α-Haloenol Acetates: Versatile Reactants for Oxetan-2-one, Azetidin-2-one and Isoxazolidin-5-one Synthesis

Romain Bejot,^[a] Siddam Anjaiah,^[b] J. R. Falck,^{*[b]} and Charles Mioskowski^{*[a]}

Keywords: Aldol reaction / Aluminum / Heterocycles / Lactonization / Tandem reaction

New ketene equivalents, namely α -haloenol acetates, are investigated as both nucleophilic and electrophilic reactants in a tandem aldol-lactonization reaction. Diethylaluminum ethoxide proves to be an efficient promoter for the aldol reaction with a wide range of substrates, including inter alia, aldehydes, ketones, imines, nitrones and oximes, leading to ox-

Introduction

Oxetan-2-ones, azetidin-2-ones and isoxazolidin-5-ones are witnessing a great deal of interest because of their synthetic applications and their potential use as therapeutic agents.^[1] Useful reactions exploiting the inherent strain in the four-membered rings and their transformation into β hydroxy and β -amino acids have been widely developed.^[2,3] As units present in many natural products, β -amino acids, β-hydroxy acids, β-lactones and β-lactams are of great importance. Since the first preparation of β-lactams by Staudinger et al. in 1907 by a [2+2] cycloaddition between ketenes and imines,^[4] many synthetic methods for the preparation of β -lactones and β -lactams have been investigated.^[5] Amongst these methods, the tandem aldol-lactonization reaction has been applied to a wide variety of carbon skeleton constructions.^[6] Though the aldol reaction with silyl enol ethers generally takes place smoothly and gives the adducts in satisfactory yields,^[7] typical Lewis acid catalysts sometimes induce side reactions such as cleavage of protecting groups, isomerization and rearrangement. The formation of side reactions is more or less avoided with more stable reactants such as enol esters. There are many reports of aldol reactions that employ enol esters under basic conditions; however, to date, only a few aldol reactions proceeding under weakly acidic or neutral conditions have been re-

- Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

etan-2-ones, azetidin-2-ones and isoxazolidin-5-ones. The resultant heterocyclic adducts are common structural elements in numerous compounds of interest as well as key intermediates in the preparation of other functionalities. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

ported.^[8] Recently, Mukaiyama et al. explored a new and effective catalyst, diethylaluminum ethoxide, which promotes aldol reactions starting from enol esters.^[9,10] As part of our investigation of organochromium methodology, we described an efficient synthesis of α -haloenol acetates 1 by using chromous chloride.^[11] The use of diethylaluminum ethoxide brought us to report herein a tandem aldol-lactonization reaction starting from α -haloenol acetates 1 that behave as a ketene equivalent (2; Scheme 1).

Scheme 1. α -Haloenol acetates 1 and their synthetic equivalence with ketenes.

Results and Discussion

Besides the expected reactions of a ketene equivalent with nucleophilic moieties,^[12] such as hydrolysis (Scheme 2, Reaction a), alcoholysis (Reaction b)^[11] and aminolysis (Reaction c), a-haloenol acetates 1 are capable of undergoing aldol reactions with electrophilic moieties such as aldehydes and ketones (Scheme 3, Reactions d, e and f), imines (Reaction g), nitrones (Reaction h) and oximes (Reaction i).^[13] We found that freshly prepared diethylaluminum ethoxide was an efficient promoter for the aldol reaction starting from α -haloenol acetates 1.

When the aliphatic derivative of α -chloroenol ester, (Z)-1-chloro-4-phenylbutenylacetate (1a), and aliphatic aldehydes or ketones 3 are reacted with diethylaluminum ethoxide in anhydrous THF, di- and tri-substituted β-lactones 4 were obtained in moderate-to-good yields (Table 1, Entries

[[]a] Laboratoire de Synthèse Bio-Organique, UMR 7175 - LC1, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 Route du Rhin, B. P. 24, 67 401 Illkirch, France Fax: +33-3-9024-4306 E-mail: mioskow@aspirine.u-strasbg.fr

[[]b] Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA Fax: +1-214-648-6455 E-mail: i.falck@utsouthwestern.edu

FULL PAPER

Scheme 2. Reactivities of a-haloenol acetates with nucleophiles.

Scheme 3. Reactivities of α -haloenol acetates with electrophiles.

1–7).^[14] The range of suitable α -haloenol acetates encompassed (*Z*)-1-fluoro-4-phenylbut-1-enyl acetate (**1b**) that provide access to β -lactones, though in lower but acceptable yield (Entry 8). When reacted under the same conditions, the aryl derivative of the α -chloroenol ester, 1-chloro-2-phenylethenyl acetate (**1c**), affords β -hydroxy ester **5e** (Entry 9). The reaction of aliphatic derivatives of the α -chloroenol ester also gives rise to β -hydroxy esters **5** when the reaction is carried out in a mixture of THF and alcohol (Entry 10). Interestingly, the aldol reaction can take place in protic solvents. Finally, reaction of **1a** with α , β -unsaturated carbonyl compounds led to di- and tri-substituted olefins **5** (Entries 11–14).

When reacted with imines, (Z)-1-chloro-4-phenylbutenyl acetate (1a) gives rise to β -lactams 7 and β -amino esters 9 (Table 2, Entries 1–4). Unfortunately, bicyclic azetidin-2one derivative 8d (Entry 4) could not be isolated, but could be detected by ¹H NMR analysis of the crude material: it decomposes to acyclic amide 10d. Unexpectedly, tricyclic compound 11d could be isolated as a byproduct. The α -haloenol esters proved also to be reactive with nitrones and oximes 12. Under standard conditions, 1a affords isoxazol-idin-5-ones 13 in good yields (Entries 5–7). Interestingly, from oximes, *N*-acetyl-isoxazolidin-5-ones are obtained

Table 1. Reaction of 1 with carbonyl compounds.

