Synthesis of Kojidextrins and Their Protein Conjugates. Incidence of Steric Mismatch in Oligosaccharide Synthesis ${ }^{\dagger}$

Vince Pozsgay,*, ${ }^{*}$ Eric P. Dubois, ${ }^{\ddagger}$ and Lewis Pannell ${ }^{\S}$
Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Deve opment, National Institutes of Health, Bethesda, Maryland 20892-2720, and Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Received December 10, 1996^{*}

Abstract

Kojidextrins are biologically important oligosaccharides that are involved in many physiological processes including protein glycosylation and bacterial growth. As part of our project to explore the role kojidextrins may play in bacterial pathogenesis, here we report synthetic routes to kojibiose (54), -triose (58), -tetraose (64), and -pentaose (69) equipped with α-linked (hydrazinocarbonyl)pentyl aglycon, using linear and convergent strategies. In the search for a rapid convergent strategy for the construction of extended kojidextrins, four kojibiose donors (1-4) were synthesized that contain acyl- and ether-type protecting groups in various ratios. These were tested to probe the influence of diverse protecting group assemblies on their glycosyl donor ability. Attempted condensation of these donors with kojitriose and -tetraose acceptors failed to give the desired products apparently because of steric mismatch between the donor and the acceptor moieties. A one-pot procedure was developed for the covalent attachment of the synthetic saccharides through their hydrazido group to human serum albumin (HSA) using Tietze's squarate method to give neoglycoproteins containing up to 28 saccharide units per HSA.

Introduction

Kojidextrins are biologically important oligosaccharides containing α-($1 \rightarrow 2$)-linked D-glucose residues in a linear arrangement. Their simplest representative is the disaccharide kojibiose that is found among the fermentation products of rice, ${ }^{1}$ in the core region of the O-antigenic polysaccharide of the enteric bacterium Escherichia coli $\mathrm{K}-12,{ }^{2}$ in the capsular polysaccharides of Streptococcus pneumoniae Types $12 A^{3 a}$ and $12 \mathrm{~F},{ }^{3 b}$ in native dextrans, ${ }^{4}$ and in the teichoic add ${ }^{5}$ from Streptococcus faecal is strain 39. K ojibiose is the only kojidextrin found in mammals, where it is part of the lipid-linked oligosaccharide precursor for protein glycosylation. ${ }^{6}$ K ojitriose occurs in bacterial teichoic acids ${ }^{5}$ and in native dextrans, ${ }^{4}$ and kojitetraose and -pentaose constitute part of the glucans secreted by Rhizobium meiloti J 7017.7 Kojihexaose ${ }^{8}$ was identified as an extracellular saccharide of a slowgrowing strain of Rhizobium japonicum strain 561, and an antigenic polysaccharide isolated from M ycobacterium tuberculosis strains H 37 and A33, termed polysaccharide II, is said to be poly- $\alpha-(1 \rightarrow 2)$-d-glucan. ${ }^{9}$ We became interested in this unusual group of oligosaccharides

[^0]because of their value in immunochemical studies related to pathogenic bacteria that contain kojidextrins on their surface.

The chemical synthesis of kojipentaose and smaller kojidextrins has been reported by us and by others either in free form or as glycosides bearing an alkyl group as the aglycon. ${ }^{10-13}$ Earlier, we used a stepwise strategy and found that the overall yield rapidly declines as the chain length of the oligosaccharide increases. ${ }^{10 g, h}$ Therefore, we have chosen to systematically explore a blockwise approach that could be conducive to rapid construction of higher kojidextrins in favorableyields. The rationale for this approach is that the glycosyl residue at O-2 is a nonparticipating moiety, ${ }^{14}$ and therefore, it would assist the formation of α-glycosidic linkage. In the present study, we prepared a series of kojibiose derivatives (14) in which the number of reactivity-enhancing, ethertype protecting groups in the nonreducing end residue varies between 1 and 4 and tested their reactivity as glycosyl donors. A common feature of compounds 1-4 is a chemosel ectively removable protecting group at HO 2^{\prime}, which is the site of future chain extension. It was anticipated that glycosylation experiments with these compounds would allow the assessment of the influence of the ether-type protecting groups on the reactivities of

[^1]such donor moieties and would lead toward the development of an efficient kojibiosyl donor/acceptor building block. Therefore, we describe here the synthesis of kojibiose derivatives 1-4 and then examine their use as glycosyl donors in a blockwise approach to higher kojidextrins.

