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α-Haloenol Acetates: Versatile Reactants for Oxetan-2-one, Azetidin-2-one and
Isoxazolidin-5-one Synthesis
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New ketene equivalents, namely α-haloenol acetates, are in-
vestigated as both nucleophilic and electrophilic reactants in
a tandem aldol–lactonization reaction. Diethylaluminum
ethoxide proves to be an efficient promoter for the aldol reac-
tion with a wide range of substrates, including inter alia, al-
dehydes, ketones, imines, nitrones and oximes, leading to ox-

Introduction

Oxetan-2-ones, azetidin-2-ones and isoxazolidin-5-ones
are witnessing a great deal of interest because of their syn-
thetic applications and their potential use as therapeutic
agents.[1] Useful reactions exploiting the inherent strain in
the four-membered rings and their transformation into β-
hydroxy and β-amino acids have been widely developed.[2,3]

As units present in many natural products, β-amino acids,
β-hydroxy acids, β-lactones and β-lactams are of great im-
portance. Since the first preparation of β-lactams by Staud-
inger et al. in 1907 by a [2+2] cycloaddition between ketenes
and imines,[4] many synthetic methods for the preparation
of β-lactones and β-lactams have been investigated.[5]

Amongst these methods, the tandem aldol–lactonization re-
action has been applied to a wide variety of carbon skeleton
constructions.[6] Though the aldol reaction with silyl enol
ethers generally takes place smoothly and gives the adducts
in satisfactory yields,[7] typical Lewis acid catalysts some-
times induce side reactions such as cleavage of protecting
groups, isomerization and rearrangement. The formation of
side reactions is more or less avoided with more stable reac-
tants such as enol esters. There are many reports of aldol
reactions that employ enol esters under basic conditions;
however, to date, only a few aldol reactions proceeding un-
der weakly acidic or neutral conditions have been re-
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etan-2-ones, azetidin-2-ones and isoxazolidin-5-ones. The
resultant heterocyclic adducts are common structural ele-
ments in numerous compounds of interest as well as key in-
termediates in the preparation of other functionalities.
(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2007)

ported.[8] Recently, Mukaiyama et al. explored a new and
effective catalyst, diethylaluminum ethoxide, which pro-
motes aldol reactions starting from enol esters.[9,10] As part
of our investigation of organochromium methodology, we
described an efficient synthesis of α-haloenol acetates 1 by
using chromous chloride.[11] The use of diethylaluminum
ethoxide brought us to report herein a tandem aldol–lac-
tonization reaction starting from α-haloenol acetates 1 that
behave as a ketene equivalent (2; Scheme 1).

Scheme 1. α-Haloenol acetates 1 and their synthetic equivalence
with ketenes.

Results and Discussion

Besides the expected reactions of a ketene equivalent
with nucleophilic moieties,[12] such as hydrolysis (Scheme 2,
Reaction a), alcoholysis (Reaction b)[11] and aminolysis
(Reaction c), α-haloenol acetates 1 are capable of under-
going aldol reactions with electrophilic moieties such as al-
dehydes and ketones (Scheme 3, Reactions d, e and f), im-
ines (Reaction g), nitrones (Reaction h) and oximes (Reac-
tion i).[13] We found that freshly prepared diethylaluminum
ethoxide was an efficient promoter for the aldol reaction
starting from α-haloenol acetates 1.

When the aliphatic derivative of α-chloroenol ester, (Z)-
1-chloro-4-phenylbutenylacetate (1a), and aliphatic alde-
hydes or ketones 3 are reacted with diethylaluminum ethox-
ide in anhydrous THF, di- and tri-substituted β-lactones 4
were obtained in moderate-to-good yields (Table 1, Entries
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Scheme 2. Reactivities of α-haloenol acetates with nucleophiles.

Scheme 3. Reactivities of α-haloenol acetates with electrophiles.

1–7).[14] The range of suitable α-haloenol acetates encom-
passed (Z)-1-fluoro-4-phenylbut-1-enyl acetate (1b) that
provide access to β-lactones, though in lower but acceptable
yield (Entry 8). When reacted under the same conditions,
the aryl derivative of the α-chloroenol ester, 1-chloro-2-
phenylethenyl acetate (1c), affords β-hydroxy ester 5e (Entry
9). The reaction of aliphatic derivatives of the α-chloroenol
ester also gives rise to β-hydroxy esters 5 when the reaction
is carried out in a mixture of THF and alcohol (Entry 10).
Interestingly, the aldol reaction can take place in protic sol-
vents. Finally, reaction of 1a with α,β-unsaturated carbonyl
compounds led to di- and tri-substituted olefins 5 (Entries
11–14).