[a] Isolated yield after SiO₂ chromatographic purification. Stereochemistries have been deduced from ¹H NMR analysis. [b] Corrected yield based on conversion of α -haloenol acetate. [c] Unreacted **1c** was recovered as a mixture of isomers *Z/E* 67:33. [d] Solvent: THF/EtOH. [e] Unstable adduct.

(Entries 6 and 7). Alkoxy-substituted isoxazolidin-5-one **13c** also decomposed on silica gel to give the isoxazol-5(2H)-one derivative through β -elimination of ethanol (Entry 7).

FULL PAPER

Table 2. Reaction of 1 with imines, nitrones and oximes.

Entry	α-Haloenol acetate	Electrophile	Adduct	Yield ^[a] (corrected yield) ^[b] [%]
1	Ph Cl 1a	N Ph I Ph 7a	Ph Sa	73 (77) cis/trans 12:88
2	1a	N ^{PMP} Ph 7b	Ph Bb	30 (34) cis/trans 5:95
3a	1a	N ^{Ts} Tol 7c	Ph 8c	13 ^[c] (19) cis/trans 50:50
3b	1a	N_Ts ↓ Tol 7c	Ph Ph Ph Tol 9c	29 (42) cis/trans 50:50
4a	la	N 7d		
4b	1a	N Td		25
5	la	O_+ N_ 12a	Ph 13a	60 (65) cis/trans 80:20
6	la		Ph 13b	65
7	la		Ph 13a	80 ^[e] cis/trans > 98:2

[a] Isolated yield after SiO₂ chromatographic purification. Stereochemistries have been deduced from ¹H NMR analysis. [b] Corrected yield based on conversion of α -haloenol acetate. [c] Yield calculated from ¹H NMR of the crude material. [d] Compound **8d** could not be isolated. It gives quantitatively *N*-(4-oxopentyl)-4phenylbutanamide. [e] Compound **13c** undergoes a β -elimination on SiO₂ to give 5(2*H*)-isoxazolone as a byproduct.

The scope of the reaction was explored by using various aliphatic carbonyl derivatives and the results indicate intriguing stereoselectivity. A reversal of stereoselectivity was observed between a few linear and branched aldehydes (Table 1, Entries 1 and 2). A better selectivity was observed with ketones with respect to aldehydes (Entries 2 and 7) and a bulky substituent did not lead to any selectivity (Entry 3). In addition, the stereoselectivity of β -lactones obtained from α -fluoroenol esters is lower than that obtained from α -chloroenol (Entries 7 and 8). These results cannot be ra-

tionalized by a simple stereochemical model. Mukayama et al. postulated that enol esters can be activated by nucleophilic attack of the acetyl group by the ethoxy group of Et₂AlOEt after coordination of the aluminum reagent to the ketone or the aldehyde (Scheme 4).^[9] Thus, a one-,^[15] or two-step acylation can give ethyl acetate as a byproduct. An aldol reaction followed by lactonization may then give rise to the β -lactone with elimination of diethylhaloalane. The conversion of the carboxylic acid halide enolate to the corresponding ketene may also give the β -lactone by a [2+2] cycloaddition.^[16] Results obtained from α-fluoroenol acetate 1b seem to exclude a common nucleophile, such as ketene 2, if the reaction is not catalyzed by Et₂AlX or if it is in both cases irreversible. Alkylhaloalanes and alkylethoxyalanes readily form complexes of associated units through reversible and rather weak interactions.^[17] Thus, several transition states may be involved depending on the steric interactions between the substituents. A transesterification of the aldol adduct or the conversion of the ketene to an ester enolate may explain the formation of β -hydroxy esters

When α -haloenol acetates are reacted with α , β -unsaturated aldehydes and ketones under standard conditions, diand tri-substituted olefins 6 are obtained. A decarboxylation of the transcient β -lactone probably occurs, promoted by dialkylethoxyalane and dialkylhaloalane. β-Lactone could actually be detected by ¹H NMR analysis of the crude materials. Treatment of β -lactone 4k with diethylaluminum ethoxide or dimethylaluminum chloride led to a mixture of β -lactone, β -hydroxy ester and olefin (Scheme 5). Decarboxylation occurs with aryl derivatives because of the electron density of the aryl group: it was actually demonstrated that electron-rich groups at the C-4 position of 2oxetanones facilitate the decarboxylation reaction.^[2a,18] Finally, the mechanism probably involves a stepwise fragmentation through a zwitterionic intermediate because both β lactone fragmentations are nonstereoselective.

Besides the aldol reactions with electrophilic moieties, we finally observed the formation of a β -keto ester adduct formed by a Claisen-type condensation in the presence of DMSO (Scheme 6). The mechanism is not clear but can be interpreted as the Claisen condensation of two ethyl carboxylates, as the treatment of α -haloenol acetates with Et₂-AlOEt may give rise to ethyl carboxylate derivatives.

Conclusions

 α -Haloenol acetates proved to be versatile reactants and diethylaluminum ethoxide demonstrated a powerful promotion of aldol and tandem aldol–lactonization reactions with formal [2+2] and [2+3] cycloadditions. Thus, the reaction of aldehydes and ketones under the described conditions provide access to β -lactones, β -hydroxy esters and olefins according to the substitution pattern. Under the same conditions, imines give rise to β -amino esters and β -lactams, and isoxazolidin-5-ones could be obtained starting from nitrones and oximes. Further extensions are underway in our laboratory, including the enantioselective synthesis of

Scheme 4. Activation of the enol acetate by Et₂AlOEt.

Scheme 5. Decarboxylation of 2-oxetanones promoted by $Et_2Al-OEt$ and Me_2AlCl .

Scheme 6. Claisen condensation.

oxetan-2-ones, azetidin-2-ones and isoxazolidin-5-ones through optically active dialkylaluminum alkoxide, which is readily accessible from chiral alcohols.