Results and Discussion

Preparation of the Disaccharide Building Blocks. (I) The Disaccharide Synthons 1 and 2. The key intermediate to disaccharides $\mathbf{1}$ and $\mathbf{2}$ was the glucosyl chloride $\mathbf{1 1}$ which was prepared by two independent routes. ${ }^{15}$ In the first approach, the readily available (3,4,6-tri-O-acetyl- β-d-glucopyranosyl) piperidine ${ }^{16}$ (5) was selected as the starting material and converted to the tetraacetate ${ }^{12 a} 8$ through a three-step sequence involving allylation at $\mathrm{O}-2$ (allyl iodide, $\mathrm{Ag}_{2} \mathrm{O} \rightarrow$ 6), hydrolytic removal of the anomeric piperidino moiety ($\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}$ $\rightarrow 7$), and acetylation in 82% overall yield (Scheme 1). Treatment of 8 with $\mathrm{PhSSiMe}_{3} / \mathrm{Me}_{3} \mathrm{SiOTf}^{17}$ afforded thioglucoside 9 in 86% yield as a 94:6 mixture of the α and the β anomers (Scheme 2). Addition of PhSH to the allyl group in this reaction could be suppressed by using the reagent $\mathrm{PhSSiMe}_{3}$ in a slightly less than equimolar amount. Base-catalyzed transesterification (NaOMe) followed by O-benzylation gave the fully protected α thioglucoside 10 (81\%). Next, we investigated the conversion of the thioglucoside $\mathbf{1 0}$ into glucosyl chloride $\mathbf{1 1 .}$ The standard reagent for such conversions ${ }^{109}$ is chlorine, which could not be used for $\mathbf{1 0}$ because it would abolish the double bond in the allyl group. On the other hand, reaction of $\mathbf{1 0}$ with α, α-dichloromethyl methyl ether ${ }^{18,19}$ (DCMME) in the presence of $\mathrm{Me}_{3} \mathrm{SiOTf}$ gave a ca. 2:1 mixture of the α and the β chloride ${ }^{12 b} 11$ in a nearly

[^2]
Scheme 1a

7
8
a Reagents and conditions: (a) 5 equiv of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{I}, \mathrm{Ag}_{2} \mathrm{O}$, DMF , $23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; (b) $\mathrm{AcOH}, 2: 1 \mathrm{Me} \mathrm{C}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$, reflux, 15 min , quant; (c) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$.

a Reagents and conditions: (a) 1.05 equiv of $\mathrm{PhSSiMe}_{3}, 0.25$ equiv of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OSiMe}_{3},\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}, 83{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 86 \%$; (b) NaOMe (cat.), $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) 1.5 equiv of $\mathrm{NaH}, 1.1$ equiv of BnBr , DMF $0 \rightarrow 23^{\circ} \mathrm{C}, 3 \mathrm{~h}, 81 \%$ for two steps; (d) 5 equiv of $\mathrm{CCl}_{2} \mathrm{HOCH}_{3}$, 0.5 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OSiMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 41 \%$.
quantitative reaction (${ }^{1} \mathrm{H}$ NMR). Unfortunately, product recovery was not efficient since chromatographic purification caused extensive losses and the α chloride 11α could be isol ated in 41% yield only. An alternative route to 11 started from the readily available tosyl ester derivative ${ }^{15 b} \mathbf{1 2}$, which was benzylated to give $\mathbf{1 3}$ (Scheme 3). The temporary tosyl group was then removed by treatment with NaBH_{4} in $\mathrm{Me}_{2} \mathrm{SO}$ to furnish the alcohol 14 in 71\% yield. ${ }^{20}$ Allylation at O-2 $(\rightarrow 15)$ followed by acid-catalyzed removal ${ }^{21}$ of the acetal gave the diol 16. Benzylation $(\boldsymbol{\rightarrow 1 7})$ followed by selective cleavage of the glycosidic linkage afforded the hemiacetal 18 from which the chloride 11 was obtained with the Vilsmeyer-H aack reagent generated ${ }^{22}$ in situ from $(\mathrm{COCl})_{2}$ and DMF in 69\% yield.

