-tetrazoles derivatives were synthesized. The structures of the new compounds synthesized were confirmed by elemental analyses and spectral data.

Keywords: Biphenyltetrazole; 1,2,4-Triazole; 5-Methylisoxazole.

#### INTRODUCTION

The discovery of losartan as a potent and effective oral angiotensin  $AT_1$  selective A II antagonist has generated significant interest in the search for other nonpeptide A II antagonists.<sup>1</sup> Up till now, several highly potent  $AT_1$  selective antagonists containing heterocycles have been reported. The great majority of them contain a biphenyltetrazole moiety appended to a five-membered or a six-membered heterocycle. The biphenyltetrazole moiety is considered to be an essential acidic functional group for antagonism.

Substituted 1,2,4-triazole derivatives have shown broad-spectrum biological activities such as antibacterial,<sup>2</sup> pesticide,<sup>3</sup> herbicide,<sup>4</sup> phytohormone<sup>5</sup> and antihypertensive<sup>6</sup> activities. 5-Methylisoxazole derivatives have also shown biological effects such as antibacterial<sup>7,8</sup> and phytohormone<sup>9</sup> effects. So far, biphenyltetrazole compounds containing 5-methylisoxazole substituted 1,2,4-triazole moiety have not been reported. Combining biphenyltetrazole with isoxazole substituted 1,2,4-triazole by -SCH<sub>2</sub>- is expected to give novel heterocyclic compounds with better antibacterial activities. In this paper, we describe the synthesis of novel compounds which bear both biphenyltetrazole and 5-methylisoxazole substituted 1,2,4-triazole moieties.

#### **RESULTS AND DISCUSSION**

5-Methylisoxazole-3-carbohydrazide, which is re-

quired as a starting material, was prepared according to the literature.<sup>10a</sup> As shown in Scheme I, 4-aryl-5-(5-methylisoxazol-3-yl)-1,2,4-triazol-3-thiols (1a-1o) were prepared by the reaction of 5-methylisoxazole-3-carbohydrazide with arylisothiocyanates and then cyclization in the presence of 2 mol/L aqueous potassium carbonate solution.10b An important class of compounds in this paper is the biphenyltetrazoles. The classical method of synthesizing tetrazoles from nitriles employing ammonium chloride/sodium azide is not suitable for sterically hindered nitriles.<sup>11</sup> The method of Duncia<sup>12</sup> using trimethyltin or tributyltin azide is not convenient; moreover, organic tin reagents are usually highly toxic. In this paper, 5-(4'-methyl-biphenyl-2-yl)tetrazole (3) was synthesized from 2 using sodium azide/zinc chloride by a modified method described by Rocco.13 Treatment of 3 with triphenylmethyl chloride in NaOH aqueous solution gave trityl protected tetrazole 4. The yield of the two steps was obviously improved by optimizing the experimental conditions (previous yield 68%, optimal yield 87%). Bromination of 4 with N-bromosuccinimide provided 5. Alkylation of 1 with 5 in the presence of potassium carbonate at the refluxing temperature of acetone afforded S-alkylated products 6a-60 in moderate to good yields. The trityl group was successfully removed by treatment with 10% aqueous hydrochloric acid in THF/CH<sub>3</sub>OH to yield the desired compounds 7a-7o. All steps only need simple recrystallization for purification, if necessary. So it is an efficient route to synthesize the target compounds.

The structures of **7a-7o** were confirmed by elemental analyses and spectral data. The <sup>1</sup>H NMR spectra of **6a-6o** and **7a-7o** exhibited two doublets for SCH<sub>2</sub> at 4.34-4.56 Scheme I



 $\begin{array}{l} {\sf R} = {\sf H} \mbox{ (a)}, \mbox{ } o{\text -}{\sf CH}_3 \mbox{ (b)}, \mbox{ } m{\text -}{\sf CH}_3 \mbox{ (c)}, \mbox{ } p{\text -}{\sf CH}_3 \mbox{ (d)}, \mbox{ } o{\text -}{\sf CI} \mbox{ (e)}, \mbox{ } m{\text -}{\sf CI} \mbox{ (f)}, \mbox{ } p{\text -}{\sf CI} \mbox{ (g)}, \mbox{ } o{\text -}{\sf Br} \mbox{ (h)}, \mbox{ } p{\text -}{\sf CH}_3 \mbox{ (d)}, \mbox{ } p{\text -}{\sf CI} \mbox{ (m)}, \mbox{ } p{\text -}{\sf CI} \mbox{ (g)}, \mbox{ } o{\text -}{\sf Br} \mbox{ (h)}, \mbox{ } m{\text -}{\sf CI} \mbox{ (m)}, \mbox{ } p{\text -}{\sf CI} \mbox{ (g)}, \mbox{ } o{\text -}{\sf Br} \mbox{ (h)}, \mbox{ } m{\text -}{\sf CI} \mbox{ (m)}, \mbox{ } p{\text -}{\sf CI} \mbox{ (m)}, \mbox{ } n{\text -}{\sf CI} \mbox{ (m)} \mbox{ } n{\text -}{\sf CI} \mbox{ (m)} \mbox{ } n{\text -}{\sf CI} \mbox{ (m)} \mbox{ } n{$ 