Experimental Section

Triethylaluminum (25% in toluene) was purchased from Aldrich. Tetrahydrofuran (THF) was distilled from Na/benzophenone ketyl. GC–MS analyses were carried out with a Shimadzu GCMS-QP5050A instrument with a SGE silica capillary, 25 m×0.22 mm BPX5 column (5% phenyl polysilphenylene-siloxane/95% methylpolysiloxane), helium carrier gas (29 mL/min; 113 kPa), 260 °C interface, 80 °C column temp., 320 °C detector, programmed for 2 min at 80 °C, then heating.

4-Butyl-3-(2-phenylethyl)oxetan-2-one (4a) (Representative Procedure): To a solution of triethylaluminum (25% in toluene, 0.75 mL) was carefully added anhydrous ethanol (73 μ L, 1.25 mmol) at -78 °C under an argon atmosphere. The solution was warmed to room temp. and diluted with anhydrous THF (2.0 mL). (*Z*)-1-Chloro-4-phenylbut-1-enyl acetate (1a) (50 μ L, 0.25 mmol) and valeraldehyde (3a) (54 μ L, 0.5 mmol) were then added to the solution of diethylaluminum ethoxide, at 0 °C under an argon atmosphere. After the reaction mixture was stirred for 15 h from 0 °C to room temp., aqueous Rochelle salt and AcOEt were added, and the mixture was stirred for an additional 30 min at room temp. The

layers were separated, and the aqueous phase was extracted twice with AcOEt. The combined organic extracts were washed with brine and then dried with Na₂SO₄. After concentration under vacuum, the crude product was purified by chromatography on silica gel to afford 37 mg (63%) of 4-butyl-3-(2-phenylethyl)oxetan-2-one (**4a**) (*cis/trans* 70:30) as a colorless oil. **4a**: ¹H NMR (200 MHz, CDCl₃): δ = 7.33–7.18 (m, 5 H), 4.56–4.46 (m, 0.7 H_{*cis*}), 4.24–4.15 (m, 0.3 H_{*trans*}), 3.69–3.57 (m, 0.7 H_{*cis*}), 3.24.3.13 (m, 0.3 H_{*trans*}), 2.98–2.65 (m, 2 H), 2.30–1.34 (m, 8 H), 0.93 (t, *J* = 6.8 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 50 MHz): δ = 172.2 (*cis*), 171.5 (*trans*), 140.7 (*cis*), 140.4 (*trans*), 128.7, 128.6, 128.5, 126.6 (*trans*), 126.5 (*cis*), 78.5 (*trans*), 75.8 (*cis*), 55.5 (*trans*), 51.8 (*cis*), 34.1 (*trans*), 33.5 (*cis*), 33.2 (*trans*), 30.1 (*cis*), 29.7 (*trans*), 27.8 (*cis*), 27.2 (*trans*), 25.9 (*cis*), 22.5 (*cis*), 22.4 (*trans*), 14.0 ppm. IR: \tilde{v} = 1821 cm⁻¹. HRMS (IE): calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463; found 232.1467.

4-Isopropyl-3-(2-phenylethyl)oxetan-2-one (4b): (*trans*/*cis* 65:35). ¹H NMR (300 MHz, CDCl₃): δ = 7.32–7.19 (m, 5 H), 4.09 (dd, J_1 = 10.6 Hz, J_2 = 6.2 Hz, 0.35 H_{*cis*}), 3.96 (dd, J_1 = 7.8 Hz, J_2 = 4.1 Hz, 0.65 H_{*trans*}), 3.62 (m, 0.35 H_{*cis*}), 3.25 (td, J_1 = 7.8 Hz, J_2 = 4.1 Hz, 0.65 H_{*trans*}), 3.07–2.97 (m, 0.35 H_{*cis*}), 2.88–2.70 (m, 1.65 H), 2.27–1.84 (m, 3 H), 1.07 (d, J = 6.9 Hz, 1.05 H_{*cis*}), 1.04 (d, J = 6.9 Hz, 1.95 H_{*trans*}), 0.95 (d, J = 6.9 Hz, 1.95 H_{*trans*}), 0.92 (d, J = 6.9 Hz, 1.05 H_{*cis*}), 1.04 (d, J = 6.9 Hz, 1.05 H_{*cis*}), 140.8 (*cis*), 140.4 (*trans*), 128.7, 128.4, 126.5 (*cis*), 126.4 (*trans*), 82.9 (*trans*), 80.3 (*cis*), 53.5 (*trans*), 51.1 (*cis*), 33.2 (*cis*), 33.1 (*trans*), 32.3 (*trans*), 30.0 (*trans*), 29.0 (*cis*), 26.3 (*cis*), 19.2 (*cis*), 18.0, 17.2 (*trans*) ppm. IR: \tilde{v} = 1821 cm⁻¹. HRMS (EI): calcd. for C₁₄H₁₈O₂ [M]⁺ 218.1307; found 218.1305.

4-*tert***-Butyl-3-(2-phenylethyl)oxetan-2-one (4c):** (*cis/trans* 1:1). ¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.20 (m, 10 H), 4.21 (d, *J* = 6.8 Hz, 1 H_{*cis*}), 4.01 (*J* = 3.8 Hz, 1 H_{*trans*}), 3.67 (td, *J*₁ = 7.2 Hz, *J*₂ = 6.8 Hz, 1 H_{*cis*}), 3.33 (td, *J*₁ = 7.2 Hz, *J*₂ = 3.8 Hz, 1 H_{*trans*}), 3.07–2.97 (m, 1 H_{*cis*}), 2.86–2.68 (m, 3 H_{*cis+trans*}), 2.42–1.95 (m, 4 H), 1.06 (s, 9 H_{*cis*}), 1.00 (s, 9 H_{*trans*}), 140.7 (*cis*), 140.5 (*trans*), 128.7, 128.4, 126.4, 85.2 (*trans*), 82.3 (*cis*), 51.5 (*cis*), 50.5 (*trans*), 34.2, (*cis*), 33.9 (*trans*), 33.1 (*cis*), 32.9 (*trans*), 30.4 (*trans*), 27.4 (*cis*), 26.0 (*cis*), 24.5 (*trans*) ppm. IR: \tilde{v} = 1820 cm⁻¹. HRMS (IE): calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463; found 232.1445.