When reacted with imines, (Z)-1-chloro-4-phenylbutenyl
acetate (1a) gives rise to β-lactams 7 and β-amino esters 9
(Table 2, Entries 1–4). Unfortunately, bicyclic azetidin-2-
one derivative 8d (Entry 4) could not be isolated, but could
be detected by 1H NMR analysis of the crude material: it
decomposes to acyclic amide 10d. Unexpectedly, tricyclic
compound 11d could be isolated as a byproduct. The α-
haloenol esters proved also to be reactive with nitrones and
oximes 12. Under standard conditions, 1a affords isoxazol-
idin-5-ones 13 in good yields (Entries 5–7). Interestingly,
from oximes, N-acetyl-isoxazolidin-5-ones are obtained
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Table 1. Reaction of 1 with carbonyl compounds.

[a] Isolated yield after SiO2 chromatographic purification. Stereo-
chemistries have been deduced from 1H NMR analysis. [b] Cor-
rected yield based on conversion of α-haloenol acetate. [c] Unre-
acted 1c was recovered as a mixture of isomers Z/E 67:33. [d] Sol-
vent: THF/EtOH. [e] Unstable adduct.

(Entries 6 and 7). Alkoxy-substituted isoxazolidin-5-one
13c also decomposed on silica gel to give the isoxazol-
5(2H)-one derivative through β-elimination of ethanol (En-
try 7).
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Table 2. Reaction of 1 with imines, nitrones and oximes.

[a] Isolated yield after SiO2 chromatographic purification. Stereo-
chemistries have been deduced from 1H NMR analysis. [b] Cor-
rected yield based on conversion of α-haloenol acetate. [c] Yield
calculated from 1H NMR of the crude material. [d] Compound
8d could not be isolated. It gives quantitatively N-(4-oxopentyl)-4-
phenylbutanamide. [e] Compound 13c undergoes a β-elimination
on SiO2 to give 5(2H)-isoxazolone as a byproduct.

The scope of the reaction was explored by using various
aliphatic carbonyl derivatives and the results indicate intri-
guing stereoselectivity. A reversal of stereoselectivity was
observed between a few linear and branched aldehydes
(Table 1, Entries 1 and 2). A better selectivity was observed
with ketones with respect to aldehydes (Entries 2 and 7) and
a bulky substituent did not lead to any selectivity (Entry 3).
In addition, the stereoselectivity of β-lactones obtained
from α-fluoroenol esters is lower than that obtained from
α-chloroenol (Entries 7 and 8). These results cannot be ra-
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tionalized by a simple stereochemical model. Mukayama et
al. postulated that enol esters can be activated by nucleo-
philic attack of the acetyl group by the ethoxy group of
Et2AlOEt after coordination of the aluminum reagent to
the ketone or the aldehyde (Scheme 4).[9] Thus, a one-,[15]

or two-step acylation can give ethyl acetate as a byproduct.
An aldol reaction followed by lactonization may then give
rise to the β-lactone with elimination of diethylhaloalane.
The conversion of the carboxylic acid halide enolate to the
corresponding ketene may also give the β-lactone by a [2+2]
cycloaddition.[16] Results obtained from α-fluoroenol ace-
tate 1b seem to exclude a common nucleophile, such as ke-
tene 2, if the reaction is not catalyzed by Et2AlX or if it is
in both cases irreversible. Alkylhaloalanes and alkylethoxy-
alanes readily form complexes of associated units through
reversible and rather weak interactions.[17] Thus, several
transition states may be involved depending on the steric
interactions between the substituents. A transesterification
of the aldol adduct or the conversion of the ketene to an
ester enolate may explain the formation of β-hydroxy esters

When α-haloenol acetates are reacted with α,β-unsatu-
rated aldehydes and ketones under standard conditions, di-
and tri-substituted olefins 6 are obtained. A decarboxyl-
ation of the transcient β-lactone probably occurs, promoted
by dialkylethoxyalane and dialkylhaloalane. β-Lactone
could actually be detected by 1H NMR analysis of the
crude materials. Treatment of β-lactone 4k with diethylalu-
minum ethoxide or dimethylaluminum chloride led to a
mixture of β-lactone, β-hydroxy ester and olefin (Scheme 5).
Decarboxylation occurs with aryl derivatives because of the
electron density of the aryl group: it was actually demon-
strated that electron-rich groups at the C-4 position of 2-
oxetanones facilitate the decarboxylation reaction.[2a,18] Fi-
nally, the mechanism probably involves a stepwise fragmen-
tation through a zwitterionic intermediate because both β-
lactone fragmentations are nonstereoselective.

Besides the aldol reactions with electrophilic moieties, we
finally observed the formation of a β-keto ester adduct
formed by a Claisen-type condensation in the presence of
DMSO (Scheme 6). The mechanism is not clear but can be
interpreted as the Claisen condensation of two ethyl car-
boxylates, as the treatment of α-haloenol acetates with Et2-

AlOEt may give rise to ethyl carboxylate derivatives.

