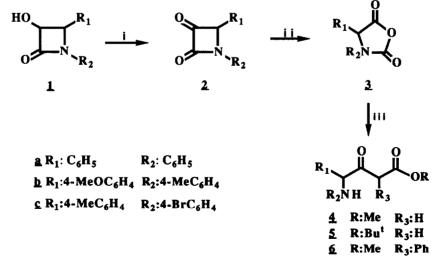
Tetrahedron Letters, Vol.32, No.26, pp 3115-3118, 1991 Printed in Great Britain

.

A β-Lactam Approach to γ-Amino-β-Keto Acid Derivatives.

Claudio Palomo*, Fernando P. Cossío


Departamento de Química Orgánica. Facultad de Química. Universidad del País Vasco. Aptdo. 1072. 20080 - San Sebastián. Spain

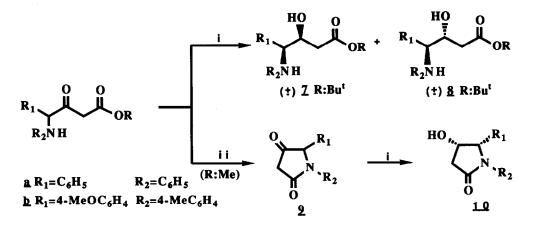
Gloria Rubiales, Domitila Aparicio

Departamento de Química Orgánica. Facultad de Farmacia. Universidad del País Vasco. Vitoria. Spain

Abstract: Formation of γ -amino- β -keto acid derivatives by enolate acylation with N-carboxyanhydrides previously formed from α -keto β -lactams is described.

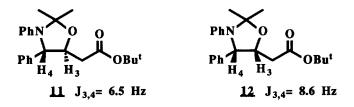
Several groups have demonstrated the utility of γ -amino- β -keto acids as precursors of γ -amino- β -hydroxy acids¹, an important class of compounds because of their occurrence in many natural products². As a consequence, the development of new methodologies, providing an expedient approach to γ -amino- β -keto acids or derivatives continues an active area of investigation³. Recent findings from our laboratory have demonstrated the utility of α -keto β -lactams for the production of α -amino acids⁴ and β -amino- α -hydroxy acids⁵. As an extension of our work we decided to explore the utility of our methodology to construct γ -amino- β -keto acids from β -lactams. Our general approach, Scheme 1, to these compounds involved prior formation of a N-carboxyanhydride **2** from an azetidine-2,3-dione **2** followed by an ester enolate acylation protocol. To test our intended methodology some selected racemic azetidine-2,3-diones **2** were prepared from α -hydroxy β -lactams **1** according to our established procedure⁶ and subjected to the previously reported C₂-C₃ bond cleavage⁴.

Scheme 1. Reagents and Conditions: i, Br_2SMe_2 , NEt_3 , CH_2Cl_2 , $-20^{\circ}C \rightarrow 0^{\circ}C$. ii, m-CPBA, CH_2Cl_2 , $-20^{\circ}C$, 60 min. iii, $R_3CH_2CO_2R$, LDA, $-78^{\circ}C$.


For example, compound <u>2a</u> on treatment with m-chloroperbenzoic acid (MCPBA) (1.3 equiv.) in methylene chloride as solvent at -20°C for 1h produced the N-carboxyanhydride (NCA) <u>3a</u> in 75% isolated yield. Similarly, when compounds <u>2b</u> and <u>2c</u> were subjected to treatment with MCPBA under the same conditions as above the corresponding NCA's <u>3b</u> and <u>3c</u> were obtained in 85% and 75% isolated yields respectively⁷. Although C-acylation of an ester enolate anion with NCA's seems to be of little synthetic utility because of their tendence to polymerization⁸, we found that N-aryl substituted N-carboxyanhydrides efficiently reacted with lithium ester enolates under usual conditions, to afford γ -amino- β -keto esters in excellent yields.

enolate	compound	R'	R ₂	R ₃	R	Yield, % ^b	mp °C (solvent) ^e
	<u>4_a</u>	C ₆ H ₅	C ₆ H ₅	н	^t Bu	92	95-96 (hexane)
	<u>4 b</u>	4-MeOC ₆ H ₄	4-MeC ₆ H ₄	н	^t Bu	87	89-91 (hexane)
LiO MeO CHSiMe ₃	<u>5_a</u>	C ₆ H₅	C ₆ H ₅	н	Me	50°	72-73 (Et ₂ O- hexane)
	<u>5 a</u>	C ₆ H ₅	C ₆ H ₅	н	Me	85	
LiO MeO CH ₂	<u>5 c</u>	4-MeC ₆ H₄	4-BrC ₆ H₄	C ₆ H ₅	Me	89	72-74 (Et ₂ O- hexane)
LiO MeO CHPh	<u>6 a</u>	Ċ ₆ H ₅	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	84 ^d	

Table. Preparation of γ amino- β -keto esters **4-6** ^a


^aReaction conducted at -70°C, by using an enolate: NCA ratio of 1.6:1. ^bYields based on weight of isolated product. ^cOnly desilylated product was obtained. ^dProduced as an equimolar mixture of diastereomers. ^eCrystallization solvent.

The reaction was examined with some representative enolates and the results are summarized in the Table. With the exception of the enolate derived from methyl trimethylsilylacetate the yields, after isolation of the products by column chromatography, were high. Unfortunately, reaction between the lithium enolate of methyl phenylacetate and <u>3a</u> furnished the desired compound <u>6a</u> in high yield but without any stereoselectivity. Production of functionalized N-aryl amino derivatives, whose preparation by arylation of the parent free amino group is not obvious, constitutes an additional feature of our approach.

Scheme 2. Reagents and conditions: i, NaBH₄, MeOH, 0°C, 30 min. ii, toluene, reflux, 12-20 h.