ppm, no matter whether the *ortho*-group R is an electronwithdrawing group or an electron-donating group. The reason is likely that the *ortho*-group R is much closer to SCH<sub>2</sub>, which makes the groups crowded and blocks free rotation of the *sigma*-bond in SCH<sub>2</sub> and results in a different chemical environment for two protons. When R is a *meta*-group or a *para*-group, SCH<sub>2</sub> normally exhibited a singlet. The IR spectra displayed an absorption band in the region of 14131497 cm<sup>-1</sup> due to C-S-C, whereas the characteristic absorption bands for C=N and N-N=C functions appeared in the range of 1604-1607 cm<sup>-1</sup> and 1235-1254 cm<sup>-1</sup>, respectively. The molecular ions of **7a-7o** could be detected by FAB-MS.

Compounds **7a-7o** were screened for their antibacterial activity against *Escherichia coli* and *Staphylococcus aureu*. The antibacterial activity showed that most of the

| Table 1. Physical p | properties and | elemental ana | lyses of com | pounds 6a-60 | and 7a-70 |
|---------------------|----------------|---------------|--------------|--------------|-----------|
|---------------------|----------------|---------------|--------------|--------------|-----------|

|     |           | Mp (°C) | Formula –    | Elemental anal. Found (Calcd.) (%) |             |               |  |  |
|-----|-----------|---------|--------------|------------------------------------|-------------|---------------|--|--|
| No. | Y1eld (%) |         |              | С                                  | Н           | N             |  |  |
| 6a  | 83        | 174-175 | C45H34N8OS   | 73.28 (73.55)                      | 4.54 (4.66) | 14.98 (15.25) |  |  |
| 6b  | 72        | 167-168 | C46H36N8OS   | 73.41 (73.77)                      | 4.78 (4.85) | 14.58 (14.96) |  |  |
| 6c  | 77        | 118-119 | C46H36N8OS   | 73.62 (73.77)                      | 4.95 (4.85) | 14.33 (14.96) |  |  |
| 6d  | 69        | 135-136 | C46H36N8OS   | 73.44 (73.77)                      | 4.58 (4.85) | 14.68 (14.96) |  |  |
| 6e  | 67        | 123-125 | C45H33ClN8OS | 69.88 (70.25)                      | 4.05 (4.32) | 14.23 (14.57) |  |  |
| 6f  | 69        | 153-154 | C45H33ClN8OS | 69.94 (70.25)                      | 4.16 (4.32) | 14.24 (14.57) |  |  |
| 6g  | 57        | 135-137 | C45H33ClN8OS | 69.91 (70.25)                      | 4.01 (4.32) | 14.31 (14.57) |  |  |
| 6h  | 64        | 116-118 | C45H33BrN8OS | 66.12 (66.42)                      | 3.98 (4.09) | 13.89 (13.77) |  |  |
| 6i  | 66        | 169-170 | C45H33BrN8OS | 66.09 (66.42)                      | 3.84 (4.09) | 13.58 (13.77) |  |  |
| 6j  | 72        | 127-128 | C45H33BrN8OS | 66.10 (66.42)                      | 3.80 (4.09) | 13.42 (13.77) |  |  |
| 6k  | 40        | 171-172 | C46H36N8O2S  | 72.41 (72.23)                      | 4.78 (4.74) | 14.30 (14.65) |  |  |