Conclusions

α-Haloenol acetates proved to be versatile reactants and
diethylaluminum ethoxide demonstrated a powerful pro-
motion of aldol and tandem aldol–lactonization reactions
with formal [2+2] and [2+3] cycloadditions. Thus, the reac-
tion of aldehydes and ketones under the described condi-
tions provide access to β-lactones, β-hydroxy esters and ole-
fins according to the substitution pattern. Under the same
conditions, imines give rise to β-amino esters and β-lactams,
and isoxazolidin-5-ones could be obtained starting from
nitrones and oximes. Further extensions are underway in
our laboratory, including the enantioselective synthesis of
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Scheme 4. Activation of the enol acetate by Et2AlOEt.

Scheme 5. Decarboxylation of 2-oxetanones promoted by Et2Al-
OEt and Me2AlCl.

Scheme 6. Claisen condensation.

oxetan-2-ones, azetidin-2-ones and isoxazolidin-5-ones
through optically active dialkylaluminum alkoxide, which is
readily accessible from chiral alcohols.

Experimental Section
Triethylaluminum (25% in toluene) was purchased from Aldrich.
Tetrahydrofuran (THF) was distilled from Na/benzophenone ketyl.
GC–MS analyses were carried out with a Shimadzu GCMS-
QP5050A instrument with a SGE silica capillary, 25 m�0.22 mm
BPX5 column (5% phenyl polysilphenylene-siloxane/95% methyl-
polysiloxane), helium carrier gas (29 mL/min; 113 kPa), 260 °C
interface, 80 °C column temp., 320 °C detector, programmed for
2 min at 80 °C, then heating.

4-Butyl-3-(2-phenylethyl)oxetan-2-one (4a) (Representative Pro-
cedure): To a solution of triethylaluminum (25% in toluene,
0.75 mL) was carefully added anhydrous ethanol (73 µL,
1.25 mmol) at –78 °C under an argon atmosphere. The solution was
warmed to room temp. and diluted with anhydrous THF (2.0 mL).
(Z)-1-Chloro-4-phenylbut-1-enyl acetate (1a) (50 µL, 0.25 mmol)
and valeraldehyde (3a) (54 µL, 0.5 mmol) were then added to the
solution of diethylaluminum ethoxide, at 0 °C under an argon at-
mosphere. After the reaction mixture was stirred for 15 h from 0 °C
to room temp., aqueous Rochelle salt and AcOEt were added, and
the mixture was stirred for an additional 30 min at room temp. The
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layers were separated, and the aqueous phase was extracted twice
with AcOEt. The combined organic extracts were washed with
brine and then dried with Na2SO4. After concentration under vac-
uum, the crude product was purified by chromatography on silica
gel to afford 37 mg (63%) of 4-butyl-3-(2-phenylethyl)oxetan-2-one
(4a) (cis/trans 70:30) as a colorless oil. 4a: 1H NMR (200 MHz,
CDCl3): δ = 7.33–7.18 (m, 5 H), 4.56–4.46 (m, 0.7 Hcis), 4.24–4.15
(m, 0.3 Htrans), 3.69–3.57 (m, 0.7 Hcis), 3.24.3.13 (m, 0.3 Htrans),
2.98–2.65 (m, 2 H), 2.30–1.34 (m, 8 H), 0.93 (t, J = 6.8 Hz, 3 H)
ppm. 13C NMR (CDCl3, 50 MHz): δ = 172.2 (cis), 171.5 (trans),
140.7 (cis), 140.4 (trans), 128.7, 128.6, 128.5, 126.6 (trans), 126.5
(cis), 78.5 (trans), 75.8 (cis), 55.5 (trans), 51.8 (cis), 34.1 (trans),
33.5 (cis), 33.2 (trans), 30.1 (cis), 29.7 (trans), 27.8 (cis), 27.2 (trans),
25.9 (cis), 22.5 (cis), 22.4 (trans), 14.0 ppm. IR: ν̃ = 1821 cm–1.
HRMS (IE): calcd. for C15H20O2 [M]+ 232.1463; found 232.1467.

4-Isopropyl-3-(2-phenylethyl)oxetan-2-one (4b): (trans/cis 65:35). 1H
NMR (300 MHz, CDCl3): δ = 7.32–7.19 (m, 5 H), 4.09 (dd, J1 =
10.6 Hz, J2 = 6.2 Hz, 0.35 Hcis), 3.96 (dd, J1 = 7.8 Hz, J2 = 4.1 Hz,
0.65 Htrans), 3.62 (m, 0.35 Hcis), 3.25 (td, J1 = 7.8 Hz, J2 = 4.1 Hz,
0.65 Htrans), 3.07–2.97 (m, 0.35 Hcis), 2.88–2.70 (m, 1.65 H), 2.27–
1.84 (m, 3 H), 1.07 (d, J = 6.9 Hz, 1.05 Hcis), 1.04 (d, J = 6.9 Hz,
1.95 Htrans), 0.95 (d, J = 6.9 Hz, 1.95 Htrans), 0.92 (d, J = 6.9 Hz,
1.05 Hcis) ppm. 13C NMR (CDCl3, 75 MHz): δ = 172.1 (cis), 171.4
(trans), 140.8 (cis), 140.4 (trans), 128.7, 128.4, 126.5 (cis), 126.4
(trans), 82.9 (trans), 80.3 (cis), 53.5 (trans), 51.1 (cis), 33.2 (cis),
33.1 (trans), 32.3 (trans), 30.0 (trans), 29.0 (cis), 26.3 (cis), 19.2 (cis),
18.0, 17.2 (trans) ppm. IR: ν̃ = 1821 cm–1. HRMS (EI): calcd. for
C14H18O2 [M]+ 218.1307; found 218.1305.

