

# Enantioselective Alkenylation of Aldimines Catalyzed by a Rhodium–Diene Complex

Zhe Cui,<sup>†,‡</sup> Ya-Jing Chen,<sup>‡</sup> Wen-Yun Gao,<sup>\*,†</sup> Chen-Guo Feng,<sup>\*,‡</sup> and Guo-Qiang Lin<sup>\*,‡</sup>

<sup>†</sup>College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China

<sup>‡</sup>CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

**(5)** Supporting Information

**ABSTRACT:** An efficient rhodium-catalyzed asymmetric addition reaction of potassium alkenyltrifluoroborates to *N*-nosylaldimines has been developed. Under optimal conditions, the reactions proceeded with good to excellent yields and excellent enantioselectivities (97  $\rightarrow$  99% ee). The utility of this method is demonstrated by the formal synthesis of (–)-aurantioclavine.



hiral  $\alpha$ -branched allylic amines are an important structural motif because of their versatile synthetic utilities as chiral building blocks as well as their wide existence in natural products.<sup>1</sup> Over the past decades, many catalytic asymmetric methods have been developed for their synthesis, including the rearrangement of allylic imidates,<sup>2</sup> the metal-catalyzed allylic amination,<sup>3</sup> the hydroamination of alkynes or allenes,<sup>4</sup> and the nucleophilic additions to imines. $^{5-8}$  Among all of the strategies, rhodium-catalyzed enantioselective 1,2-addition of alkenylboron reagents to imines is an attractive transformation due to a variety of practical advantages, such as the flexibility of its modular synthesis, the benign reaction conditions, and the easy accessibility of alkenylboron reagents and imines. However, compared with the extensive research on rhodium-catalyzed enantioselective 1,2-addition of arylboronates to imines,<sup>7,8</sup> the application of alkenylboronates is underappreciated and far less studied,<sup>9</sup> particularly in the context of general acyclic imines.

The comparatively slow development of the addition with alkenylboronates is partially associated with the relatively lower stability of the alkenylboron reagents.<sup>10</sup> Recently, Lam and coworkers reported an enantioselective addition of alkenyltrifluoroborates to active cyclic imines derived from  $\alpha$ -hydroxyl aromatic aldehydes (eq 2).<sup>11</sup> The only single successful example with acyclic imines was reported by Shintani, Hayashi, and co-workers in their research focusing on the application of aryltrifluoroborates.<sup>12</sup> Despite these seminal works, the application of this useful transformation is hindered by the lack of a general method that can use common acyclic imine substrates and functionalized alkenylborates. As part of our continuous interest in the exploration of new asymmetric rhodiumcatalyzed addition reactions of imines with chiral diene ligands, <sup>13,8c,e</sup> we herein report a highly enantioselective addition of potassium alkenyltrifluoroborates<sup>14</sup> to arylaldimines with rhodium complexes as catalysts.

We started our investigation with the evaluation of several chiral ligands in the addition reaction of potassium



(E)-1-pentenyl-trifluoroborate 2a to N-nosyl aldimine 1a using our previous reaction conditions (Table 1).<sup>8e</sup> Bicyclo[3.3.0]octadiene based chiral diene L1 gave the desired product 3a in 32% yield with 98% ee (entry 1), while only a trace amount of racemic product was generated by using diene  $L2^{8d}$  as the ligand (entry 2). Low enantioselectivity was observed when phosphine-olefin hybrid ligand  $L3^{15}$  was applied, albeit with a slightly improved reaction yield of 56% (entry 3). Some commonly used phosphine ligands, such as (R)-BINAP (L4), (R)-SEGPHOS (L5), and (R)-Monophos (L6), were also examined, furnishing the product 3a in  $\leq 10\%$  yield and with 9-58% ee (entries 4-6). With chiral diene L1 as the optimal ligand, a higher reaction yield of 50% was achieved by switching the catalyst to its rhodium chloride complex  $[RhCl(L1)]_2$ (entry 7). Delightfully, the more reactive rhodium hydroxide complex  $[Rh(OH)(L1)]_2$  proved to be the best catalyst,

