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A novel sequence of Sonogashira coupling and electrophilic

addition to an ynone, with concomitant deprotection and

cyclocondensation, opens a new one-pot synthesis of

3-halofurans; the method can be readily elaborated to a new

sequential Sonogashira–addition–cyclocondensation–Suzuki

reaction to furnish 2,3,5-trisubstituted furans in a one-pot

fashion.

Furans are ubiquitous structural units in numerous natural

products,1 in pharmaceuticals,2 and even in photonic chromo-

phores.3 Among various syntheses of furans,4 the two major

approaches5 are either based upon the construction of the furan

ring starting from acyclic precursors6 or substitution reactions on

the furan core. In particular, by regiospecific substitutions,

halofurans are ideal starting materials, either as electrophiles in

cross-coupling reactions7 or, via halogen–metal exchange, as

nucleophiles for subsequent electrophilic trapping.8 However,

efficient and concise syntheses of 3-substituted halofurans are still

a methodological challenge.9,10 As part of our program directed to

develop new one-pot multi-component heterocycle syntheses

initiated by transition metal catalyzed alkyne coupling,11 here,

we communicate a novel one-pot three-component synthesis of

3-halofurans and sequential cross-coupling, still in a one-pot

fashion.

Recently, we have developed a modification of the Sonogashira

coupling of acid chlorides and terminal alkynes to give

alkynones,11 where only one stoichiometric equivalent of triethyl-

amine, necessary as hydrochloric acid scavenging base, is applied.

Therefore, the reaction medium becomes essentially base free, now

setting the stage for acid catalyzed consecutive steps. Ynones

possess an enormous potential as key intermediates in heterocycle

synthesis.12 Hence, we reacted benzoyl chloride (1a) and the

tetrahydropyranyl propargyl ether (2a) under modified

Sonogashira conditions, followed by the addition of NaCl and

p-tolylsulfonic acid (PTSA) in methanol, to give, through the

intermediacy of an c-hydroxy alkynone,13 4-chloro-2-phenylfuran

(3a) in 63% yield (Scheme 1).

This novel sequence can be rationalized as a cross-coupling

furnishing a THP-protected 3-hydroxy alkynone that is solvolyzed

under acid catalysis to give rise to the c-hydroxy alkynone.

Acid-assisted Michael addition of HCl and subsequent cyclocon-

densation conclude the three-component sequence to give the

4-chlorofuran 3a.

According to these optimal conditions, with the extension to

using sodium iodide as a halide source, various acid chlorides 1

and tetrahydropyranyl propargyl ethers 2 can be successfully

transformed into 3-halofurans 3 in a one-pot coupling–addition–

cyclocondensation sequence (Scheme 2, Table 1).14

The structure of the 3-halofurans 3 is unambiguously supported

by an X-ray structure analysis for 3i (Fig. 1).{
Methodologically, this new one-pot three-component synthesis

of 3-halofurans proceeds efficiently under mild conditions with a

wide variety of electronically diverse acid chlorides. Applying NaI

as a halide source leads to even milder reaction conditions and

shorter reaction times, now giving extremely valuable 3-iodofur-

ans. Therefore, due to the acid sensitivity of iodofurans, this

methodology has significant advantages over existing protocols

using HI as an acid.

Finally, as a showcase for the highly topical field of sequential

catalysis15 we probed a sequential Sonogashira–addition–cyclo-

condensation–Suzuki reaction where the same catalyst system

should be applied for two consecutive, significantly different, cross-

coupling reactions in the same reaction vessel. Therefore, upon

consecutive reactions of acid chlorides 1 and tetrahydropyranyl

propargyl ethers 2, NaI and PTSA, and addition of 1.05 equiv. of

{ Electronic supplementary information (ESI) available: experimental
procedures and characterization for compounds 3 and 5. See http://
www.rsc.org/suppdata/cc/b5/b502324f/
*Thomas_J.J.Mueller@urz.uni-heidelberg.de

Scheme 1 Coupling–addition–cyclocondensation sequence to 4-chloro-

furan 3a.

Scheme 2 Coupling–addition–cyclocondensation synthesis of 3-halofur-

ans 3.
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boronic acids 4 and sodium carbonate, the substituted 3-arylfurans

5 were obtained in decent yields (Scheme 3).16

The new one-pot Sonogashira–addition–cyclocondensation–

Suzuki synthesis of substituted 3-arylfurans 5 proceeds in reason-

able yields that are almost comparable (one-pot sequence to 5a:

50%) with a stepwise procedure (overall yield of 5a: 45%).

In conclusion, we have developed a novel consecutive three-

component coupling–addition–cyclocondensation synthesis of

3-halofurans, highly versatile building blocks in organic synthesis.