4-tert-Butyl-3-(2-phenylethyl)oxetan-2-one (4c): (cis/trans 1:1). 1H
NMR (300 MHz, CDCl3): δ = 7.35–7.20 (m, 10 H), 4.21 (d, J =
6.8 Hz, 1 Hcis), 4.01 (J = 3.8 Hz, 1 Htrans), 3.67 (td, J1 = 7.2 Hz, J2

= 6.8 Hz, 1 Hcis), 3.33 (td, J1 = 7.2 Hz, J2 = 3.8 Hz, 1 Htrans), 3.07–
2.97 (m, 1 Hcis), 2.86–2.68 (m, 3 Hcis+trans), 2.42–1.95 (m, 4 H), 1.06
(s, 9 Hcis), 1.00 (s, 9 Htrans) ppm. 13C NMR (CDCl3, 75 MHz): δ =
172.4 (cis), 171.4 (trans), 140.7 (cis), 140.5 (trans), 128.7, 128.4,
126.4, 85.2 (trans), 82.3 (cis), 51.5 (cis), 50.5 (trans), 34.2, (cis), 33.9
(trans), 33.1 (cis), 32.9 (trans), 30.4 (trans), 27.4 (cis), 26.0 (cis),
24.5 (trans) ppm. IR: ν̃ = 1820 cm–1. HRMS (IE): calcd. for
C15H20O2 [M]+ 232.1463; found 232.1445.

4,4-Dimethyl-3-(2-phenylethyl)oxetan-2-one (4d): 1H NMR (200
MHz, CDCl3): δ = 7.37–7.19 (m, 5 H), 3.23 (dd, J1 = 8.3 Hz, J2 =
8.0 Hz, 1 H), 2.93–2.60 (m, 2 H), 2.30–1.85 (m, 2 H), 1.56 (s, 3 H),
1.48 ppm (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.4,
140.5, 128.7, 128.6, 126.5, 80.2, 57.3, 33.4, 27.9, 26.9, 22.0 ppm.
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IR: ν̃ = 1812 cm–1. HRMS (IE): calcd. for C13H16O2 [M]+

204.1150; found 204.1172.

4,4-Diethyl-3-(2-phenylethyl)oxetan-2-one (4e): 1H NMR (300
MHz, CDCl3): δ = 7.34–7.21 (m, 5 H), 3.24 (dd, J1 = 9.0 Hz, J2 =
7.2 Hz, 1 H), 2.95–2.84 (m, 1 H), 2.79–2.68 (m, 1 H), 2.22–2.10 (m,
1 H), 2.04–1.67 (m, 5 H), 1.02 (t, J = 7.5 Hz, 3 H), 0.92 (t, J =
7.5 Hz, 3 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 172.0, 140.7,
128.7, 128.5, 126.5, 85.0, 56.0, 33.7, 29.3, 26.3, 24.9, 8.2, 7.6 ppm.
IR: ν̃ = 1814 cm–1. HRMS (IE): calcd. for C15H20O2 [M]+

232.1463; found 232.1467.

4-Methyl-3-(2-phenylethyl)-4-propyloxetan-2-one (4f): (trans/cis
66:33). trans-4f: 1H NMR (300 MHz, CDCl3): δ = 7.35–7.19 (m, 5
H), 3.21 (dd, J1 = 8.1 Hz, J2 = 7.9 Hz, 1 H), 2.90–2.79 (m, 1 H),
2.76–2.65 (m, 1 H), 2.20–2.07 (m, 1 H), 1.97–1.66 (m, 3 H), 1.46
(s, 3 H), 1.43–1.27 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H) ppm. 13C
NMR (50 MHz, CDCl3): δ = 171.8, 140.6, 128.7, 128.6, 126.5, 82.4,
56.2, 43.1, 33.5, 27.0, 19.7, 17.7, 14.3 ppm. cis-4f: 1H NMR
(300 MHz, CDCl3): δ = 7.33–7.19 (m, 5 H), 3.22 (dd, J1 = 8.9 Hz,
J2 = 7.3 Hz, 1 H), 2.92–2.82 (m, 1 H), 2.77–2.66 (m, 1 H), 2.20–
2.07 (m, 1 H), 2.02–1.89 (m, 1 H), 1.84–1.70 (m, 1 H), 1.68–1.57
(m, 1 H), 1.52 (s, 3 H), 1.49–1.42 (m, 2 H), 0.97 ppm (t, J = 7.3 Hz,
3 H). 13C NMR (50 MHz, CDCl3): δ = 171.9, 140.7, 128.7, 128.6,
126.5, 82.3, 58.3, 37.4, 33.6, 26.3, 24.9, 17.2, 14.5 ppm. IR: ν̃ =
1815 cm–1. HRMS (EI): calcd. for C15H20O2 [M]+ 232.1463; found
232.1467; calcd. for C14H20 [M – CO2]+ 188.1565; found 188.1551.