4,4-Dimethyl-3-(2-phenylethyl)oxetan-2-one (4d): ¹H NMR (200 MHz, CDCl₃): δ = 7.37–7.19 (m, 5 H), 3.23 (dd, J_1 = 8.3 Hz, J_2 = 8.0 Hz, 1 H), 2.93–2.60 (m, 2 H), 2.30–1.85 (m, 2 H), 1.56 (s, 3 H), 1.48 ppm (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 171.4, 140.5, 128.7, 128.6, 126.5, 80.2, 57.3, 33.4, 27.9, 26.9, 22.0 ppm.

IR: $\tilde{v} = 1812 \text{ cm}^{-1}$. HRMS (IE): calcd. for $C_{13}H_{16}O_2$ [M]⁺ 204.1150; found 204.1172.

4,4-Diethyl-3-(2-phenylethyl)oxetan-2-one (4e): ¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.21 (m, 5 H), 3.24 (dd, J_1 = 9.0 Hz, J_2 = 7.2 Hz, 1 H), 2.95–2.84 (m, 1 H), 2.79–2.68 (m, 1 H), 2.22–2.10 (m, 1 H), 2.04–1.67 (m, 5 H), 1.02 (t, J = 7.5 Hz, 3 H), 0.92 (t, J = 7.5 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 172.0, 140.7, 128.7, 128.5, 126.5, 85.0, 56.0, 33.7, 29.3, 26.3, 24.9, 8.2, 7.6 ppm. IR: $\tilde{\nu}$ = 1814 cm⁻¹. HRMS (IE): calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463; found 232.1467.

4-Methyl-3-(2-phenylethyl)-4-propyloxetan-2-one (4f): (*trans/cis* 66:33). *trans-***4f**: ¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.19 (m, 5 H), 3.21 (dd, J_1 = 8.1 Hz, J_2 = 7.9 Hz, 1 H), 2.90–2.79 (m, 1 H), 2.76–2.65 (m, 1 H), 2.20–2.07 (m, 1 H), 1.97–1.66 (m, 3 H), 1.46 (s, 3 H), 1.43–1.27 (m, 2 H), 0.96 (t, J = 7.3 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 171.8, 140.6, 128.7, 128.6, 126.5, 82.4, 56.2, 43.1, 33.5, 27.0, 19.7, 17.7, 14.3 ppm. *cis*-**4f**: ¹H NMR (300 MHz, CDCl₃): δ = 7.33–7.19 (m, 5 H), 3.22 (dd, J_1 = 8.9 Hz, J_2 = 7.3 Hz, 1 H), 2.92–2.82 (m, 1 H), 2.77–2.66 (m, 1 H), 2.20–2.07 (m, 1 H), 2.02–1.89 (m, 1 H), 1.84–1.70 (m, 1 H), 1.68–1.57 (m, 1 H), 1.52 (s, 3 H), 1.49–1.42 (m, 2 H), 0.97 ppm (t, J = 7.3 Hz, 3 H). ¹³C NMR (50 MHz, CDCl₃): δ = 171.9, 140.7, 128.7, 128.6, 126.5, 82.3, 58.3, 37.4, 33.6, 26.3, 24.9, 17.2, 14.5 ppm. IR: \tilde{v} = 1815 cm⁻¹. HRMS (EI): calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463; found 232.1467; calcd. for C₁₄H₂₀ [M – CO₂]⁺ 188.1565; found 188.1551.

trans-4-Isopropyl-4-methyl-3-(2-phenylethyl)oxetan-2one: (*trans/cis* 94:6). *trans*-4g: ¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.20 (m, 5 H), 3.19 (dd, J_1 = 9.2 Hz, J_2 = 7.4 Hz, 1 H), 2.92–2.82 (m, 1 H), 2.77–2.66 (m, 1 H), 2.22–2.09 (m, 1 H), 2.03–1.81 (m, 2 H), 1.40 (s, 3 H), 1.02 (d, J = 6.9 Hz, 3 H), 0.91 (d, J = 7.2 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 171.8, 140.7, 128.7, 128.5, 126.4, 85.1, 55.5, 37.6, 33.5, 27.1, 17.1, 16.6, 15.2 ppm. IR: \tilde{v} = 1813 cm⁻¹. GC (heating at 10 °C/min): t_R = 9.20 min. HRMS (IE): calcd. for C₁₅H₂₀O₂ [M]⁺ 232.1463; found 232.1467. *cis*-4g: GC (heating at 10 °C/min): t_R = 9.04 min.

Ethyl 3-Ethyl-3-hydroxy-2-phenylpentanoate (5e): M.p. 58–60 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.48–7.44 (m, 2 H), 7.36–7.29 (m, 3 H), 4.22 (dq, J_1 = 10.9 Hz, J_2 = 7.2 Hz, 1 H), 4.07 (dq, J_1 = 10.9 Hz, J_2 = 7.2 Hz, 1 H), 3.77 (br. s, 1 H), 3.67 (s, 1 H), 1.65 (qd, J_1 = 7.5 Hz, J_2 = 2.8 Hz, 2 H), 1.33–1.07 (m, 2 H), 1.22 (t, J = 7.2 Hz, 3 H), 0.96 (t, J = 7.5 Hz, 3 H), 0.78 (t, J = 7.5 Hz, 3 H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 174.9, 135.2, 129.9, 128.4, 127.6, 77.4, 76.1, 61.1, 56.8, 32.0, 30.5, 29.1, 27.0, 22.8, 14.2, 14.1, 8.3, 7.6 ppm. IR: \tilde{v} = 3508, 1710 cm⁻¹. HRMS (ESI-TOF): calcd. for C₁₅H₂₃O₃ [M]⁺ 251.1642; found 251.1639.