| 61 | 81 | 102-104 | C46H36N8O2S                                                        | 72.02 (72.23) | 4.89 (4.74) | 14.36 (14.65) |
|----|----|---------|--------------------------------------------------------------------|---------------|-------------|---------------|
| 6m | 77 | 150-153 | C47H38N8O2S                                                        | 72.22 (72.47) | 4.83 (4.92) | 14.06 (14.39) |
| 6n | 61 | 156-157 | $C_{47}H_{38}N_8O_2S$                                              | 72.16 (72.47) | 4.71 (4.92) | 14.08 (14.39) |
| 60 | 78 | 130-131 | C47H38N8OS                                                         | 73.68 (73.99) | 4.85 (5.02) | 14.32 (14.69) |
| 7a | 51 | 129-130 | $C_{26}H_{20}N_8OS$                                                | 63.12 (63.40) | 3.86 (4.09) | 22.36 (22.75) |
| 7b | 81 | 120-121 | $C_{27}H_{22}N_8OS$                                                | 63.79 (64.02) | 4.28 (4.38) | 21.78 (22.12) |
| 7c | 81 | 119-121 | $C_{27}H_{22}N_8OS$                                                | 63.84 (64.02) | 4.30 (4.38) | 21.99 (22.12) |
| 7d | 96 | 122-123 | $C_{27}H_{22}N_8OS$                                                | 63.76 (64.02) | 4.46 (4.38) | 21.75 (22.12) |
| 7e | 75 | 149-150 | C26H19ClN8OS                                                       | 59.54 (59.26) | 3.78 (3.63) | 21.02 (21.26) |
| 7f | 65 | 178-179 | C26H19ClN8OS                                                       | 59.38 (59.26) | 3.76 (3.63) | 20.94 (21.26) |
| 7g | 81 | 128-129 | C26H19ClN8OS                                                       | 59.06 (59.26) | 3.71 (3.63) | 20.96 (21.26) |
| 7h | 94 | 185-186 | C26H19BrN8OS                                                       | 54.83 (54.65) | 3.66 (3.35) | 19.42 (19.61) |
| 7i | 78 | 179-180 | C26H19BrN8OS                                                       | 54.83 (54.65) | 3.59 (3.35) | 19.29 (19.61) |
| 7j | 90 | 133-134 | C26H19BrN8OS                                                       | 54.36 (54.65) | 3.42 (3.35) | 19.88 (19.61) |
| 7k | 70 | 124-125 | $C_{27}H_{22}N_8O_2S$                                              | 61.78 (62.06) | 4.36 (4.24) | 21.11 (21.44) |
| 71 | 56 | 158-160 | $C_{27}H_{22}N_8O_2S$                                              | 61.75 (62.06) | 4.35 (4.24) | 21.15 (21.44) |
| 7m | 80 | 109-110 | $\mathrm{C}_{28}\mathrm{H}_{24}\mathrm{N}_8\mathrm{O}_2\mathrm{S}$ | 62.95 (62.67) | 4.78 (4.51) | 20.54 (20.88) |
| 7n | 51 | 136-137 | $\mathrm{C}_{28}\mathrm{H}_{24}\mathrm{N}_8\mathrm{O}_2\mathrm{S}$ | 62.48 (62.67) | 4.32 (4.51) | 20.62 (20.88) |
| 70 | 67 | 136-138 | $C_{28}H_{24}N_8OS$                                                | 64.41 (64.60) | 4.75 (4.65) | 21.25 (21.52) |