trans-4-Isopropyl-4-methyl-3-(2-phenylethyl)oxetan-2one: (trans/cis
94:6). trans-4g: 1H NMR (300 MHz, CDCl3): δ = 7.35–7.20 (m, 5
H), 3.19 (dd, J1 = 9.2 Hz, J2 = 7.4 Hz, 1 H), 2.92–2.82 (m, 1 H),
2.77–2.66 (m, 1 H), 2.22–2.09 (m, 1 H), 2.03–1.81 (m, 2 H), 1.40
(s, 3 H), 1.02 (d, J = 6.9 Hz, 3 H), 0.91 (d, J = 7.2 Hz, 3 H) ppm.
13C NMR (75 MHz, CDCl3): δ = 171.8, 140.7, 128.7, 128.5, 126.4,
85.1, 55.5, 37.6, 33.5, 27.1, 17.1, 16.6, 15.2 ppm. IR: ν̃ = 1813 cm–1.
GC (heating at 10 °C/min): tR = 9.20 min. HRMS (IE): calcd. for
C15H20O2 [M]+ 232.1463; found 232.1467. cis-4g: GC (heating at
10 °C/min): tR = 9.04 min.

Ethyl 3-Ethyl-3-hydroxy-2-phenylpentanoate (5e): M.p. 58–60 °C.
1H NMR (300 MHz, CDCl3): δ = 7.48–7.44 (m, 2 H), 7.36–7.29
(m, 3 H), 4.22 (dq, J1 = 10.9 Hz, J2 = 7.2 Hz, 1 H), 4.07 (dq, J1 =
10.9 Hz, J2 = 7.2 Hz, 1 H), 3.77 (br. s, 1 H), 3.67 (s, 1 H), 1.65 (qd,
J1 = 7.5 Hz, J2 = 2.8 Hz, 2 H), 1.33–1.07 (m, 2 H), 1.22 (t, J =
7.2 Hz, 3 H), 0.96 (t, J = 7.5 Hz, 3 H), 0.78 (t, J = 7.5 Hz, 3
H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 174.9, 135.2, 129.9,
128.4, 127.6, 77.4, 76.1, 61.1, 56.8, 32.0, 30.5, 29.1, 27.0, 22.8, 14.2,
14.1, 8.3, 7.6 ppm. IR: ν̃ = 3508, 1710 cm–1. HRMS (ESI-TOF):
calcd. for C15H23O3 [M]+ 251.1642; found 251.1639.

Ethyl 2-(Hydroxy-p-tolylmethyl)-4-phenylbutanoate (5h): According
to the general procedure using (Z)-1-chloro-4-phenylbut-1-enyl ace-
tate (1a) (50 µL, 0.25 mmol) and 3h (60 µL, 0.5 mmol) in THF
(1.0 mL) and EtOH (1.0 mL), the title compound 5h (66 mg, 85%)
was obtained as a mixture of isomers (syn/anti = 70:30). syn-5h: 1H
NMR (200 MHz, CDCl3): δ = 7.30–7.10 (m, 9 H), 4.94 (d, J =
5.9 Hz, 1 H), 4.08 (q, J = 7.1 Hz, 2 H), 2.79–2.44 (m, 4 H), 2.35
(s, 3 H), 2.12–1.96 (m, 2 H), 1.18 (t, J = 7.1 Hz, 3 H) ppm. 13C
NMR (50 MHz, CDCl3): δ = 174.8, 141.6, 138.6, 137.4, 129.1,
128.5, 128.4, 126.2, 126.0, 74.2, 60.7, 52.6, 33.8, 28.9, 21.2,
14.2 ppm. IR: ν̃ = 3455, 1729 cm–1. anti-5h: 1H NMR (200 MHz,
CDCl3): δ = 7.29–7.06 (m, 9 H), 4.80 (dd, J1 = 8.1 Hz, J2 = 5.1 Hz,
1 H), 4.16 (q, J = 7.1 Hz, 2 H), 2.86–2.50 (m, 4 H), 2.34 (s, 3 H),
2.02–1.82 (m, 1 H), 1.73–1.58 (m, 1 H), 1.27 (t, J = 7.1 Hz, 3
H) ppm. 13C NMR (50 MHz, CDCl3): δ = 175.2, 141.3, 138.9,
137.9, 129.4, 128.5, 126.5, 126.1, 75.4, 60.8, 52.7, 33.5, 31.2, 21.3,
14.4 ppm. IR: ν̃ = 3455, 1706 cm–1.
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4-Phenyl-1-p-tolylbut-1-ene (6h): (E/Z 86:14). (E)-6h: 1H NMR
(200 MHz, CDCl3): δ = 7.36–7.09 (m, 9 H), 6.41 (d, J = 15.9 Hz,
1 H), 6.22 (dt, J1 = 15.9 Hz, J2 = 6.4 Hz, 1 H), 2.85–2.76 (m, 2 H),
2.60–2.48 (m, 2 H), 2.34 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3):
δ = 142.0, 136.7, 135.1, 130.3, 129.3, 129.0, 128.6, 128.5, 126.0,
36.1, 35.0, 21.3 ppm. (Z)-6h: 1H NMR (200 MHz, CDCl3): δ =
7.31–7.15 (m, 9 H), 6.43 (d, J = 11.7 Hz, 1 H), 5.67 (dt, J1 =
11.7 Hz, J2 = 6.6 Hz, 1 H), 2.84–2.64 (m, 4 H), 2.36 (s, 3 H) ppm.
13C NMR (50 MHz, CDCl3): δ = 141.9, 136.4, 134.8, 131.3, 129.4,
129.0, 128.8, 128.6, 128.5, 126.0, 36.3, 30.6, 21.3 ppm.