Received: January 3, 2014 Published: January 14, 2014

| N <sup>r Ns</sup>                      |                                        | Rhod<br>(3 r                   | ium catalyst<br>nol % Rh)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
|----------------------------------------|----------------------------------------|--------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| Moo                                    | + 11 30                                | n-Pr base                      | e (0.2 equiv)              | MeO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                 |
| 1a 2a                                  |                                        | solver<br>T                    | nt/H <sub>2</sub> O (50/1) | 3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                 |
| Me n                                   |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
| Ph                                     | H Me                                   | 5                              | $\square$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
|                                        |                                        |                                |                            | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |                    |                 |
|                                        |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
| (S,S)-L1 L2 L3                         |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
|                                        |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
| PPh <sub>2</sub> O                     |                                        |                                | `PPh <sub>2</sub>          | Me<br>O_P−N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                 |
| PPh <sub>2</sub> O PPh <sub>2</sub> Me |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
|                                        |                                        |                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |
| (R)                                    | )-BINAP L4                             | (R)-SEGPHOS L5                 |                            | ( <i>R</i> )-MonoPhos L6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                 |
|                                        | . 1 .                                  | 1                              | 1.                         | temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yield <sup>b</sup> | ee <sup>c</sup> |
| entry                                  | catalyst                               | base                           | solvent                    | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (%)                | (%)             |
| 1                                      | $\frac{[RhCl(C_2H_4)_2]_2}{L1}$        | K <sub>3</sub> PO <sub>4</sub> | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                 | 98              |
| 2                                      | $[RhCl(C_2H_4)_2]_2/$                  | $K_3PO_4$                      | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                  | 0               |
| 2                                      | $L_2$                                  | V DO                           | taluana                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                 | 27              |
| 3                                      | $\frac{[\text{RnCI}(C_2H_4)_2]_2}{L3}$ | $K_3PO_4$                      | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                 | 3/              |
| 4                                      | $[RhCl(C_2H_4)_2]_2/$                  | $K_3PO_4$                      | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                  | 10              |
| 5                                      | $\mathbf{L}^{+}$                       | K.PO                           | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                  | 5.8             |
| 5                                      | L5                                     | 1031 04                        | concent                    | ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                  | 50              |
| 6                                      | $[RhCl(C_2H_4)_2]_2/$                  | $K_3PO_4$                      | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                  | 9               |
| 7                                      | $[RhCl(L1)]_2$                         | K <sub>3</sub> PO <sub>4</sub> | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                 | 97              |
| 8                                      | $[Rh(OH)(L1)]_2$                       | K <sub>3</sub> PO <sub>4</sub> | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                 | 99              |
| 9                                      | $[Rh(OH)(L1)]_2$                       | K <sub>3</sub> PO <sub>4</sub> | toluene                    | rt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                 | 98              |
| 10                                     | $[Rh(OH)(L1)]_2$                       | K <sub>3</sub> PO <sub>4</sub> | dioxane                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59                 | 95              |
| 11                                     | $[Rh(OH)(L1)]_2$                       | K <sub>3</sub> PO <sub>4</sub> | THF                        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39                 | 98              |
| 12                                     | $[Rh(OH)(L1)]_2$                       | KF                             | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                 | 98              |
| 13                                     | $[Rh(OH)(L1)]_2$                       | КОН                            | toluene                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                 | 96              |

Table 1. Optimization of Reaction Conditions<sup>a</sup>

"Reactions were carried out with **1a** (0.2 mmol), **2a** (0.4 mmol), and base (0.2 equiv). <sup>b</sup>Isolated yield. <sup>c</sup>Determined by chiral HPLC analysis.

providing the product 3a in 92% yield and with 99% ee (entry 8).<sup>16</sup> Further efforts to improve the reaction yield by tuning the effect of temperature, solvent, and base turned out to be unhelpful (entries 9–13).

