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The multi-component reaction between secondary phosphine selenides and amines (primary, secondary,
and primary diamines) proceeds using the Et3N-CCl4 system under mild conditions to give phosphinose-
lenoic amides or diamides in 81–89% isolated yields.
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Phosphinic and phosphinothioic amides and diamides are em-
ployed extensively as ligands for the design of metal-complexes,1

precursors of biologically active drugs2 and building blocks in or-
ganic and elementoorganic synthesis.3 Phosphinoselenoic amides
and diamides also attract continued research interest. For example,
complexes of these phosphinoselenoic amides with transition met-
als (Ti, Cr, Mn, Fe, Co, Ni, Zn, Cd)4 are successfully used as single-
source precursors for the preparation of metal selenide thin
films.4c,d Diphenylphosphinoselenoic amides are known to be ace-
tylcholinesterase inhibitors.5 However, the conventional syntheses
of phosphinoselenoic amides are tedious and involve utilizing
moisture- and air-sensitive phosphorus halides4a,5,6 and, in some
cases, difficult to obtain organylamides of alkali metals.4a,6c–f The
Todd–Atherton reaction, which was discovered and investigated
using dialkyl phosphites,7 and briefly described for secondary
phosphine oxides and phosphine sulfides,8 represents a simple
and convenient approach to phosphinoselenoic amides. Reports
on the possible application of secondary phosphine selenides in
Todd–Atherton type reactions are absent in the literature.

In this paper, we report for the first time the multi-component
one-pot reaction of secondary phosphine selenides with primary
and secondary amines and primary diamines using the Et3N-CCl4

system.
Experiments have shown9 that secondary phosphine selenides

1 and 2 react with primary 3 and 4, or secondary amines 5–7 using
the Et3N-CCl4 system under mild conditions (20–25 �C, 1 h) to af-
ford diphenyl- and bis(2-phenylethyl)phosphinoselenoic amides
8a–f in 82–87% isolated yields (Table 1).
ll rights reserved.

Trofimov).
The mechanism of this reaction can be rationalized as follows
(Scheme 1). P,Se-ambident selenophosphinite anion A, formed via
deprotonation of the secondary phosphine selenide 1 or 2 under
the action of triethylamine, reacts with carbon tetrachloride to fur-
nish phosphinoselenoic chloride B and the –CCl3 carbanion. Proto-
nation of the latter by a triethylammonium cation leads to
regeneration of triethylamine and formation of chloroform. Phos-
phinoselenoic chloride B reacts with the primary or secondary
amine 3–7 in the presence of triethylamine to give phosphinosele-
noic amides 8a–f and triethylammonium chloride. Bis(2-phen-
ethyl)phosphinoselenoic chloride10 and chloroform were
identified in the reaction mixture by 1H, 13C and 31P NMR
spectroscopy.

The reaction was found to be general in character. Secondary
phosphine selenides possessing aryl and arylalkyl substituents, as
well as different primary and secondary amines, including unsatu-
rated examples, participated readily in this multi-component reac-
tion. The general character of the reaction is additionally supported
by the fact that diamines can also be employed in this reaction.

For example, primary diamines 9–12 react readily (20–25 �C,
1 h) with two equivalents of the secondary phosphine selenides 1
or 2 in Et3N-CCl4 to furnish the corresponding diamides 13a–e in
81–89% yield11 (Table 2).

In summary, the multi-component reaction between secondary
phosphine selenides and various amines or diamines using the
Et3N-CCl4 system affords phosphinoselenoic amides and diamides
in high yields. The polyfunctional compounds synthesized are pro-
spective ligands for the preparation of metal-complexes, promising
intermediates for the production of conducting nanomaterials, pre-
cursors for the design of biologically active compounds, and build-
ing blocks for elementoorganic synthesis.
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Scheme 1. A tentative mechanism for the formation phosphinoselenoic amides.

Table 1
Synthesis of phosphinoselenoic amides 8a–fa

R1

P
Se

R1 H
+ HNR2R3

R1

P
Se

R1

1, 2 3-7 8a-f

- [Et3NH]Cl
- CHCl3

Et3N/CCl4, r.t., 1 h

NR2R3

Entry R1
2P(Se)H 1, 2 (1 mmol) R1 R2R3NH 3–7 (1 mmol) R2 R3 Product Yield (%)

b c

1 1 6 n-Pr n-Pr 8a 90 82

2 2 3 H Allyl 8b 89 83

3 2 4 H Ph 8c 94 86

4 2 5 Et Et 8d 91 83

5 2 6 n-Pr n-Pr 8e 93 87

6 2 7 n-Bu n-Bu 8f 90 82

a All experiments were carried out under argon at r.t. for 1 h; Et3N (1 mmol) and CCl4 (4 ml) were used.
b Yields calculated from the 31P NMR spectra of the crude products.
c Isolated yield.

Table 2
Reaction of phosphine selenides 1 and 2 with diamines 9–12a

R1

P
Se

R1 H
+

1, 2
- [Et3N

- CHC

Et3N/CCl4,

9-12

H2N X NH2

Entry R1
2P(Se)H 1, 2 (1 mmol) R1 H2NXNH2

1 1 11

2 2 9

3 2 10

4 2 11

5 2 12

a All experiments were carried out under argon at r.t. for 1 h; Et3N (1 mmol) and CCl
b Yields calculated from the 31P NMR spectra of the crude products.
c Isolated yield.
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H]Cl
l3

r.t., 1 h

13a-e

R1

P
Se

R1
P

Se R1

R1N X N
H H

9–12 (0.5 mmol) X Product Yield (%)

b c

(CH2)6 13a 90 85

CH2(Me)CH 13b 87 81

(CH2)5 13c 89 83

(CH2)6 13d 93 89

(CH2)7 13e 91 86

4 (4 ml) were used.
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