[^3]
Scheme 3a

${ }^{\text {a }}$ Reagents and conditions: (a) 2.4 equiv of $\mathrm{BnBr}, 8$ equiv of BaO , $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 23^{\circ} \mathrm{C}, 8 \mathrm{~h}, 88 \%$; (b) 14 equiv of NaBH_{4}, $\mathrm{Me} \mathrm{SO}^{2}, 150{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 71 \%$; (c) 1.5 equiv of $\mathrm{NaH}, 1.3$ equiv of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}, \mathrm{DMF}, \mathrm{O} \rightarrow 23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; (d) $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$, reflux, $15 \mathrm{~min}, 91 \%$; (e) 1.5 equiv of $\mathrm{NaH}, 1.3$ equiv of $\mathrm{BnBr}, \mathrm{DMF}$, $0 \rightarrow 23^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92 \%$; (f) $\mathrm{HCl}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}$, reflux, $90 \mathrm{~min}, 68 \%$; (g) 3 equiv of (COCl) 2 , DMF (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 69 \%$.

Condensation of chloride $\mathbf{1 1}$ with the known acceptor ${ }^{23}$ $19\left(\mathrm{AgClO}_{4} / \mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$ proceeded in 87% yield to give a $4: 1$ mixture of compounds $\mathbf{2 0}$ and $\mathbf{2 1}$ from which the α-linked disaccharide $\mathbf{2 0}$ was isolated in 56% yield (Scheme 4). Anomeric deacetylation ${ }^{24}$ of $\mathbf{2 0}\left(\mathrm{NH}_{2} \mathrm{NH}_{2} /\right.$ DMF $)$ afforded hemiacetal 22 (92%) treatment of which with the Vils-meyer-Haack reagent gave the glycosyl chloride $\mathbf{1}$ as a 1:1 mixture of the α and β anomers in 92% yield. The α imidate $\mathbf{2}$ was obtained by reaction ${ }^{25}$ of $\mathbf{2 2}$ with trichloroacetonitrile in the presence of DBU in 85% yield.
(II) The Disaccharide Synthon 3. The Reducingend Moiety. The (trimethylsilyl)ethyl glucoside $\mathbf{2 9}$ was selected as the reducing-end synthon. The precursor was the readily available 1,2,4,6-tetra-O-acetyl-3-O-benzyl-β-D-glucopyranose ${ }^{26}$ (23), which was converted to the 2-(trimethylsilyl)ethyl glucoside $\mathbf{2 5}$ via the intermediacy of the chloride 24 in 70% overall yield (Scheme 5). Transesterification (Zemplén) was sluggish at ambient temperature ${ }^{27}$ but was completed within 90 min in quantitative yield at $50^{\circ} \mathrm{C}$ to provide the triol 26. Selective protection of the HO-4 and -6 groups was performed as follows. First, a 4-methoxybenzylidene group was installed at both $\mathrm{HO}-4$ and -6 . HO-2 was then blocked with a monochl oroacetyl group ($\rightarrow \mathbf{2 7}, \mathbf{7 4 \%}$). The highly acid-sensitive acetal group was removed ${ }^{21}$ by HBF_{4} in anhydrous MeOH . This was followed by O -acetylation ($\mathrm{Ac} \mathrm{c}_{2} \mathrm{O} / \mathrm{Py}$) to give $\mathbf{2 8}$ in 83% overall yield. Finally, the