2,5-Diphenylprop-2-ene (6i): (E/Z 70:30). 1H NMR (200 MHz,
CDCl3): δ = 7.43–7.13 (m, 10 H), 5.86 (t, J = 7.0 Hz, 0.7 HE), 5.54
(t, J = 7.2 Hz, 0.3 HZ), 2.86–2.77 (m, 1.4 HE), 2.73–2.50 (m, 2
HE+Z), 2.39–2.27 (m, 0.6 HZ), 2.06 (s, 0.9 HZ), 2.02 (s, 2.1 HE) ppm.
13C NMR (50 MHz, CDCl3): δ = 144.0 (Z), 142.1 (E), 137.0 (Z),
135.6 (E), 128.62, 128.59, 128.5, 128.33, 128.28, 128.2, 128.0, 127.5,
126.8, 126.7, 126.6, 126.0, 125.83, 125.76, 36.5 (Z), 36.0 (E), 31.1
(Z), 30.9 (E), 25.7 (Z), 15.9 (E) ppm.

(E)-(4-Methyl-3,5-hexadienyl)benzene [(E)-6j]: 1H NMR (300 MHz,
CDCl3): δ = 7.32–7.19 (m, 5 H), 6.38 (dd, J1 = 17.3 Hz, J2 =
10.6 Hz, 1 H), 5.55 (t, J = 7.2 Hz, 1 H), 5.10 (d, J = 17.3 Hz, 1 H),
4.95 (d, J = 10.6 Hz, 1 H), 2.79–2.66 (m, 2 H), 2.54–2.43 (m, 2 H),
1.71 (s, 3 H) ppm. (Z)-6j: 1H NMR (300 MHz, CDCl3): δ = 7.32–
7.19 (m, 5 H), 6.77 (dd, J1 = 17.3 Hz, J2 = 10.9 Hz, 1 H), 5.45 (t,
J = 7.5 Hz), 5.21 (d, J = 17.3 Hz, 1 H), 5.09 (d, J = 10.9 Hz, 1 H),
2.79–2.66 (m, 2 H), 2.54–2.43 (m, 2 H), 1.83 (s, 3 H) ppm.

1-Benzyl-4-phenyl-3-(2-phenylethyl)azetidin-2-one (8a): (trans/cis
88:12) 1H NMR (200 MHz, CDCl3): δ = 7.30–6.89 (m, 15 H), 4.92
(d, J = 14.9 Hz, 0.12 Hcis), 4.86 (d, J = 14.9 Hz, 0.88 Htrans), 4.62
(d, J = 5.4 Hz, 0.12 Hcis), 4.07 (d, J = 2.0 Hz, 0.88 Htrans), 3.90 (d,
J = 14.9 Hz, 0.12 Hcis), 3.75 (d, J = 14.9 Hz, 0.88 Htrans), 3.47–3.36
(m, 0.12 Hcis), 3.14–3.05 (m, 0.88 Htrans), 2.74 (t, J = 7.8 Hz, 1.76
H), 2.55–1.76 (m, 2.24 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
170.3, 141.1, 137.8, 135.8, 129.1, 128.9, 128.6, 128.5, 127.8, 126.7,
126.1, 60.8, 60.0, 44.4, 33.4, 30.6 ppm. IR: ν̃ = 1751 cm–1. HRMS
(ESI-TOF): calcd. for C24H24N1O1 [M]+ 342.1852; found 342.1872.
trans-8a: GC (heating at 25 °C/min): tR = 12.42 min. cis-8a: GC
(heating at 25 °C/min): tR = 12.60 min.