With optimal reaction conditions identified, the scope of the method was then investigated by additions of different alkenyltrifluoroborates to various N-nosyl arylaldimines (Figure 1). Alkenyltrifluoroborates with di- or trimethyl substitutions at the double bond gave the addition products in 85-99% yields with  $\geq$ 99% ee (3b-d). Reaction with a less sterically congested  $\alpha$ -methyl-substituted trifluoroborate resulted in slight loss of reaction yield (3e), however, keeping the same high enantioselectivity. A similar trend was also observed when other substitutions were introduced onto the double bond. The more hindered potassium cyclohexenyltrifluoroborate (3f) afforded a higher reaction yield than  $\beta$ -benzyl-substituted trifluoroborate (3g), while excellent enantioselectivities of 99% ee were obtained in both cases. In addition, both benzyloxy and ester groups were well tolerated, providing the addition products in high yields with excellent enantioselectivities (3h and 3i). The reactions with different combinations of imines and alkenyl trifluoroborates proceeded smoothly in very high yields and excellent enantioselectivities. For example, the imines with electron-withdrawing 3-Cl or

Letter



Figure 1. Rhodium-catalyzed asymmetric alkenylation with alkylsubstituted alkenyltrifluoroborates. Yields refer to isolated product. Enantiomeric excesses were determined by chiral HPLC analysis. (a) Used dioxane as the solvent.

4-CF<sub>3</sub> groups at the phenyl ring were also excellent substrates for this addition reaction (3j and 3k). The *ortho*-substitution at the phenyl ring, such as 2-Me or 2-Br, did not affect the enantioselectivity of this addition process although a decreased reaction yield was obtained for the 2-Br-substituted imine (3m and 3n).

Next, some  $\beta$ -aryl-substituted vinyltrifluoroborates were also examined. However, lower reaction yields were observed under the current reaction conditions. We reason that these alkenyltrifluoroborates may be highly reactive and easily undergo hydrolysis at high reaction temperature.<sup>10</sup> As we expected, lowering the reaction temperature to room temperature and replacing the base K<sub>3</sub>PO<sub>4</sub> with KF significantly improved the reaction yields. A variety of  $\beta$ -aryl-substituted vinyltrifluoroborates were successfully added to different imines, giving the desired products in 90-98% yields and as high as ≥99% ee (Figure 2). It is worthy to note that the 2-thiophenecarboxaldehyde-derived imine also worked well to afford the desired product in 90% yield and 99% ee (5i). The stereochemistry of product 5f was assigned as S by comparing its optical rotation with the known value in the literature, which is also in agreement with the stereochemical model proposed by Hayashi for the arylation of imines.<sup>17</sup>

As our method provides an applicable synthesis of protected chiral amines, facile deprotection of the product and the potential for scale-up are also very appealing. The nosyl group in **5g** was easily removed by treatment with 2-thioglycolic acid (TGA) and LiOH·H<sub>2</sub>O at room temperature to produce free allylic amine **6** in 93% yield (eq 4). Furthermore, a gram-scale reaction was performed to generate the product **5g** in 95% yield and 99% ee, although the reaction time was prolonged to ensure the full conversion of imine **1g** (eq 5).

#### **Organic Letters**



Figure 2. Rhodium-catalyzed asymmetric alkenylation with  $\beta$ -arylsubstituted vinyltrifluoroborates. Yields refer to isolated product. Enantiomeric excesses were determined by chiral HPLC analysis.



Scheme 1. Formal Synthesis of (-)-Aurantioclavine



To demonstrate further the utility of our method, we conducted the synthesis of (-)-aurantioclavine, <sup>18,19</sup> a natural product first isolated from *Penicillium aurantiovirens* in 1981,<sup>20</sup> which aroused considerable interest due to its proposed role as an intermediate in the biosynthesis of communesin family.<sup>21,22</sup> Our synthesis started from N-Ts protection of indole 7, which underwent bromination at the C-3 position of the indole core and subsequent condensation with NsNH<sub>2</sub> to afford *N*-nosyl imine 9. The key step, rhodium-catalyzed asymmetric addition of trifluoroborate **2b** to imine **9**, produced the desired adduct **10** in 98% yield with 99% ee. It should be mentioned that diene ligand (R,R)-L1 was used in this reaction to achieve the correct stereochemistry in the synthesis of (-)-aurantioclavine.<sup>19d</sup> Suzuki coupling of 10 with vinyltrifluoroborate introduced a vinyl group at the 3-position of indole, generating a properly decorated indole 11, a key intermediate in Stoltz's total synthesis.<sup>19a,d</sup> Our approach provided a formal synthesis of (-)-aurantioclavine (Scheme 1).