[^4]
Scheme 4^{a}

${ }^{\text {a }}$ Reagents and conditions: (a) 1.3 equiv of 19, $\mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 23^{\circ} \mathrm{C}, 4 \mathrm{~h}, 87 \%$; (b) 1.5 equiv of $\mathrm{NH}_{2} \mathrm{NH}_{2}$, DMF, $23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 92 \%$; (c) 2.7 equiv of $(\mathrm{COCl})_{2}$, DMF (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 23^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (d) 30 equiv of $\mathrm{CCl}_{3} \mathrm{CN}, 0.6$ equiv of DBU, $0^{\circ} \mathrm{C}, 90 \mathrm{~min}, 85 \%$.
chloroacetyl group was selectively cleaved with hydrazine dithiocarbonate according to van Boeckel ${ }^{28}$ to afford the acceptor moiety 29 bearing the 2 -(trimethylsilyl)ethyl aglycon in 75% yield.
The Non-Reducing-End Moiety. The precursor to the non-reducing-end synthon was the tetraacetate ${ }^{26} \mathbf{2 3}$, which was converted with $\mathrm{PhSH} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to phenylthio glucoside ${ }^{29} 30$ in 86% yield (Scheme 6). Transesterification (Zemplén) furnished the triol 31 in a nearly quantitative yield. The introduction of the allyl group at O-2 was modeled after the sequence presented for 17. Thus, 31 was converted to the cyclic acetal 32 (96\%) with anisaldehyde dimethyl acetal followed by allylation at O-2 to give 33 in 96% yield. Replacement of the methoxybenzylidene group by acetyls [(i) $\mathrm{HBF}_{4} / \mathrm{MeOH}, \rightarrow \mathbf{3 4}$ (78\%); (ii) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$] gave the key thioglycoside intermediate 35 in 96% yield. The anomeric phenylthio group in 35 was substituted by chlorine using DCMME ${ }^{19}$ in the presence of $\mathrm{ZnCl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ to afford the α-chloride $\mathbf{3 6}$ in 94% yield. Alternatively, acetylation of the diol $\mathbf{1 6}$ followed by acetolysis ($\rightarrow 37$) and reaction with $\mathrm{DCMME} / \mathrm{ZnCl}_{2} \cdot{ }^{-}$ $\mathrm{Et}_{2} \mathrm{O}$ gave the chloride 36 in 65% overall yield as shown in Scheme 7. Condensation of the glucoside acceptor 29 and the donor 36 was next investigated. Using 0.2 molar equiv of AgClO_{4} as the promoter with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ gave the α-linked disaccharide 38 in 62% yield (Scheme 8). Trifluoroacetic acid-mediated removal ${ }^{30}$ of the aglycon af-

[^5]
Scheme 5a

23

$\begin{array}{rl}c \longrightarrow 25 & R=A c \\ 26 & R=H\end{array}$
$\xrightarrow{\mathrm{d}, \mathrm{e}}$
$\xrightarrow{d, e}$

27

28
29
a Reagents and conditions: (a) 4.6 equiv of $\mathrm{CCl}_{2} \mathrm{HOCH}_{3}, 0.1$ equiv of $\mathrm{ZnCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 20 \mathrm{~min}, 91 \%$; (b) 3 equiv of SEOH , 0.9 equiv of s-collidine, $4 \AA$ molecular sieves, 1.9 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OAg}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 79 \%$; (c) NaOMe (cat.), $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 90$ min, 99\%; (d) 1.8 equiv of 4-methoxybenzal dehyde dimethyl acetal, camphorsulfonic acid (cat.), DMF, $23{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (e) 3.3 equiv of $\left(\mathrm{ClCH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$ for two steps; (f) $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{MeOH}, 0 \rightarrow 23^{\circ} \mathrm{C}, 1 \mathrm{~h} ;(\mathrm{g}) \mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$ for two steps; (h) 3 equiv of $\mathrm{NH}_{2} \mathrm{NH}_{2} \mathrm{CS}_{2}$, dioxane, $23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 76 \%$. Key: $\mathrm{CA}=$ chloroacetyl; $\mathrm{MP}=4$-(methoxy) phenyl; SE $=2$-(trimethylsilyl)ethyl.
forded the hemiacetal 39 (87%), which was converted to the target glycosyl chloride $\mathbf{3}$ with $(\mathrm{COCl})_{2} / \mathrm{DMF}$ in 82% yield.
(III) The Disaccharide Synthon 4. Compound 4 was obtained as a 6:4 mixture of the α and β anomers by chlorination of the kojibiose hemiacetal ${ }^{31} \mathbf{4 0}$ with in situ generated Vilsmeyer-Haack reagent.