1-(4-Methoxyphenyl)-4-phenyl-3-(2-phenylethyl)azetidin-2-one (8b):
(trans/cis 95:5): 1H NMR (300 MHz, CDCl3): δ = 7.38–7.13 (m, 12
H), 6.79 (d, J = 9.1 Hz, 2 H), 5.17 (d, J = 5.9 Hz, 0.05 Hcis), 4.63
(d, J = 2.2 Hz, 0.95 Htrans), 3.75 (s, 3 H), 3.14 (td, J2 = 6.5 Hz, J2

= 2.2 Hz, 0.95 Htrans), 2.85 (t, J = 7.2 Hz, 1.9 Htrans), 2.36–2.12 (m,
1.9 Htrans) ppm. 13C NMR (75 MHz, CDCl3): δ = 167.2, 156.0,
141.0, 138.1, 131.5, 129.2, 128.6, 126.3, 126.1, 61.6, 60.1, 55.5, 33.5,
30.9 ppm. IR: ν̃ = 1745 cm–1. MS (CI, NH3): m/z = 358 [M +
H]+. HRMS (ESI-TOF): calcd. for C24H24N1O2 [M]+ 358.1802;
found 358.1812. trans-8b: GC (heating at 25 °C/min): tR =
13.60 min. cis-8b: GC (heating at 25 °C/min): tR = 13.82 min.

3-(2-Phenylethyl)-4-p-tolyl-1-(p-tolylsulfonyl)azetidin-2-one (8c):
(cis/trans 1:1): The β-lactam cannot be separated from N-(4-methyl-
benzylidene)-p-toluenesulfonamide by column chromatography.
Characteristic peaks: 1H NMR (200 MHz, CDCl3): δ = 5.17 (d, J
= 6.6 Hz, 1 Hcis), 4.66 (d, J = 2.9 Hz, 1 Htrans), 3.43 (td, J1 = 8.3 Hz,
J2 = 6.6 Hz, 1 Hcis), 3.12 (td, J1 = 7.7 Hz, J2 = 2.9 Hz, 1
Htrans) ppm.

Ethyl 4-Phenyl-2-[p-Tolyl(p-tolylsulfonylamino)methyl]butanoate
(9c): (syn/anti 1:1): 1H NMR (300 MHz, CDCl3): δ = 7.50 (d, J =
8.1 Hz, 2 H), 7.30–7.18 (m, 3 H), 7.11–7.01 (m, 4 H), 6.92–6.82 (m,
4 H), 6.06 (d, J = 9.0 Hz, 0.5 H), 5.51 (d, J = 8.7 Hz, 0.5 H), 4.59
(dd, J1 = 9.0 Hz, J2 = 6.2 Hz, 0.5 H), 4.47 (dd, J1 = 8.7 Hz, J2 =
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8.4 Hz, 0.5 H), 4.02 (q, J = 7.2 Hz, 1 H), 3.89 (q, J = 7.2 Hz, 1 H),
2.76–2.43 (m, 3 H), 2.33 (s, 1.5 H), 2.30 (s, 1.5 H), 2.25 (s, 3 H),
2.06–1.94 (m, 1 H), 1.80–1.67 (m, 1 H), 1.13 (t, J = 7.2 Hz, 1.5 H),
1.02 (t, J = 7.2 Hz, 1.5 H) ppm. 13C NMR (75 MHz, CDCl3): δ =
174.3, 172.8, 143.1, 142.8, 141.1, 140.8, 138.1, 137.49, 137.45,
137.1, 136.0, 135.4, 129.3, 129.2, 129.02, 128.95, 128.5, 127.2,
127.0, 126.9, 126.4, 126.2, 126.1, 61.0, 60.8, 59.2, 58.5, 51.7, 51.4,
33.5, 33.2, 31.8, 30.4, 21.5, 21.1, 14.2, 14.0 ppm.

5-Methyl-6-(2-phenylethyl)-1-azabicyclo[3.2.0]heptan-7-one (8d):
GC (heating at 25 °C/min): tR = 9.43 min. MS (CI, NH3): m/z =
230.

N-(4-Oxopentyl)-4-phenylbutanamide (10d): 1H NMR (200 MHz,
CDCl3): δ = 7.33–7.16 (m, 5 H), 5.67 (br. s, 1 H), 3.24 (td, J1 =
6.8 Hz, J2 = 5.9 Hz, 2 H), 2.65 (t, J = 7.3 Hz, 2 H), 2.50 (t, J =
6.8 Hz, 2 H), 2.21–2.13 (m, 2 H), 2.15 (s, 3 H), 2.04–1.88 (m, 2 H),
1.84–1.70 (m, 2 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 208.9,
173.0, 141.6, 128.6, 128.5, 126.1, 41.2, 39.1, 36.0, 35.3, 30.2, 27.2,
23.5 ppm. IR: ν̃ = 1715, 1647 cm1. GC (heating at 25 °C/min): tR

= 10.10 min. MS (CI, NH3): m/z = 248, 230. HRMS (ESI-TOF):
calcd. for C15H22N1O2 [M]+ 248.1645; found 248.1630.