Table 2. <sup>1</sup>H NMR data of compounds **6a-60** 

| No.        | <sup>1</sup> H NMR (CDCl <sub>3</sub> , δ, ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6a         | 8.00-7.97 (m, 1H, ArH), 7.51-6.85 (m, 27H, ArH), 6.55 (s, 1H, hetH), 4.45 (s, 2H, CH <sub>2</sub> S), 2.42 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6b         | 7.97 (d, J = 6.9 Hz, 1H, ArH), 7.46-6.99 (m, 25H, ArH), 6.87 (d, J = 7.5 Hz, 1H, ArH), 6.56 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 1H, hetH), 4.49 (d, J = 12.3 Hz, 1H, SCH <sub>2</sub> ), 4.43 (d, J = 12.3 Hz, 1H, SCH <sub>2</sub> ), 2.41 (s, 3H, CH <sub>3</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 1.96 (s, 3H, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6c         | 7.99 (d, <i>J</i> = 6.3 Hz, 1H, ArH), 7.47-6.94 (m, 25H, ArH), 6.86 (d, <i>J</i> = 7.8 Hz, 1H, ArH), 6.54 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 1H, hetH), 4.45 (s, 2H, CH <sub>2</sub> S), 2.42 (s, 3H, CH <sub>3</sub> ), 2.31 (s, 3H, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6d         | 8.00-7.96 (m, 1H, ArH), 7.46-7.02 (m, 25H, ArH), 6.87 (d, $J = 6.9$ Hz, 1H, ArH), 6.55 (s, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | hetH), 4.45 (s, 2H, CH <sub>2</sub> S), 2.42 (s, 3H, CH <sub>3</sub> ), 2.39 (s, 3H, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6e         | 7.99-7.97 (m, 1H, ArH), 7.54-6.86 (m, 26H, ArH), 6.64 (s, 1H, hetH), 4.54 (d, $J = 9.3$ Hz, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | $SCH_2$ , 4.39 (d, $J = 9.3$ Hz, 1H, $SCH_2$ ), 2.42 (s, 3H, $ArCH_3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6f         | 8.01-7.98 (m, 1H, ArH), $7.63-7.05$ (m, 25H, ArH), $6.86$ (d, $J = 8.1$ Hz, 1H, ArH), $6.61$ (s, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6          | hetH), 4.44 (s, 2H, $CH_2S$ ), 2.43 (s, 3H, $CH_3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6g         | /.98 (d, $J = 5.1$ Hz, 1H, ArH), $/.46-/.05$ (m, 25H, ArH), $6.88$ (d, $J = /.5$ Hz, 1H, ArH), $6.60$ (s, 1H, 1), $4.45$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2), $2.42$ (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a          | 1H, hetH), 4.45 (s, 2H, CH <sub>2</sub> S), 2.43 (s, 3H, CH <sub>3</sub> )<br>7.00.706 ( 1H, A, H), $7.71.768$ (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| on         | (.99-7.96  (m, 1H, ArH), 7.71-7.68  (m, 1H, ArH), 7.47-6.87  (m, 25H, ArH), 6.65  (s, 1H, netH), 6.65  (s, 1H, netH), 6.64  (d,  L= 12.2  Hz, 111  SCH), 7.47-6.87  (m, 25H, ArH), 6.65  (s, 1H, netH), 6.65  (s, 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>c</i> : | 4.54 (d, $J = 12.5$ HZ, 1H, SCH <sub>2</sub> ), 4.40 (d, $J = 12.5$ HZ, 1H, SCH <sub>2</sub> ), 2.41 (S, 5H, CH <sub>3</sub> )<br>8.00.7.06 (m, 1H, ArH), 7.51.6.84 (m, 26H, ArH), 6.60 (a, 1H, batH), 4.44 (a, 2H, CH, S), 2.44 (a, 2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 01         | $8.00^{-}/.90$ (m, 1H, ArH), $7.51^{-}0.84$ (m, 20H, ArH), $0.00$ (s, 1H, netH), $4.44$ (s, 2H, CH <sub>2</sub> S), $2.44$ (s, 2H, CH <sub>2</sub> |
| 61         | 7.00-7.06 (m 1H ArH) 7.60.6.86 (m 26H ArH) 6.58 (s 1H betH) 4.43 (s 2H CH S) 2.42 (s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vj         | 2H CH.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6k         | 7.98-7.96 (m 1H ArH) $7.49-6.96$ (m 25H ArH) $6.87$ (d $I = 6.9$ Hz 1H ArH) $6.56$ (s 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UN         | hetH) $449 (d, J = 12.3 Hz, 1H, SCH_2), 4.36 (d, J = 12.3 Hz, 1H, SCH_2), 3.65 (s, 3H, CH_2O), 2.41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | (s, 3H, ArCH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 61         | 8.00-7.97 (m. 1H. ArH), 7.47-6.86 (m. 26H. ArH), 6.55 (s. 1H. hetH), 4.45 (s. 2H. CH <sub>2</sub> S), 3.80 (s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 3H, CH <sub>3</sub> O), 2.42 (s, 3H, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6m         | 7.97 (d, $J = 6.9$ Hz, 1H, ArH), 7.50-6.86 (m, 26H, ArH), 6.56 (s, 1H, hetH), 4.50 (d, $J = 12.9$ Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 1H, SCH <sub>2</sub> ), 4.36 (d, <i>J</i> = 12.9 Hz, 1H, SCH <sub>2</sub> ), 3.97 (q, <i>J</i> = 2.4, Hz, 1H, CH <sub>3</sub> CH <sub>2</sub> O), 3.97 (q, <i>J</i> = 2.4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Hz, 1H, CH <sub>3</sub> CH <sub>2</sub> O), 2.41 (s, 3H, CH <sub>3</sub> ), 1.11 (t, <i>J</i> = 6.9 Hz, 3H, CH <sub>3</sub> CH <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6n         | 7.99-7.96 (m, 1H, ArH), 7.48-6.84 (m, 26H, ArH), 6.53 (s, 1H, hetH), 4.43 (s, 2H, CH <sub>2</sub> S), 4.01 (q,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | <i>J</i> = 6.9 Hz, 2H, CH <sub>3</sub> CH <sub>2</sub> O), 2.42 (s, 3H, CH <sub>3</sub> ), 1.41 (t, <i>J</i> = 6.9 Hz, 3H, CH <sub>3</sub> CH <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60         | 8.00-7.97 (m, 1H, ArH), 7.49-6.85 (m, 26H, ArH), 6.54 (s, 1H, hetH), 4.45 (s, 2H, CH <sub>2</sub> S), 2.41 (s,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 3H, CH <sub>3</sub> ), 2.28 (s, 3H, ArCH <sub>3</sub> ), 2.24 (s, 3H, ArCH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| No. | <sup>1</sup> H NMR (CDCl <sub>3</sub> , $\delta$ , ppm)                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7a  | 7.84 (d, J = 7.8 Hz, 1H, ArH), 7.53-6.99 (m, 12H, ArH), 6.33 (s, 1H, HetH), 4.26 (s, 2H, SCH <sub>2</sub> ),                                        |