Ethyl 2-(Hydroxy-p-tolylmethyl)-4-phenylbutanoate (5h): According to the general procedure using (Z)-1-chloro-4-phenylbut-1-enyl acetate (1a) (50 µL, 0.25 mmol) and 3h (60 µL, 0.5 mmol) in THF (1.0 mL) and EtOH (1.0 mL), the title compound **5h** (66 mg, 85%) was obtained as a mixture of isomers (*syn/anti* = 70:30). *syn-***5h**: 1 H NMR (200 MHz, CDCl₃): δ = 7.30–7.10 (m, 9 H), 4.94 (d, J = 5.9 Hz, 1 H), 4.08 (q, J = 7.1 Hz, 2 H), 2.79–2.44 (m, 4 H), 2.35 (s, 3 H), 2.12–1.96 (m, 2 H), 1.18 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 174.8, 141.6, 138.6, 137.4, 129.1, 128.5, 128.4, 126.2, 126.0, 74.2, 60.7, 52.6, 33.8, 28.9, 21.2, 14.2 ppm. IR: $\tilde{v} = 3455$, 1729 cm⁻¹. *anti*-**5**h: ¹H NMR (200 MHz, CDCl₃): δ = 7.29–7.06 (m, 9 H), 4.80 (dd, J_1 = 8.1 Hz, J_2 = 5.1 Hz, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 2.86–2.50 (m, 4 H), 2.34 (s, 3 H), 2.02-1.82 (m, 1 H), 1.73-1.58 (m, 1 H), 1.27 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 175.2, 141.3, 138.9, 137.9, 129.4, 128.5, 126.5, 126.1, 75.4, 60.8, 52.7, 33.5, 31.2, 21.3, 14.4 ppm. IR: $\tilde{v} = 3455$, 1706 cm⁻¹.

4-Phenyl-1-*p*-tolylbut-1-ene (6h): (*E*/*Z* 86:14). (*E*)-6h: ¹H NMR (200 MHz, CDCl₃): δ = 7.36–7.09 (m, 9 H), 6.41 (d, *J* = 15.9 Hz, 1 H), 6.22 (dt, *J*₁ = 15.9 Hz, *J*₂ = 6.4 Hz, 1 H), 2.85–2.76 (m, 2 H), 2.60–2.48 (m, 2 H), 2.34 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 142.0, 136.7, 135.1, 130.3, 129.3, 129.0, 128.6, 128.5, 126.0, 36.1, 35.0, 21.3 ppm. (*Z*)-6h: ¹H NMR (200 MHz, CDCl₃): δ = 7.31–7.15 (m, 9 H), 6.43 (d, *J* = 11.7 Hz, 1 H), 5.67 (dt, *J*₁ = 11.7 Hz, *J*₂ = 6.6 Hz, 1 H), 2.84–2.64 (m, 4 H), 2.36 (s, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 141.9, 136.4, 134.8, 131.3, 129.4, 129.0, 128.8, 128.6, 128.5, 126.0, 36.3, 30.6, 21.3 ppm.

2,5-Diphenylprop-2-ene (6i): $(E/Z \ 70:30)$. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.43-7.13$ (m, 10 H), 5.86 (t, J = 7.0 Hz, 0.7 H_E), 5.54 (t, J = 7.2 Hz, 0.3 H_Z), 2.86–2.77 (m, 1.4 H_E), 2.73–2.50 (m, 2 H_{E+Z}), 2.39–2.27 (m, 0.6 H_Z), 2.06 (s, 0.9 H_Z), 2.02 (s, 2.1 H_E) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 144.0$ (Z), 142.1 (E), 137.0 (Z), 135.6 (E), 128.62, 128.59, 128.5, 128.33, 128.28, 128.2, 128.0, 127.5, 126.8, 126.7, 126.6, 126.0, 125.83, 125.76, 36.5 (Z), 36.0 (E), 31.1 (Z), 30.9 (E), 25.7 (Z), 15.9 (E) ppm.

(*E*)-(4-Methyl-3,5-hexadienyl)benzene [(*E*)-6j]: ¹H NMR (300 MHz, CDCl₃): δ = 7.32–7.19 (m, 5 H), 6.38 (dd, J_1 = 17.3 Hz, J_2 = 10.6 Hz, 1 H), 5.55 (t, J = 7.2 Hz, 1 H), 5.10 (d, J = 17.3 Hz, 1 H), 4.95 (d, J = 10.6 Hz, 1 H), 2.79–2.66 (m, 2 H), 2.54–2.43 (m, 2 H), 1.71 (s, 3 H) ppm. (*Z*)-6j: ¹H NMR (300 MHz, CDCl₃): δ = 7.32–7.19 (m, 5 H), 6.77 (dd, J_1 = 17.3 Hz, J_2 = 10.9 Hz, 1 H), 5.45 (t, J = 7.5 Hz), 5.21 (d, J = 17.3 Hz, 1 H), 5.09 (d, J = 10.9 Hz, 1 H), 2.79–2.66 (m, 2 H), 2.54–2.43 (m, 2 H), 1.83 (s, 3 H) ppm.

1-Benzyl-4-phenyl-3-(2-phenylethyl)azetidin-2-one (8a): (*trans/cis* 88:12) ¹H NMR (200 MHz, CDCl₃): δ = 7.30–6.89 (m, 15 H), 4.92 (d, *J* = 14.9 Hz, 0.12 H_{cis}), 4.86 (d, *J* = 14.9 Hz, 0.88 H_{trans}), 4.62 (d, *J* = 5.4 Hz, 0.12 H_{cis}), 4.07 (d, *J* = 2.0 Hz, 0.88 H_{trans}), 3.90 (d, *J* = 14.9 Hz, 0.12 H_{cis}), 3.75 (d, *J* = 14.9 Hz, 0.88 H_{trans}), 3.47–3.36 (m, 0.12 H_{cis}), 3.14–3.05 (m, 0.88 H_{trans}), 2.74 (t, *J* = 7.8 Hz, 1.76 H), 2.55–1.76 (m, 2.24 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 170.3, 141.1, 137.8, 135.8, 129.1, 128.9, 128.6, 128.5, 127.8, 126.7, 126.1, 60.8, 60.0, 44.4, 33.4, 30.6 ppm. IR: \tilde{v} = 1751 cm⁻¹. HRMS (ESI-TOF): calcd. for C₂₄H₂₄N₁O₁ [M]⁺ 342.1852; found 342.1872. *trans*-8a: GC (heating at 25 °C/min): *t*_R = 12.60 min.