In summary, an asymmetric rhodium-catalyzed addition reaction of potassium alkenyltrifluoroborates to acyclic aldimines was developed, providing a simple, reliable, and scalable method for the modular synthesis of chiral  $\alpha$ -branched allylic amines. The reaction displays a broad scope with respect to both imine and alkenylborate partners. The utility of this method is demonstrated by the concise formal synthesis of (–)-aurantioclavine.

## ASSOCIATED CONTENT

#### **Supporting Information**

Experimental procedure and characterization of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org

#### AUTHOR INFORMATION

**Corresponding Authors** 

\*E-mail: gaowenyun@nwu.edu.cn.

\*E-mail: lingq@sioc.ac.cn.

#### Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (21002112, 21232009), the Major State Basic Research Development Program (2010CB833302), and the State Key Laboratory of Bioorganic and Natural Products Chemistry is acknowledged. We acknowledge Dr. Han-Qing Dong (Arvinas, Inc.) for his help in the preparation of this manuscript.

## REFERENCES

(1) (a) Cole, R. J.; Kirksey, J. W.; Dorner, J. W.; Bedell, D. M.; Springer, J. P.; Chexal, K. K.; Clardy, J. C.; Cox, R. H. J. Agric. Food Chem. 1977, 25, 826. (b) Kozlovskii, A. G; Solov'eva, T. F.; Sahkarovskii, V. G.; Adanin, V. M. Dokl. Akad. Nauk SSSR 1981, 260, 230. (c) Nunnery, J. K.; Engene, N.; Byrum, T.; Cao, Z.; Jabba, S. V.; Pereira, A. R.; Matainaho, T.; Murray, T. F.; Gerwick, W. H. J. Org. Chem. 2012, 77, 4198. (d) Grant, J. A.; Riethuisen, J. M.; Moulaert, B.; DeVos, C. Ann. Allergy Asthma Immunol. 2002, 88, 190. (e) Day, J. H.; Ellis, A. K.; Rafeiro, E. Drugs Today 2004, 40, 415. (f) Walsh, G. M. Curr. Med. Chem. 2006, 13, 2711.

(2) For reviews, see: (a) Hollis, T. K.; Overman, L. E. J. Organomet. Chem. 1999, 576, 290. (b) Nomura, H.; Richards, C. J. Chem. Asian J. 2010, 5, 1726.

(3) For reviews, see: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (c) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675. (d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258. (e) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.

(4) For enantioselective metal-catalyzed reductive coupling of alkynes and imines, see: (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43, 3941. (b) Skucas, E. J.; Kong, R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242. (c) Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. J. Am. Chem. Soc. 2010, 132, 10955.

(5) For enantioselective organo-catalyzed Petasis reactions, see: (a) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129, 6686. (b) Lou, S.; Schaus, S. E. J. Am. Chem. Soc. 2008, 130, 6922.
(c) Inokuma, T.; Suzuki, Y.; Sakaeda, T.; Takemoto, Y. Chem. Asian J.
2011, 6, 2902. (d) Kodama, T.; Moquist, P. N.; Schaus, S. E. Org. Lett.
2011, 13, 6316.

(6) For catalytic enantioselective aza-Morita-Baylis-Hillman reactions, see: (a) Shi, M.; Xu, Y. M. Angew. Chem., Int. Ed. 2002, 41, 4507. (b) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680. (c) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. Catal. 2005, 347, 1701. (d) Masson, G.; Housseman, C.; Zhu, J. P. Angew. Chem., Int. Ed. 2007, 46, 4614. (e) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1. (f) Yukawa, T.; Seelig, B.; Xu, Y. J.; Morimoto, H.; Matsunaga, S.; Berkessel, A.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 11988.

(7) For reviews, see: (a) Marques, C. S.; Burke, A. J. *ChemCatChem* **2011**, *3*, 635. (b) Tian, P.; Dong, H.-Q.; Lin, G.-Q. *ACS Catal.* **2012**, *2*, 95.