|     | 2.36 (s, 3H, CH <sub>3</sub> )                                                                                                                      |
| 7b  | 7.87 (d, J = 6.6 Hz, 1H, ArH), 7.57-7.22 (m, 8H, ArH), 7.20-7.00 (m, 3H, ArH), 6.34 (s, 1H,                                                         |
|     | HetH), 4.30 (s, 2H, SCH <sub>2</sub> ), 2.36 (s, 3H, CH <sub>3</sub> ), 1.92 (s, 3H, CH <sub>3</sub> )                                              |
| 7c  | 7.83 (d, J = 7.8 Hz, 1H, ArH), 7.56-6.96 (m, 11H, ArH), 6.31 (s, 1H, HetH), 4.27 (s, 2H, SCH <sub>2</sub> ),                                        |
|     | 2.36 (s, 6H, CH <sub>3</sub> , ArCH <sub>3</sub> )                                                                                                  |
| 7d  | 7.83 (d, J = 7.8 Hz, 1H, ArH), 7.56-6.98 (m, 11H, ArH), 6.32 (s, 1H, HetH), 4.26 (s, 2H, SCH <sub>2</sub> ),                                        |
|     | 2.40 (s, 3H, CH <sub>3</sub> ), 2.36 (s, 3H, CH <sub>3</sub> )                                                                                      |
| 7e  | 7.63-6.95 (m, 12H, ArH), 6.43 (s, 1H, HetH), 4.39 (d, J = 12.9 Hz, 1H, SCH <sub>2</sub> ), 4.15 (d, J = 12.9                                        |
|     | Hz, 1H, SCH <sub>2</sub> ), 2.33 (s, 3H, CH <sub>3</sub> )                                                                                          |
| 7f  | 7.54 (d, J = 6.9 Hz, 1H, ArH), 7.44-7.02 (m, 11H, ArH), 6.42 (s, 1H, HetH), 4.34 (s, 2H, SCH <sub>2</sub> ),                                        |
|     | 2.35 (s, 3H, CH <sub>3</sub> )                                                                                                                      |
| 7g  | 7.84 (d, J = 6.6 Hz, 1H, ArH), 7.56-6.99 (m, 11H, ArH), 6.41 (s, 1H, HetH), 4.28 (s, 2H, SCH <sub>2</sub> ),                                        |
|     | 2.38 (s, 3H, CH <sub>3</sub> )                                                                                                                      |
| 7h  | 7.83 (d, J = 6.6 Hz, 1H, ArH), 7.71-6.99 (m, 11H, ArH), 6.42 (s, 1H, HetH), 4.32 (d, J = 13.5 Hz,                                                   |
|     | 1H, SCH <sub>2</sub> ), 4.25 (d, <i>J</i> = 13.5 Hz, 1H, SCH <sub>2</sub> ), 2.36 (s, 3H, CH <sub>3</sub> )                                         |
| 7i  | 7.56 (d, <i>J</i> = 6.9 Hz, 1H, ArH), 7.38-7.03 (m, 11H, ArH), 6.42 (s, 1H, HetH), 4.34 (s, 2H, SCH <sub>2</sub> ),                                 |
|     | 2.35 (s, 3H, CH <sub>3</sub> )                                                                                                                      |
| 7j  | 7.87 (d, <i>J</i> = 6.9 Hz, 1H, ArH), 7.62-7.00 (m, 11H, ArH), 6.41 (s, 1H, HetH), 4.29 (s, 2H, SCH <sub>2</sub> ),                                 |
|     | 2.39 (s, 3H, CH <sub>3</sub> )                                                                                                                      |
| 7k  | 7.82 (d, J = 6.9 Hz, 1H, ArH), 7.54-6.96 (m, 11H, ArH), 6.34 (s, 1H, HetH), 4.22 (d, J = 13.5 Hz, 1.5 Hz)                                           |
|     | 1H, SCH <sub>2</sub> ), 4.15 (d, <i>J</i> = 13.5 Hz, 1H, SCH <sub>2</sub> ), 3.68 (s, 3H, CH <sub>3</sub> O), 2.34 (s, 3H, CH <sub>3</sub> )        |
| 71  | 7.54 (d, <i>J</i> = 10.5 Hz, 1H, ArH), 7.35-6.93 (m, 11H, ArH), 6.30 (s, 1H, HetH), 4.34 (s, 2H, SCH <sub>2</sub> ),                                |
|     | 3.78 (s, 3H, CH <sub>3</sub> O), 2.34 (s, 3H, CH <sub>3</sub> )                                                                                     |
| 7m  | 7.81 (d, J = 7.5 Hz, 1H, ArH), 7.52-6.96 (m, 11H, ArH), 6.34 (s, 1H, HetH), 4.21 (d, J = 12.9 Hz, 1.20 Hz)                                          |
|     | 1H, SCH <sub>2</sub> ), 4.12 (d, $J = 12.9$ Hz, 1H, SCH <sub>2</sub> ), 3.94 (q, $J = 6.6$ Hz, 2H, CH <sub>3</sub> CH <sub>2</sub> O), 2.35 (s, 3H, |
|     | $CH_3$ ), 1.08 (t, $J = 6.6 Hz$ , 3H, $CH_3CH_2O$ )                                                                                                 |
| 7n  | 7.81 (d, $J = 7.5$ Hz, 1H, ArH), 7.52-6.91 (m, 11H, ArH), 6.30 (s, 1H, HetH), 4.25 (s, 2H, SCH <sub>2</sub> ),                                      |
|     | $4.04 (q, J = 7.2 Hz, 2H, CH_3CH_2O), 2.34 (s, 3H, CH_3), 1.41 (t, J = 7.2 Hz, 3H, CH_3CH_2O)$                                                      |
| 70  | 7.83 (d, $J = 7.2$ Hz, 1H, ArH), 7.53-6.89 (m, 10H, ArH), 6.31 (s, 1H, HetH), 4.26 (s, 2H, SCH <sub>2</sub> ),                                      |
|     | $2.36 (s, 3H, CH_3), 2.29 (s, 3H, CH_3), 2.24 (s, 3H, CH_3)$                                                                                        |