1-(4-Methoxyphenyl)-4-phenyl-3-(2-phenylethyl)azetidin-2-one (8b): (*trans/cis* 95:5): ¹H NMR (300 MHz, CDCl₃): δ = 7.38–7.13 (m, 12 H), 6.79 (d, *J* = 9.1 Hz, 2 H), 5.17 (d, *J* = 5.9 Hz, 0.05 H_{cis}), 4.63 (d, *J* = 2.2 Hz, 0.95 H_{trans}), 3.75 (s, 3 H), 3.14 (td, *J*₂ = 6.5 Hz, *J*₂ = 2.2 Hz, 0.95 H_{trans}), 2.85 (t, *J* = 7.2 Hz, 1.9 H_{trans}), 2.36–2.12 (m, 1.9 H_{trans}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 167.2, 156.0, 141.0, 138.1, 131.5, 129.2, 128.6, 126.3, 126.1, 61.6, 60.1, 55.5, 33.5, 30.9 ppm. IR: \tilde{v} = 1745 cm⁻¹. MS (CI, NH₃): *m/z* = 358 [M + H]⁺. HRMS (ESI-TOF): calcd. for C₂₄H₂₄N₁O₂ [M]⁺ 358.1802; found 358.1812. *trans*-**8b**: GC (heating at 25 °C/min): *t*_R = 13.60 min. *cis*-**8b**: GC (heating at 25 °C/min): *t*_R = 13.82 min.

3-(2-Phenylethyl)-4-*p***-tolyl-1-(***p***-tolylsulfonyl)azetidin-2-one (8c): (***cis/trans* **1:1): The \beta-lactam cannot be separated from** *N***-(4-methylbenzylidene)-***p***-toluenesulfonamide by column chromatography. Characteristic peaks: ¹H NMR (200 MHz, CDCl₃): \delta = 5.17 (d,** *J* **= 6.6 Hz, 1 H_{cis}), 4.66 (d,** *J* **= 2.9 Hz, 1 H_{trans}), 3.43 (td,** *J***₁ = 8.3 Hz,** *J***₂ = 6.6 Hz, 1 H_{cis}), 3.12 (td,** *J***₁ = 7.7 Hz,** *J***₂ = 2.9 Hz, 1 H_{trans}) ppm.**

Ethyl 4-Phenyl-2-[*p***-Tolyl(***p***-tolylsulfonylamino)methyl]butanoate (9c):** (*synlanti* 1:1): ¹H NMR (300 MHz, CDCl₃): δ = 7.50 (d, *J* = 8.1 Hz, 2 H), 7.30–7.18 (m, 3 H), 7.11–7.01 (m, 4 H), 6.92–6.82 (m, 4 H), 6.06 (d, *J* = 9.0 Hz, 0.5 H), 5.51 (d, *J* = 8.7 Hz, 0.5 H), 4.59 (dd, *J*₁ = 9.0 Hz, *J*₂ = 6.2 Hz, 0.5 H), 4.47 (dd, *J*₁ = 8.7 Hz, *J*₂ =

8.4 Hz, 0.5 H), 4.02 (q, J = 7.2 Hz, 1 H), 3.89 (q, J = 7.2 Hz, 1 H), 2.76–2.43 (m, 3 H), 2.33 (s, 1.5 H), 2.30 (s, 1.5 H), 2.25 (s, 3 H), 2.06–1.94 (m, 1 H), 1.80–1.67 (m, 1 H), 1.13 (t, J = 7.2 Hz, 1.5 H), 1.02 (t, J = 7.2 Hz, 1.5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 174.3$, 172.8, 143.1, 142.8, 141.1, 140.8, 138.1, 137.49, 137.45, 137.1, 136.0, 135.4, 129.3, 129.2, 129.02, 128.95, 128.5, 127.2, 127.0, 126.9, 126.4, 126.2, 126.1, 61.0, 60.8, 59.2, 58.5, 51.7, 51.4, 33.5, 33.2, 31.8, 30.4, 21.5, 21.1, 14.2, 14.0 ppm.

5-Methyl-6-(2-phenylethyl)-1-azabicyclo[3.2.0]heptan-7-one (8d): GC (heating at 25 °C/min): $t_{\rm R}$ = 9.43 min. MS (CI, NH₃): m/z = 230.

N-(4-Oxopentyl)-4-phenylbutanamide (10d): ¹H NMR (200 MHz, CDCl₃): δ = 7.33–7.16 (m, 5 H), 5.67 (br. s, 1 H), 3.24 (td, *J*₁ = 6.8 Hz, *J*₂ = 5.9 Hz, 2 H), 2.65 (t, *J* = 7.3 Hz, 2 H), 2.50 (t, *J* = 6.8 Hz, 2 H), 2.21–2.13 (m, 2 H), 2.15 (s, 3 H), 2.04–1.88 (m, 2 H), 1.84–1.70 (m, 2 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 208.9, 173.0, 141.6, 128.6, 128.5, 126.1, 41.2, 39.1, 36.0, 35.3, 30.2, 27.2, 23.5 ppm. IR: \tilde{v} = 1715, 1647 cm¹. GC (heating at 25 °C/min): *t*_R = 10.10 min. MS (CI, NH₃): *m*/*z* = 248, 230. HRMS (ESI-TOF): calcd. for C₁₅H₂₂N₁O₂ [M]⁺ 248.1645; found 248.1630.