Assembly of the Oligosaccharides. Our synthetic plan called for a chain extension initiated at the reducing end, using 5-(methoxycarbonyl)pentanol ${ }^{32}$ (41) as the aglycon. First, we examined the condensation of the disaccharide 4 with the alcohol 41 in the presence of $\mathrm{AgClO} / \mathrm{Ag}_{2} \mathrm{CO}_{3}$. Although the condensation proceeded in a high yield, the resulting mixture of the α and the β anomers could not be separated. Similar difficulties were encountered in attempting K oenigs-K norr-type condensation of 41 with monosaccharide donors having a nonparticipating group at O-2. Therefore, this approach (not described in the Experimental Section) was aban-

[^6]doned. Earlier, we found ${ }^{10 g, 33}$ that reaction of either an isolated or an in situ generated β-glucosyl bromide with an alcohol in the presence of a base gave the corresponding α-glucoside exclusively. We next examined the reaction of the donor 43, obtained quantitatively $\left({ }^{1} \mathrm{H}\right.$ NMR) from the thioglucoside 42, with the al cohol 41. As expected, the α-glucoside 44 was obtained as the only product in exclusive stereoselectivity (Scheme 9). In this transformation, the intermediate formation of the α-bromide (${ }^{1} \mathrm{H}$ NMR), which was eventually converted into the product α-glucoside, evidently through the β-bromide, was also observed. The process, being catalyzed by in situ formed endogenous bromide ions, was termed "nonclassical halideion catalysis."33 Catalytic hydrogenolysis of $\mathbf{4 4}$ gave the acceptor $\mathbf{4 5}$ for the subsequent chain extension. The glycosylation of compound 45 with monosaccharide donors was next studied. The reaction of 45 with the chloride 11 afforded a ca. 3:1 mixture of the α - (50) and the β-linked (49) disaccharides in a combined yield of 74% (Scheme 10). An improved stereoselectivity was obtained when 45 was condensed with the known ${ }^{23}$ 3,4,6-tri-O-acetyl-2-O-benzyl- α-D-glucopyranosyl chloride (51) to give the α-linked disaccharide 52 in 78\% yield. This was debenzylated in the presence of Pd / C in ethanol to afford compound 53 as a crystalline material. Reacting the disaccharide acceptor 53 with the monosaccharide donor 36 in the presence of AgOTf afforded the desired trisaccharide 55 in 79\% yield (Scheme 11).

Next the glycosylation reactions with the disaccharide donors were examined. The reaction of the monosaccharide acceptor 45 with the disaccharide donor $\mathbf{3}$ proceeded equally well to provide the trisaccharide 59 in 70% yield. This was deallylated ${ }^{34}$ to give the trisaccharide acceptor 60 in 84\% yield (Scheme 12). Surprisingly, attempted condensation of the disaccharide acceptor 53 with the disaccharide chloride 3 under various Koenigs-K norr conditions failed, and the major product in this reaction was tentatively identified as a trehalose-type tetrasaccharide formed from the donor 3. Reaction of 53 with the chloride $\mathbf{1}$ under AgClO_{4} catalysis was more successful, and the targeted tetrasaccharide 61 could be isolated in 54\% yield (Scheme 13). A slightly improved yield (66\%) was obtained in the condensation of the acceptor 53 with the chloride 4 to give the tetrasaccharide 65. Deallylation of 61 and debenzylation of 65 afforded the tetrasaccharide acceptors 62 and 66, respectively.

Having prepared the tri- (60) and tetrasaccharide acceptors (62 and 66) and the disaccharide donors (14), their condensation was next examined. Surprisingly, no condensation was obtained between any of the following acceptor/donor pairs under a variety of K oenigsKnorr and Schmidt conditions: trisaccharide acceptor 60 and disaccharide donor 3; tetrasaccharide acceptor 62 and disaccharide donors 1, 2, and 4; and tetrasaccharide acceptor 66 and disaccharide donor 4 (Table 1). On the other hand, reaction of the tetrasaccharide alcohol 66 with the monosaccharide donor $\mathbf{3 6}$ gave the fully protected pentasaccharide 67 in 38\% yield (Scheme 14).

The protected (methoxycarbonyl)pentyl glycosides 45, 53, 55, 62, and 67 were deprotected by standard procedures and converted to the corresponding hydrazides 47, 54, 58, 64, and 69 as shown in Schemes 9-11, 13, and 14 for covalent attachment to proteins as described below.