 Table 3. <sup>1</sup>H NMR data of compounds 7a-7o

compounds were inactive against these microorganisms. Further investigation on biological activities of these compounds is in progress.

#### **EXPERIMENTAL**

The melting points were taken on an X-4 microscopic melting point apparatus and are uncorrected. IR spectra were recorded on a Nicloet NEXUS 670 FT-IR spectrometer in KBr disc. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at room temperature on a Varian Mercury-300 MHz spectrometer with TMS as internal standard. Mass spectra were performed on a VG ZAB-HS (FAB) instrument. Elemental analysis was performed on an Elementar Vario EL apparatus.

4'-Methylbiphenyl-2-carbonitrile (2) is a commercial

reagent. 4-Aryl-5-(5-methylisoxazol-3-yl)-1,2,4-triazol-3-thiols (**1a-10**) were synthesized according to the literature.<sup>10b</sup>

# Preparation of 5-(4'-methylbiphenyl-2-yl)-1H-tetrazole (3)

A mixture of **2** (0.1 mol), zinc chloride (0.3 mmol), sodium azide (0.9 mmol), and 150 mL of dry DMF was refluxed for 36 h. The reaction mixture was allowed to cool to room temperature and acidified with 10% aqueous hydrochloric acid (pH = 1). The resulting solution was added with stirring to ice-water (1320 mL), and the mixture was stirred for 1 h. The precipitate was collected, washed with water, dried and recrystallized from ethyl acetate to provide **3** as a white solid in 96% yield. mp 158-160 °C (lit.<sup>13</sup> 144-148 °C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$ : 11.52 (s, 1H, NH), 8.12 (d, *J* = 7.0 Hz, 1H, ArH), 7.55-7.03 (m, 7H,

| No. | <sup>13</sup> C NMR (CDCl <sub>3</sub> , δ, ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7a  | 170.09, 155.33, 153.90, 151.91, 146.82, 140.85, 138.79, 135.76, 133.00, 131.03, 130.80, 130.61,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.45, 129.67, 129.26, 129.13, 127.95, 127.23, 122.96, 101.36, 36.51, 12.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7b  | 170.12, 153.83, 151.89, 146.77, 140.85, 138.82, 135.83, 135.70, 132.22, 131.42, 131.07, 130.80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.63, 129.25, 128.00, 127.50, 127.30, 122.93, 100.98, 36.09, 17.34, 12.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7c  | 170.03, 153.94, 151.90, 146.75, 140.85, 139.90, 138.77, 135.72, 132.85, 131.26, 130.99, 130.79,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.59, 129.38, 129.25, 129.11, 127.90, 127.57, 124.16, 123.00, 101.35, 36.48, 21.23, 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7d  | 170.03, 155.33, 154.07, 151.94, 146.85, 140.86, 140.74, 138.77, 135.72, 130.99, 130.80, 130.59,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.32, 129.23, 129.11, 128.61, 127.90, 126.87, 122.99, 101.36, 36.45, 21.30, 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7e  | 170.08, 155.29, 153.48, 151.84, 146.65, 140.88, 138.77, 135.70, 133.66, 132.71, 132.04, 131.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.77, 130.60, 129.49, 129.23, 128.76, 128.61, 127.93, 127.66, 126.80, 122.91, 122.18, 100.98,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 36.41, 11.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7f  | 170.27, 155.37, 153.65, 151.81, 146.65, 140.88, 138.77, 135.70, 133.66, 132.71, 132.04, 131.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.77, 130.60, 129.49, 129.23, 128.76, 128.61, 127.93, 127.66, 126.80, 122.91, 122.18, 101.28,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 36.61, 11.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7g  | 170.26, 155.35, 153.85, 151.87, 146.75, 140.80, 138.85, 136.57, 135.76, 131.49, 131.08, 130.80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.64, 129.95, 129.29, 129.14, 128.68, 128.01, 122.90, 101.39, 36.55, 12.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7h  | 170.08, 155.29, 153.49, 151.84, 146.65, 140.88, 138.77, 135.70, 133.66, 132.71, 132.04, 131.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.77, 130.60, 129.49, 129.23, 128.76, 128.61, 127.93, 127.66, 126.81, 122.91, 122.18, 100.98, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120. |
|     | 36.66, 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7i  | 170.01, 155.40, 153.50, 151.80, 146.65, 140.88, 138.77, 135.70, 133.66, 132.71, 132.04, 131.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.77, 130.60, 129.49, 129.23, 128.76, 128.61, 127.93, 127.66, 126.80, 122.91, 122.18, 100.68, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120.91, 120. |
|     | 36.69, 12.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7j  | 170.26, 153.79, 151.90, 146.71, 140.82, 138.89, 135.83, 132.96, 132.04, 131.09, 130.80, 130.65, 132.04, 131.09, 130.80, 130.65, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130.80, 130. |
|     | 129.31, 129.20, 128.94, 128.04, 127.86, 124.76, 122.91, 101.42, 36.60, 12.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7k  | 169.85, 155.24, 154.48, 153.84, 151.96, 147.32, 140.88, 138.66, 135.73, 132.07, 130.97, 130.85,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.54, 129.22, 129.05, 128.58, 127.87, 123.04, 121.80, 120.91, 112.34, 101.06, 55.77, 36.57,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 11.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 71  | 168.59, 160.06, 159.29, 153.17, 151.13, 145.72, 140.28, 139.29, 132.88, 129.72, 128.87, 128.35,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 127.45, 127.11, 126.65, 125.82, 125.64, 113.54, 100.25, 54.36, 35.54, 10.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7m  | 169.79,155.30,153.73,152.07,147.38,140.88,138.68,135.76,131.90,130.96,130.85,130.54,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.96,130.                                                                                                                                                                                                                                                                |
|     | 129.22, 129.05, 128.51, 127.86, 123.07, 121.95, 120.72, 113.13, 101.03, 64.26, 36.63, 14.34, 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7n  | 170.02, 160.19, 155.65, 154.46, 151.97, 147.03, 140.83, 138.85, 135.63, 130.79, 130.56, 129.22,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 129.03, 128.38, 127.84, 125.13, 123.37, 115.14, 101.36, 63.77, 36.34, 14.63, 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 70  | 169.98, 155.36, 154.11, 151.94, 146.80, 140.85, 139.41, 138.76, 138.39, 135.72, 130.97, 130.80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 130.67, 130.47, 129.25, 129.11, 127.89, 127.74, 124.27, 123.02, 101.38, 36.44, 19.79, 19.67, 12.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table 4. <sup>13</sup>C NMR data of compounds **7a-7o** 