6a,10a-Dimethyl-6-(2-phenylethyl)octahydrodipyrrolo[**1,2**-*a*:**1**',**2**'-*c*]**pyrimidin-5(6H)-one (11d):** ¹H NMR (300 MHz, CDCl₃): δ = 7.37– 7.16 (m, 5 H), 3.84–3.74 (m, 1 H), 3.52–3.43 (m, 1 H), 3.16–3.06 (m, 1 H), 2.93–2.88 (m, 2 H), 2.64–2.53 (m, 1 H), 2.29–2.16 (m, 2 H), 1.97–1.64 (m, 7 H), 1.46–1.32 (m, 2 H), 1.34 (s, 3 H), 0.84 (s, 3 H) ppm. ¹³C NMR (50 MHz, CDCl₃): δ = 170.8, 142.9, 128.8, 128.4, 125.8, 77.5, 65.1, 50.3, 47.4, 45.2, 43.2, 39.6, 35.8, 28.9, 25.2, 24.5, 24.2, 21.3 ppm. IR: \tilde{v} = 1655 cm⁻¹. HRMS (ESI-TOF): calcd. for C₂₀H₂₉N₂O₁ [M]⁺ 313.2274; found 313.2284.

6,6-Dimethyl-3-(2-phenylethyl)tetrahydropyrrolo[**1**,2-*b*]isoxazol-**2(3H)-one** (**13a**): (*cis/trans* 80:20). ¹H NMR (300 MHz, CDCl₃): δ = 7.33–7.18 (m, 5 H), 4.13–4.05 (m, 0.8 H), 3.93–3.87 (m, 0.2 H), 3.21–3.12 (m, 0.8 H), 2.85–2.72 (m, 2 H), 2.71–2.61 (m, 0.2 H), 2.33–1.61 (m, 6 H), 1.41 (s, 3 H), 1.09 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 176.0, 140.6, 128.7, 128.5, 126.5, 69.9, 67.7, 45.5, 35.8, 33.9, 27.7, 25.9, 24.1, 23.9 ppm. IR: \tilde{v} = 1768 cm⁻¹. HRMS (ESI-TOF): calcd. for C₁₆H₂₂N₁O₂ [M]⁺ 260.1645; found 260.1630. *cis*-**13a**: GC (heating at 25 °C/min): *t*_R = 9.88 min. *trans*-**13a**: GC (heating at 25 °C/min): *t*_R = 10.10 min.

2-Acetyl-3,3-dimethyl-4-(2-phenylethyl)isoxazolidin-5-one (13b): ¹H NMR (300 MHz, CDCl₃): δ = 7.35–7.21 (m, 5 H), 3.13–3.03 (m, 1 H), 2.86–2.75 (m, 1 H), 2.68 (dd, J_1 = 9.7 Hz, J_2 = 4.4 Hz, 1 H), 2.15 (s, 3 H), 2.14–1.97 (m, 1 H), 1.80–1.63 (m, 1 H), 1.65 (s, 3 H), 1.35 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 172.3, 171.4, 140.5, 128.7, 128.6, 126.5, 68.0, 50.9, 32.9, 26.3, 25.8, 23.1, 18.0 ppm. IR: \tilde{v} = 1801, 1686 cm⁻¹. GC (heating at 25 °C/min): t_R = 9.05 min. MS (CI, NH₃): m/z = 262 [M + H]⁺. HRMS (IE): calcd. for C₁₅H₁₉NO₃ [M]⁺ 261.1365; found 261.1353; calcd. for C₁₃H₁₇NO₂ [M – CH₂CO]⁺ 219.1259; found 219.1280.

2-Acetyl-3-ethoxy-3-methyl-4-(2-phenylethyl)isoxazolidin-5-one (13c): (*cis/trans* > 98:2; *trans* isomer could not be detected). *cis*-**13c**: ¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.20 (m, 5 H), 3.67 (dq, J_1 = 7.2 Hz, J_2 = 6.9 Hz, 1 H), 3.54 (dq, J_1 = 7.2 Hz, J_2 = 6.9 Hz, 1 H), 3.08–2.97 (m, 1 H), 2.89–2.78 (m, 1 H), 2.69 (dd, J_1 = 8.4 Hz, J_2 = 4.7 Hz, 1 H), 2.18 (s, 3 H), 2.19–2.04 (m, 1 H), 1.98– 1.87 (m, 1 H), 1.88 (s, 3 H), 1.16 (t, J = 6.9 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 172.3, 168.9, 140.7, 128.8, 128.6, 126.5, 95.2, 60.5, 50.9, 32.9, 25.4, 22.8, 20.9, 15.3 ppm. IR: \tilde{v} = 1810, 1686 cm⁻¹. HRMS (ESI-TOF): calcd. for C₁₆H₂₁N₁Na₁O₄ [M]⁺ 314.1363; found 314.1360.

Supporting Informations (see footnote on the first page of this article): Experimental procedures for hydrolysis, aminolysis, Claisen

condensation, $Ti(OiPr)_4$ -mediated aldolization, commercial $Et_2Al-OEt$ -mediated aldolization, $Ti(OiPr)_3Cl$ -mediated aldolization and decarboxylation reactions. Full characterization of isolated products and byproducts.

Acknowledgments

We are grateful to the Ministère délégué à l'Enseignement supérieur et à la Recherche, the Robert A. Welch Foundation and NIH (GM31278, DK38226) for financial support of this work.