In addition, a new sequential Sonogashira–addition–cycloconden-

sation–Suzuki multi-component furan synthesis was readily

elaborated as a new diversity-oriented consecutive multi-

component access to substituted 3-arylfurans. Studies addressing

the scope of this sequence to enhance molecular diversity are

currently under investigation.
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Notes and references

{ Crystal data for 3i: C10H6INO3, M 5 315.1, triclinic, space group P1̄,
a 5 8.2679(1), b 5 11.0675(1), c 5 22.2477(2) Å, a 5 84.927(1)u,
b 5 83.749(1)u, c 5 88.385(1)u, V 5 2015.39(4) Å3, T 5 200(2) K, Z 5 8,
r 5 2.077 g cm23, crystal dimensions 0.50 6 0.34 6 0.30 mm3, Mo Ka

radiation, m 5 3.162 mm21, l 5 0.71073 Å. There are four independent
molecules in the asymmetric unit. Data were collected on a Bruker Smart
APEX diffractometer and a total of 9160 of the 20833 reflections were
unique [R(int) 5 0.0201]. Refinement on F2, wR2 5 0.049 (observed
reflections), R1 5 0.021 for [I . 2s(I)]. CCDC 260725. See http://
www.rsc.org/suppdata/cc/b5/b502324f/ for crystallographic data in CIF or
other electronic format.
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Table 1 One-pot three-component synthesis of 3-halofurans 3

Entry Acid chloride 1 Alkyne 2 3-Halofuran 3 (yield)

1a R1 5 Ph (1a) R2 5 H (2a) 3a (R1 5 Ph , R2 5 H, Hal 5 Cl, 63%)
2a R1 5 p-MeOC6H4 (1b) 2a 3b (R1 5 p-MeOC6H4, R2 5 H, Hal 5 Cl, 71%)
3a 1a R2 5 Et (2b) 3c (R1 5 Ph, R2 5 Et, Hal 5 Cl, 70%)
4a R1 5 2-thienyl (1c) 2b 3d (R1 5 2-thienyl, R2 5 Et, Hal 5 Cl, 59%)
5a R1 5 PhCHLCH (1d) 2b 3e (R1 5 PhCHLCH, R2 5 Et, Hal 5 Cl, 73%)
6a R1 5 1-cyclohexenyl (1e) 2a 3f (R1 5 1-cyclohexenyl, R2 5 H, Hal 5 Cl, 64%)
7b 1a 2a 3g (R1 5 Ph, R2 5 H, Hal 5 I, 63%)
8b 1b 2a 3h (R1 5 p-MeOC6H4, R2 5 H, Hal 5 I, 63%)
9b R1 5 p-NO2C6H4 (1f) 2a 3i (R1 5 p-NO2C6H4, R2 5 H, Hal 5 I, 40%)

10b 1a 2b 3j (R1 5 Ph, R2 5 Et, Hal 5 I, 72%)
a 2.0 equiv. of NaCl, 60 uC, 20 h. b 5 equiv. of NaI, r.t., 2 h.

Fig. 1 Molecular structure of 3i (R1 5 p-NO2C6H4, R2 5 H, Hal 5 I).

Only 1 of 4 independent molecules is shown. The enumeration is adjusted.

Scheme 3 Sequential Sonogashira–addition–cyclocondensation–Suzuki

synthesis of substituted 3-arylfurans 5.
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saturated solution of NaHCO3 and Na2SO3 and chromatography on
neutral aluminium oxide (hexane–ethyl acetate 9:1–20:1), 215 mg (72%)
of pure 3j were obtained as a light yellow oil. 1H NMR (acetone-d6,
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Then 171 mg (1.00 mmol) of 1b, 141 mg (1.00 mmol) of 2a, and 0.14 mL
(1.00 mmol) of triethylamine were successively added to the solution and
the mixture was stirred for 2 h at room temperature. Then 750 mg
(5.00 mmol) of sodium iodide, 209 mg (1.10 mmol) of p-tolylsulfonic
acid monohydrate and 3 mL of methanol were added and stirring at
room temperature was continued for 2 h. Then 4 mL (8 mmol) of a 2 M
solution of aqueous sodium carbonate and 128 mg (1.05 mmol) of
boronic acid 4a were added and the mixture was heated at 90 uC for
28 h. After aqueous work up and chromatography on silica gel, 115 mg
(50%) of the analytically pure 2-substituted 3-phenylfuran 5a were
obtained as a colorless solid. Rf 5 0.42 (hexane–ethyl acetate 9:1). Mp
129 uC. 1H NMR (acetone-d6, 300 MHz): d 3.84 (s, 3 H), 7.02 (d, J 5
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0.7 Hz, 1H). 13C NMR (acetone-d6, 75 MHz): d 55.6 (CH3), 103.3 (CH),
115.1 (CH), 124.5 (Cquat), 126.1 (CH), 126.5 (CH), 127.8 (CH), 129.3
(Cquat), 129.6 (CH), 133.4 (Cquat), 138.6 (CH), 155.8 (Cquat), 160.4
(Cquat). EI MS [m/z (%)]: 250 (M+, 100), 235 (M+ 2 CH3, 14), 221 (M+ 2
CHO, 15). Anal calc. for C17H14O2 (250.30): C 81.58, H 5.64. Found:
C 81.20, H 5.63.
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