ArH), 2.33 (s, 3H, CH<sub>3</sub>).

#### Preparation of 5-(4'-methylbiphenyl-2-yl)-2-trityltetrazole (4)

To a suspension of **3** (5 mmol) in toluene (20 mL) at room temperature were added 10 mol/L sodium hydroxide solution (0.50 mL) and triphenylmethyl chloride (5 mmol), and the resulting mixture was stirred at room temperature for 3 h. To the reaction mixture was added distilled water (3 mL) and petroleum ether (7 mL), and the resulting slurry was stirred at 0 °C for 3 h. The slurry was filtered and the solids were washed with water. The solution was extracted with methylene dichloride. The organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated under vacuum to afford **4** as a white solid. The solid was recrystallizd from ethyl acetate/methylene dichloride to furnish 2.17 g of **4** (91%). mp 166-169 °C (lit.<sup>14</sup> 163-165 °C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ : 7.92 (d, *J* = 7.0 Hz, 1H, ArH), 7.50-6.92 (m, 22H, ArH), 2.29 (s, 3H, CH<sub>3</sub>).

#### Preparation of 5-(4'-bromomethylbiphenyl-2-yl)-2-trityltetrazole (5)

A solution of 4 (10 mmol), *N*-bromosuccinimide (10 mmol) and dibenzoyl peroxide (1 mmol) in 60 mL of dry carbon tetrachloride was refluxed for 8 h, cooled to room temperature, and then filtered. The filtrate was concentrated under reduced pressure to afford the product. Trituration of the product with diethyl ether furnished **5** as a white

| Na        | <br>MS (/~)                             | IR $v_{max}/cm^{-1}$ |                             |             |               |      |
|-----------|-----------------------------------------|----------------------|-----------------------------|-------------|---------------|------|
| 10.       | MS ( <i>m</i> /2)                       | v <sub>C=N</sub>     | $\nu_{N\text{-}N\text{=}C}$ | $\nu_{C-O}$ | $\nu_{\rm C}$ | -S-C |
| 7a        | 492.6 (M+1)                             | 1605                 | 1243                        | 1158        | 1497          | 1414 |
| 7b        | 506.6 (M+1)                             | 1606                 | 1243                        | 1158        | 1474          | 1414 |
| 7c        | 506.6 (M+1)                             | 1607                 | 1239                        | 1159        | 1474          | 1413 |
| 7d        | 506.6 (M+1), 528.5 (M+22)               | 1606                 | 1242                        | 1156        | 1474          | 1414 |
| 7e        | 525.6 (M), 547.4 (M+21), 569.3 (M+43)   | 1606                 | 1243                        | 1157        | 1490          | 1414 |
| 7f        | 527.6 (M+2), 548.4 (M+22), 570.2 (M+44) | 1605                 | 1235                        | 1188        | 1483          | 1415 |
| 7g        | 526.6 (M+1)                             | 1606                 | 1242                        | 1157        | 1494          | 1414 |
| 7h        | 569.9 (M)                               | 1606                 | 1245                        | 1158        | 1485          | 1414 |
| 7i        | 594.0 (M+24), 615.6 (M+46)              | 1604                 | 1236                        | 1153        | 1485          | 1413 |
| 7j        | 571.9 (M+2)                             | 1606                 | 1242                        | 1157        | 1490          | 1415 |
| 7k        | 522.6 (M+1)                             | 1605                 | 1246                        | 1161        | 1473          | 1414 |
| 71        | 522.6 (M+1), 544.5 (M+22), 566.3 (M+44) | 1606                 | 1253                        | 1163        | 1511          | 1413 |
| 7m        | 536.6 (M+1), 559.5 (M+23)               | 1605                 | 1243                        | 1161        | 1476          | 1415 |
| 7n        | 536.6 (M+1)                             | 1605                 | 1254                        | 1169        | 1476          | 1413 |
| <b>70</b> | 520.5 (M+1)                             | 1607                 | 1240                        | 1157        | 1475          | 1416 |

Table 5. FAB-MS and IR data of compounds 7a-7o

solid in 92% yield. mp 135-137 °C (lit.<sup>13</sup> 135-138 °C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ: 7.98-7.94 (m, 1H, ArH), 7.51-6.87 (m, 22H, ArH), 4.38 (s, 2H, CH<sub>2</sub>).