- [1] a) O. W. Griffith, Annu. Rev. Biochem. 1986, 55, 855–878; b) R. A. Firestone, P. L. Arker, J. M. Isano, B. M. She, M. E. Ahlgren, Tetrahedron 1990, 46, 2255–2262; c) J. L. Maillard, C. Favreau, M. Reboud-Ravaux, R. Kobaiter, R. Joyeau, M. Wakselman, Eur. J. Cell Biol. 1990, 52, 213–218; d) O. A. Mascaretti, C. E. Boschetti, G. O. Danelon, E. G. Mata, O. A. Roveri, Curr. Med. Chem. 1995, 1, 441–470; e) S. Schunk, D. Enders, Org. Lett. 2000, 2, 907–910; f) D. A. Burnett, Curr. Med. Chem. 2004, 11, 1873–1887; g) A. R. A. S. Deshmukh, B. M. Bhawal, D. Krishnaswamy, V. V. Govande, B. A. Shinkre, A. Jayanthi, Curr. Med. Chem. 2004, 11, 1889–1920; h) B. Alcaide, P. Almendros, Curr. Med. Chem. 2004, 11, 1921–1949; i) J. D. Buynak, Curr. Med. Chem. 2004, 11, 1951–1964.
- [2] a) A. Pommier, J. M. Pons, *Synthesis* 1993, 441–459; b) Y.
 Wang, R. L. Tennyson, D. Romo, *Heterocycles* 2004, 64, 605–658.
- [3] a) D. Seebach, M. Overhand, F. N. M. Kühnle, B. Martinoni, L. Oberer, U. Hommel, H. Widmer, *Helv. Chim. Acta* 1996, *79*, 913–941; b) T. Hintermann, D. Seebach, *Synlett* 1997, *1997*, 437–438; c) E. Juaristi, H. Lopez-Ruiz, *Curr. Med. Chem.* 1999, 6, 983–1004; d) B. Alcaide, P. Almendros, *Synlett* 2002, 381– 393; e) R. Luisi, V. Capriati, S. Florio, T. Vista, *J. Org. Chem.* 2003, *68*, 9861–9864; f) M. P. Sibi, N. Prabagaran, S. G. Ghorpade, C. P. Jasperse, *J. Am. Chem. Soc.* 2003, *125*, 11796– 11797; g) E. Juaristi, V. A. Soloshonok, *Enantioselective Synthesis of β-Amino Acids*, 2nd ed., Wiley, New York, 2005.
- [4] a) H. Staudinger, Justus Liebigs Ann. Chem. 1907, 356, 51–123;
 b) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, Eur. J. Org. Chem. 1999, 3223–3235.
- [5] Review: a) G. I. Georg, V. T. Ravikumar, *The Organic Chemistry of β-Lactams*, VCH, New York, **1992**; b) C. Schneider, *Angew. Chem. Int. Ed.* **2002**, *41*, 744–746; *Angew. Chem.* **2002**, *114*, 771–772; cycloadditions; c) M. Chmielewski, Z. Kaluza, B. Furman, *Chem. Commun.* **1996**, *24*, 2689–2696; d) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, *Eur. J. Org. Chem.* **1999**, *12*, 3223–3235; e) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, *Eur. J. Org. Chem.* **1999**, *12*, 3223–3235; e) C. Palomo, J. M. Aizpurua, I. Ganboa, M. Oiarbide, *Curr. Med. Chem.* **2004**, *11*, 1837–1872; lactonization; f) W. Adam, J. Baeza, J. C. Liu, *J. Am. Chem. Soc.* **1972**, *94*, 2000–2006; M. J. Miller, *Acc. Chem. Res.* **1986**, *19*, 49–56.
- [6] a) H. W. Yang, D. Romo, J. Org. Chem. 1997, 62, 4–5; b) Y. Wang, C. Zhao, D. Romo, Org. Lett. 1999, 1, 1197–1199; c) S. H. Oh, G. S. Cortez, D. Romo, J. Org. Chem. 2005, 70, 2835–2838; d) F. C. E. Saraber, S. V. Drach, A. Baranovsky, T. Charnikhova, S. Pogrebnoi, B. J. M. Jansen, A. de Groot, Pol. J. Chem. 2006, 80, 535–548.
- [7] a) E. M. Carreira, Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999, vol. III; b) C. Palomo, M. Oiarbide, J. M. Garcia, Chem. Eur. J. 2002, 8, 36–44.
- [8] a) Y. Masuyama, T. Sakai, T. Kato, Y. Kurusu, Bull. Chem. Soc. Jpn. 1994, 67, 2265–2272; b) A. Yanagisawa, Y. Matsumoto, K. Asakawa, H. Yamamoto, J. Am. Chem. Soc. 1999, 121, 892–893.
- [9] T. Mukaiyama, J. Shibata, T. Shimamura, I. Shiina, Chem. Lett. 1999, 951–952.
- [10] J. Shibata, I. Shiina, T. Mukaiyama, Chem. Lett. 1999, 28, 313– 314.

- [11] R. Bejot, S. Tisserand, L. M. Reddy, D. K. Barma, R. Baati, J. R. Falck, C. Mioskowski, *Angew. Chem. Int. Ed.* 2005, 44, 2008–2011; *Angew. Chem.* 2005, 117, 2044–2047.
- [12] T. T. Tidwell, Eur. J. Org. Chem. 2006, 563-576.
- [13] TiO*i*Pr₄ proved to be a promoter of the aldol reaction but was not efficient for lactonization: the formation of β -hydroxy ester was observed. TiOiPr₃Cl was a promoter of the tandem aldollactonization reaction but much less efficient than Et₂AlOEt.
- [14] Diethylaluminum ethoxide was prepared before use: T. Mole, Aust. J. Chem. 1966, 19, 373–379.
- [15] a) J. M. Fox, O. Dmitrenko, L. A. Liao, R. D. Bach, J. Org. Chem. 2004, 69, 7317–7328; b) S. Xu, I. Held, B. Kempf, H.

Mayr, W. Steglich, H. Zipse, Chem. Eur. J. 2005, 11, 4751-4757.

- [16] a) A. G. Schultz, M. H. Berger, J. Org. Chem. 1976, 41, 585– 586; b) S. L. Wiskur, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 6176–6177.
- [17] a) H. Lehmkuhl, Angew. Chem. Int. Ed. Engl. 1964, 3, 107–114; Angew. Chem. 1963, 75, 1090–1097; b) A. W. Laubengayer, G. F. Lengnick, Inorg. Chem. 1966, 5, 503–507.
- [18] J. Mulzer, M. Zippel, G. Brüntrup, Angew. Chem. Int. Ed. Engl. 1980, 19, 465–466; Angew. Chem. 1980, 92, 469–470.

Received: August 12, 2006 Published Online: November 9, 2006