(8) For selected examples, see: (a) Kuriyama, M.; Soeta, T.; Hao, X.
Y.; Chen, O.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128.
(b) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584. (c) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336.
(d) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815. (e) Cui, Z.; Yu, H.-J.; Yang, R.-F.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. J. Am. Chem. Soc. 2011, 133, 12394. (f) Nishimura, T.; Noishiki, A.; Tsui, G. C.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 5056.
(g) Wang, H.; Jiang, T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971.
(9) For diastereoselective rhodium-catalyzed additions of alkenylbor-

on reagents to *N-tert*-butanesulfinyl aldimines, see: (a) Brak, K.; Ellman, J. A. *J. Am. Chem. Soc.* **2009**, *131*, 3850. (b) Brak, K.; Ellman, J. A. *J. Org. Chem.* **2010**, *75*, 3147.

(10) Lennox, A. J. J. G.; Lloyd-Jones, C. J. Am. Chem. Soc. 2012, 134, 7431.

(11) Luo, Y. F.; Carnell, A. J.; Lam, H. W. Angew. Chem., Int. Ed. 2012, 51, 6762.

(12) Shintani, R.; Takeda, M.; Soh, Y.-T.; Ito, T.; Hayashi, T. Org. Lett. 2011, 13, 2977.

(13) For reviews of chiral diene ligands, see: (a) Defieber, C.;
Grutzmacher, H.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4482. (b) Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840. (c) Shintani, R.; Hayashi, T. Aldrichimica Acta 2009, 42, 31. (d) Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. Synlett 2011, 1345.

(14) For reviews on organotrifluoroborates, see: (a) Molander, G. A.; Figueroa, R. Aldrichimica Acta 2005, 38, 49. (b) Stefani, H. A.; Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623. (c) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275. (d) Darses, S.; Genet, J.-P. Chem. Rev. 2008, 108, 288.

(15) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 3139.

(16) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. **2002**, 124, 5052.

(17) Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.

(18) For total synthesis of racemic aurantioclavine, see: (a) Yamada, F.; Makita, Y.; Suzuki, T.; Somei, M. Chem. Pharm. Bull. **1985**, 33, 2162. (b) Hegedus, L. S.; Toro, J. L.; Miles, W. H.; Harrington, P. J. J. Org. Chem. **1987**, 52, 3319. (c) Yamada, K.; Namerikawa, Y.; Haruyama, T.; Miwa, Y.; Yanada, R.; Ishikura, M. Eur. J. Org. Chem. **2009**, 5752.

(19) For enantioselective total synthesis of (-)-aurantioclavine, see:
(a) Krishnan, S.; Bagdanoff, J. T.; Ebner, D. C.; Ramtohul, Y. K.; Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 13745.
(b) Xu, Z.; Hu, W.; Liu, Q.; Zhang, L.; Jia, Y. J. Org. Chem. 2010, 75, 7626. (c) Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004. (d) Behenna, D. C.; Krishnan, S.; Stoltz, B. M. Tetrahedron Lett. 2011, 52, 2152.

(20) (a) Soloveva, T. F.; Kuvichkina, T. N.; Baskunov, B. P. *Microbiology* **1995**, *64*, 550. (b) Kozlovskii, A. G.; Soloveva, T. F.; G. Sakharobskii, V.; Adanin, V. M. Dokl. Akad. Nauk SSSR **1981**, *260*, 230.

(21) (a) May, J. A.; Zeidan, R. K.; Stoltz, B. M. Tetrahedron Lett. **2003**, 44, 1203. (b) May, J. A.; Stoltz, B. M. Tetrahedron **2006**, 62, 5262.

(22) For total synthesis of communesins, see: (a) Yang, J.; Wu, H.-X.;
Shen, L.-Q.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. (b) Liu, P.;
Seo, J.-H.; Weinreb, S. M. Angew. Chem., Int. Ed. 2010, 49, 2000.
(c) Zuo, Z.-W.; Xie, W.-Q.; Ma, D.-W. J. Am. Chem. Soc. 2010, 132, 13226. (d) Zuo, Z.-W.; Ma, D.-W. Angew. Chem., Int. Ed. 2011, 50, 12008. (e) Belmar, J.; Funk, R. L. J. Am. Chem. Soc. 2012, 134, 16941.