[^7]

a Reagents and conditions: (a) 4 equiv of $\mathrm{PhSH}, 1.2$ equiv of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 88 \%$; (b) NaOMe (cat.), $\mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 24$ $\mathrm{h}, 99 \%$; (c) 2.2 equiv of 4-methoxybenzaldehyde dimethyl acetal, camphorsulfonic acid (cat.), DMF, $23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 96 \%$; (d) 1.4 equiv of NaH , 1.7 equiv of $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Br}, \mathrm{DMF}, 0 \rightarrow 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (e) $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}-\mathrm{EtOAc}, 0 \rightarrow 23^{\circ} \mathrm{C}, 30 \mathrm{~min}, 78 \%$; (f) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 23{ }^{\circ} \mathrm{C}$, $1 \mathrm{~h}, 96 \%$; (g) 10 equiv of $\mathrm{CCl}_{2} \mathrm{HOCH}_{3}, 0.15$ equiv of $\mathrm{ZnCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 94 \%$. Key: $\mathrm{Ph}=$ phenyl.

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 23^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$; (b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.), $\mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}, 73 \%$ for two steps; (c) 1.8 equiv of $\mathrm{CCl}_{2} \mathrm{HOCH}_{3}, 0.1$ equiv of $\mathrm{ZnCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 23^{\circ} \mathrm{C}$, 30 min , 91\%.

38

39
${ }^{a}$ Reagents and conditions: (a) 1.5 equiv of $36, \mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O} \rightarrow 23^{\circ} \mathrm{C}, 4 \mathrm{~h}, 52 \%$; (b) $\mathrm{CF}_{3} \mathrm{COOH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O} \rightarrow 23^{\circ} \mathrm{C}, 1 \mathrm{~h}, 87 \%$; (c) 3.3 equiv of $(\mathrm{COCl})_{2}$, DMF (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O} \rightarrow 23^{\circ} \mathrm{C}, 4 \mathrm{~h}, 82 \%$.

The structures of all intermediates and unprotected saccharides were verified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, which gave the expected chemical shift and homoand heteronuclear coupling patterns. Of particular note is the observation of unusual broadening of several of the resonances in the ${ }^{13} \mathrm{C}$ NMR spectra of the pentasaccharides 68 and 69 . These include three of the five anomeric carbon resonances and three of the four interglycosidically linked C-2 carbon signals and very likely reflect rigidity around the glycosidic linkages in the internal regions of the saccharide chain.

Scheme 9a

48
a Reagents and conditions: (a) 1 equiv of $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 23$ ${ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (b) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}_{2} \mathrm{Me}$ (excess), $\mathrm{EtiPr}_{2} \mathrm{~N}, 23{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}, 80 \%$ for two steps; (c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}-\mathrm{AcOH}, 23^{\circ} \mathrm{C}, 200 \mathrm{psi}, 24 \mathrm{~h}$, 83%; (d) NaOMe (cat.), $\mathrm{MeOH}, 23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$, quant; (e) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (excess), EtOH, $23{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}, 80 \%$; (f) $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ (excess), 80 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 83 \%$.

In summary, we have demonstrated that various kojibiose donors (1-4) bearing acetyl as well as benzyl and/or allyl protecting groups can be used for blocksynthesis of kojidextrins in [2 +1] and [2 + 2] condensation reactions. In these reactions, no significant differences were seen among the donors 1-4 that could be attributed to differences in the blocking group pattern. However, the disaccharide blocks 1-4 could not be condensed with tri- or tetrasaccharide al cohols, indicating extensive clashing between the acceptor moiety and the disaccharide donor unit.

Scheme 10 ${ }^{\text {a }}$

$50 \begin{array}{ll} & \\ & \\ & \\ & \end{array}$

45

49

a Reagents and conditions: (a) 1.4 equiv of $\mathbf{1 1}, \mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 80 \mathrm{~min}, 17 \%$ for $49,57 \%$ for 50; (b) 1.8 equiv of $51, \mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, 4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 4 \mathrm{~h}, 78 \% ;$ (c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}-\mathrm{AcOH}, 23^{\circ} \mathrm{C}, 300$ psi, 24 h, 86\%; (d) NaOMe (cat.), $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (e) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (excess), EtOH, $23^{\circ} \mathrm{C}, 12 \mathrm{~h}, 72 \%$ for two steps.