# General procedure for preparation of 5-[4'-(5-methylisoxazol-4-aryl-1,2,4-triazol-3-yl-sulfanylmethyl)-biphenyl-2-yl]-2-trityltetrazoles (6a-6o)

To a solution of **1a-1o** (1 mmol) in acetone (30 mL) was added  $K_2CO_3$  (5 mmol). The mixture was stirred for 2 h at the refluxing temperature. Compound **5** (1.5 mmol) was then added to the solution, which was refluxed for 10-12 h. The reaction mixture was cooled to room temperature and filtered. Then the solvent was evaporated under vacuum; the analytical pure product was obtained directly by recrystallization from acetone or petroleum ether-acetone.

## General procedure for preparation of 5-[4'-(5-methylisoxazol-4-aryl-1,2,4-triazol-3-yl-sulfanylmethyl)-biphenyl-2-yl]-tetrazoles (7a-7o)

A solution of compounds **6a-60** (0.2 mmol), 10% hydrochloric acid (1.73 mL), tetrahydrofuran (8 mL), and methanol (8 mL) was stirred at room temperature for 8 h. To the solution was added 2 mol/L aqueous sodium hydroxide until pH = 12, and the solvents were removed under vacuum. The resulting residue was dissolved in water, and the mixture was filtered to remove the triphenylmethanol. The filtrate was adjusted to pH = 3 employing 10% aqueous hydrochloric acid. The resulting precipitate was collected by filtration and further purified by recrystallization from

acetone.

### ACKNOWLEDGEMENT

This work was supported by the Key Project (No. 02079), the Program (NCET-05-0880), the Doctoral Funds from the Chinese Ministry of Education of P. R. China and the Nature Science Foundation of Gansu province (3ZS051-A25-005).

Received July 28, 2006.

#### REFERENCES

- (a) Kurup, A.; Garg, R.; Carini, D. J.; Hansch, C. *Chem. Rev.* 2001, 101(9), 2727. (b) Le Bourdonnec, B.; Meulon, E.; Yous, S.; Goossens, J.-F.; Houssin, R.; Henichart, J.-P. *J. Med. Chem.* 2000, 43(14), 2685. (c) Le Bourdonnec, B.; Cauvin, C.; Meulon, E.; Yous, S.; Goossens, J.-F.; Durant, F.; Houssin, R.; Henichart, J.-P. *J. Med. Chem.* 2002, 45(21), 4794. (d) Krovat, E. M.; Langer, T. *J. Med. Chem.* 2003, 46(5), 716. (e) Cappelli, A.; Pericot Mohr, G.; Gallelli, A.; Rizzo, M.; Anzini, M.; Vomero, S.; Mennuni, L.; Ferrari, F.; Makovec, F.; Menziani, M. C.; De Benedetti, P. G.; Giorgi, G. *J. Med. Chem.* 2004, 47(10), 2574.
- Goswami, B. N.; Kataky, J. C. S.; Baruah, J. N. J. Heterocyclic Chem. 1984, 21(4), 1225.

Biphenyltetrazole Derivatives of 1,2,4-Triazole

- 3. Sharma, R. S.; Bahel, S. C. J. Indian Chem. Soc. 1982, 59(7), 877.
- Gupta, A. K. S.; Misra, H. K. Indian J. Chem. 1979, 17B(2), 185.
- Zhang, L.-X.; Zhang, Z.-Y. Chem. J. Chin. Univ.(Eng. Ed.) 1989, 5(2), 147.
- 6. Jiang, X.-T.; Hua, W.-Y. Yaoxue Jinzhan 1995, 19(3), 145.
- Yang, H.; Zhang, Z.-Y. Acta Chimica Sinica 1987, 45(9), 916.
- Hui, X.-P.; Zhang, L.-M.; Zhang, Z.-Y.; Wang, Q.; Wang, F. Indian J. Chem. 1999, 37B(9), 1066.
- 9. Zhang, Z.-Y.; Feng, X.-M.; Chen, L.-M. J. Lanzhou Univ.

(Nat. Sci. Ed.) 1992, 28(2), 103.

- (a) Marvel, C. S. Org. Synth. (I) 1951, 238. (b) Zhang, Z.-Y.;
   Yang, K.-X.; Zeng, F.-L. Chem. J. Chin. Univ. 1988, 9(3), 239.
- Finnegan, W. G.; Henry, R. A.; Lofquist, R. J. Am. Chem. Soc. 1958, 80(15), 3908.
- Duncia, J. V.; Pierce, M. E.; Santella III, J. B. J. Org. Chem. 1991, 56(7), 2395.
- 13. Rocco, J. G.; Somerville, N. J. US 5 502 191. 1996.
- Xu, J.-Y.; Zhao, S.-B.; Wu, X.-M.; Hua, W.-Y. Chin. J. Med. Chem. 1998, 8(4), 271.