6a,10a-Dimethyl-6-(2-phenylethyl)octahydrodipyrrolo[1,2-a:1�,2�-c]-
pyrimidin-5(6H)-one (11d): 1H NMR (300 MHz, CDCl3): δ = 7.37–
7.16 (m, 5 H), 3.84–3.74 (m, 1 H), 3.52–3.43 (m, 1 H), 3.16–3.06
(m, 1 H), 2.93–2.88 (m, 2 H), 2.64–2.53 (m, 1 H), 2.29–2.16 (m, 2
H), 1.97–1.64 (m, 7 H), 1.46–1.32 (m, 2 H), 1.34 (s, 3 H), 0.84 (s,
3 H) ppm. 13C NMR (50 MHz, CDCl3): δ = 170.8, 142.9, 128.8,
128.4, 125.8, 77.5, 65.1, 50.3, 47.4, 45.2, 43.2, 39.6, 35.8, 28.9, 25.2,
24.5, 24.2, 21.3 ppm. IR: ν̃ = 1655 cm–1. HRMS (ESI-TOF): calcd.
for C20H29N2O1 [M]+ 313.2274; found 313.2284.

6,6-Dimethyl-3-(2-phenylethyl)tetrahydropyrrolo[1,2-b]isoxazol-
2(3H)-one (13a): (cis/trans 80:20). 1H NMR (300 MHz, CDCl3): δ
= 7.33–7.18 (m, 5 H), 4.13–4.05 (m, 0.8 H), 3.93–3.87 (m, 0.2 H),
3.21–3.12 (m, 0.8 H), 2.85–2.72 (m, 2 H), 2.71–2.61 (m, 0.2 H),
2.33–1.61 (m, 6 H), 1.41 (s, 3 H), 1.09 (s, 3 H) ppm. 13C NMR
(75 MHz, CDCl3): δ = 176.0, 140.6, 128.7, 128.5, 126.5, 69.9, 67.7,
45.5, 35.8, 33.9, 27.7, 25.9, 24.1, 23.9 ppm. IR: ν̃ = 1768 cm–1.
HRMS (ESI-TOF): calcd. for C16H22N1O2 [M]+ 260.1645; found
260.1630. cis-13a: GC (heating at 25 °C/min): tR = 9.88 min. trans-
13a: GC (heating at 25 °C/min): tR = 10.10 min.

2-Acetyl-3,3-dimethyl-4-(2-phenylethyl)isoxazolidin-5-one (13b): 1H
NMR (300 MHz, CDCl3): δ = 7.35–7.21 (m, 5 H), 3.13–3.03 (m, 1
H), 2.86–2.75 (m, 1 H), 2.68 (dd, J1 = 9.7 Hz, J2 = 4.4 Hz, 1 H),
2.15 (s, 3 H), 2.14–1.97 (m, 1 H), 1.80–1.63 (m, 1 H), 1.65 (s, 3 H),
1.35 (s, 3 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 172.3, 171.4,
140.5, 128.7, 128.6, 126.5, 68.0, 50.9, 32.9, 26.3, 25.8, 23.1,
18.0 ppm. IR: ν̃ = 1801, 1686 cm–1. GC (heating at 25 °C/min): tR

= 9.05 min. MS (CI, NH3): m/z = 262 [M + H]+. HRMS (IE):
calcd. for C15H19NO3 [M]+ 261.1365; found 261.1353; calcd. for
C13H17NO2 [M – CH2CO]+ 219.1259; found 219.1280.

2-Acetyl-3-ethoxy-3-methyl-4-(2-phenylethyl)isoxazolidin-5-one
(13c): (cis/trans � 98:2; trans isomer could not be detected). cis-
13c: 1H NMR (300 MHz, CDCl3): δ = 7.34–7.20 (m, 5 H), 3.67
(dq, J1 = 7.2 Hz, J2 = 6.9 Hz, 1 H), 3.54 (dq, J1 = 7.2 Hz, J2 =
6.9 Hz, 1 H), 3.08–2.97 (m, 1 H), 2.89–2.78 (m, 1 H), 2.69 (dd, J1

= 8.4 Hz, J2 = 4.7 Hz, 1 H), 2.18 (s, 3 H), 2.19–2.04 (m, 1 H), 1.98–
1.87 (m, 1 H), 1.88 (s, 3 H), 1.16 (t, J = 6.9 Hz, 3 H) ppm. 13C
NMR (75 MHz, CDCl3): δ = 172.3, 168.9, 140.7, 128.8, 128.6,
126.5, 95.2, 60.5, 50.9, 32.9, 25.4, 22.8, 20.9, 15.3 ppm. IR: ν̃ =
1810, 1686 cm–1. HRMS (ESI-TOF): calcd. for C16H21N1Na1O4

[M]+ 314.1363; found 314.1360.

Supporting Informations (see footnote on the first page of this arti-
cle): Experimental procedures for hydrolysis, aminolysis, Claisen

www.eurjoc.org © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 2007, 101–107106

condensation, Ti(OiPr)4-mediated aldolization, commercial Et2Al-
OEt-mediated aldolization, Ti(OiPr)3Cl-mediated aldolization and
decarboxylation reactions. Full characterization of isolated prod-
ucts and byproducts.
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