The next question which we explored was the reduction of these N-aryl- γ -amino- β -keto esters 5 to the corresponding γ -amino- β -hydroxy derivatives as shown in Scheme 2. For this purpose we selected NaBH₄-MeOH system, wich is known to afford the best results in terms of chemical yields and stereoselectivity⁹. When the γ -amino- β -keto ester 5a was treated with NaBH₄ at 0°C in methanol as solvent the expected γ -amino- β -hydroxy ester 7a was obtained together with its diastereomer 8a in a ratio 68:32 respectively. Under similar conditions 5b furnished a 64:36 mixture of 7b and 8b in nearly quantitative yield. The relative stereochemistry of the epimeric mixture of diastereomers 7a and 8a was determined by conversion into their corresponding oxazolidines 11 and 12 respectively and determining the coupling constant between H₃ and H₄ protons in both diastereomers¹⁰. Interestingly, cyclisization of γ -amino- β -keto ester 4a in refluxing toluene provided the γ -lactam 9a (m.p. 152-153°C, 80%) which upon borohydride reduction of the carbonyl group afforded the hydroxy derivative 10a in quantitative yield as single cis-isomer^{11,12}. The β -hydroxy γ -lactam 10a could be transformed into the γ -amino- β -hydroxy ester 7a whose relative stereochemistry at C₃-C₄ positions is the same that those found in some natural renin inhibitors¹³.

Particularly noteworthy is that the presently described methodology constitutes a tactically and conceptually new approach to γ -amino- β -keto esters and hence β -keto pyrrolidinones and related compounds. Further studies to the synthesis of natural γ -amino- β -hydroxy acids and derivatives from optically active azetidine-2,3-diones are now underway in our laboratory.

ACKNOWLEDGEMENT: The present work has been supported by Comisión Interministerial de Ciencia y Tecnología (Project FAR:88-0393).

REFERENCES.

- 1.-For a review on β-amino alcohols see: Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149.
- 2.-For a review see: Shioiri, T.; Hamada, Y. In Studies in Natural Products Chemistry, A.-ur Rahmann, Ed.; Elsevier: Amsterdam, 1989, vol. 4; p. 83.
- 3.-For leading references see: Bringmann, G.; Künkel, G.; Geuder, T. Synlett. 1990, 253.
- 4.-Cossío, F.P.; López, C.; Oiarbide, M.; Aparicio, D.; Rubiales G.; Palomo, C. Tetrahedron Lett. 1988, 28, 3133.
- 5.-Palomo, C.; Arrieta, A.; Cossío, F.P.; Aizpurua, J.M.; Mielgo, A.; Aurrekoetxea, N. Tetrahedron Lett. 1990, 31, 6429.
- 6.-Palomo, C.; Aizpurua, J.M.; Cossío, F.P.; García, J.M.; López, M.C.; Oiarbide, M. J. Org. Chem. 1990, 55, 2070.
- 7.-Some representative data: <u>3a</u>: m.p. 133-134°C (CHCl₃/hexane); IR (KBr, υ cm⁻¹): 1850, 1760 (C=O); ¹H-NMR (CDCl₃, δ ppm): 7.54-7.12 (m, 10H, arom), 5.65 (s, 1H, CH). ¹³C-NMR (CDCl₃, δ ppm): 165.6 (C₅), 149.7 (C₂), 134.7-113.6 (Arom), 64.4 (C₄). <u>3h</u>: m.p. 92-93°C (CHCl₃/hexane); IR (KBr, υ cm⁻¹): 1850, 1760 (C=O); ¹H-NMR (CDCl₃, δ ppm): 7.58-6.87 (m, 8H, arom); 5.68 (s, 1H, CH), 3.80 (s, 3H, O CH₃), 2.32 (s, 3H, CH₃). ¹³C-NMR (CDCl₃, δ ppm): 166.3 (C₅), 149.5 (C₂), 132.1-114.7 (Arom), 64.2 (C₄), 55.2 (O CH₃). <u>3c</u>: m.p.135-136°C (Et₂O/hexane); IR (KBr, υ cm⁻¹): 1860, 1770 (C=O); ¹H-NMR (CDCl₃, δ ppm): 7.19 (s_b, 4H, arom), 5.65 (s, 1H, CH), 2.35 (s, 3H, CH₃); ¹³C-NMR (CDCl₃, δ ppm): 165.4 (C₅), 149.7 (C₂), 133.9-119.2 (Arom), 64.2 (C₄), 21.2 (CH₃).
- 8.-Kricheldorf, H.R. In α -Aminoacid-N-Carboxyanhydrides and Related Heterocycles; Springer-Verlag: Berlin, 1987.
- 9.-(a) Dufour, M.-N.; Jouin, P.; Poncet, P.; Pantaloni, A.; Castro, B. J. Chem. Soc.; Perkin Trans. I 1986, 1895. (b) Maibaum, J.; Rich, D.H. J. Org. Chem. 1988, 53, 869. (c) Kessler, H.; Schudok, M. Synthesis 1990, 457.
- 10.-Harris, B.D.; Joullie, M.M. Tetrahedron 1988, 44, 3489.
- 11.-Similar results were found in the reduction of α-keto β-lactams 2, Palomo, C.; Aizpurua, J.M.; López, M.C.; Aurrekoetxea, N.; Oiarbide, M. *Tetrahedron Lett.* 1990, 31, 6425.
- 12.-Klutchko, S.; O'Brien, P.; Hodger, J.C. Synthetic Commun. 1989, 19, 2573.
- 13.-Reetz, M.T.; Drewes, M.W.; Matthews, B.R.; Lennick, K. J. Chem. Soc.; Chem. Commun. 1989, 1474 and references cited therein.

(Received in UK 19 February 1991)