Covalent Attachment to Proteins. The primary objective of this project is to synthesize neoglycoproteins containing kojidextrins of defined structure for use as multivalent immunogens and antigens. After the multistep synthetic sequences, an efficient method for the coupling of the glycosides 47, 54, 58, 64, and 69 to proteins is essential. In this regard, the two-step squarate method proposed by Tietze ${ }^{35 a, b}$ using a 4-aminophenyl glycoside and reproposed by Hindsgaul ${ }^{35 c}$ using oligosaccharide amines appears to be an attractive approach. The first stage of the method involves coupling a terminal amino group-containing saccharide with a squaric acid diester. At pH 7 , the reaction was reported ${ }^{35 a}$ to stop at the monoester-monoamide level. Subsequent exposure of the monoester and the protein to pH 9 activates the second alkoxy group and anchors the saccharide-squaric acid construct to the ϵ-amino group of the lysine residues of the protein. The possible use of (hydrazinocarbonyl)alkyl glycosides was also advanced but not tested. ${ }^{35 c}$ Tietze reported ${ }^{35 a}$ an incorporation level of 15 disaccha-

[^8]Scheme 11a

Abstract

a Reagents and conditions: (a) 2.4 equiv of $36,2.7$ equiv of $2,6-$ di-tert-butyl-4-methylpyridine, $4 \AA$ molecular sieves, 3.2 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{OAg}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}, 76 \%$; (b) 1.5 equiv of $\mathrm{PdCl}_{2}, 8$ equiv of NaOAc, $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}$, $24 \mathrm{~h}, 79 \%$; (c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, EtOH - AcOH, $23^{\circ} \mathrm{C}$, 200 psi, $24 \mathrm{~h}, 86 \%$; (d) NaOMe (cat.), MeOH , $23{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 73 \%$ for two steps; (e) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (excess), $\mathrm{MeOH}, 23$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 72 \%$.

${ }^{a}$ Reagents and conditions: (a) 1.5 equiv of $45, \mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 70 \%$; (b) 1.5 equiv of $\mathrm{PdCl}_{2}, 8$ equiv of $\mathrm{NaOAc}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}, 24 \mathrm{~h}, 84 \%$.
ride residues per molecule of bovine serum albumin (BSA), and the published data indicate that 18\% of a disaccharide-squaric acid construct was incorporated in the neoglycoconjugate. Hindsgaul's data ${ }^{35 c}$ show an incorporation range of 3-10 saccharide chains per molecule of BSA, and the corresponding incorporation yield at the targeted, low incorporation levels is 74% for a monosaccharide and $36-66 \%$ for di- to tetrasaccharides. In light of the operational simplicity and the mild conditions of the coupling combined with the reported above-average yields, we decided to examine this method for the attachment of (hydrazinocarbonyl)pentyl glycosides to proteins. We sought to avoid the isolation step previously reported ${ }^{35}$ for the monoester-monoamide intermediates and replace the published, two-step pro-

64

Scheme 13a

${ }^{a}$ Reagents and conditions: (a) 1.25 equiv of 53, $\mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, 4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 54 \%$; (b) 1.5 equiv of PdCl_{2}, 8 equiv of $\mathrm{NaOAc}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}, 24 \mathrm{~h}, 82 \%$; (c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}-\mathrm{AcOH}, 23^{\circ} \mathrm{C}, 200 \mathrm{psi}, 12 \mathrm{~h}, 79 \%$; (d) NaOMe (cat.), $\mathrm{MeOH}, 23^{\circ} \mathrm{C}$, 24 h ; (e) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (excess), $\mathrm{MeOH}, 23^{\circ} \mathrm{C}, 48 \mathrm{~h}, 73 \%$ for two steps; (f) 2 equiv of 4, $\mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, 4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$, $48 \mathrm{~h}, 66 \%$; (g) H2/Pd-C, EtOH-AcOH, $23^{\circ} \mathrm{C}$, $300 \mathrm{psi}, 12 \mathrm{~h}, 87 \%$.

Table 1. Incidence of Mismatch between Oligosaccharide Donor/Acceptor Building Blocks

entry	donor	acceptor	entry	donor	acceptor
1	$\mathbf{3}$	$\mathbf{5 3}$	4	$\mathbf{2}$	$\mathbf{6 2}$
2	$\mathbf{3}$	$\mathbf{6 0}$	5	$\mathbf{4}$	$\mathbf{6 2}$
3	$\mathbf{1}$	$\mathbf{6 2}$	6	$\mathbf{4}$	$\mathbf{6 6}$

tocols with a one-pot procedure. For comparative purposes, the aminoethyl derivative 48 was also prepared by treatment ${ }^{35 c}$ of the ester 46 with ethylenediamine (Scheme 9) and tested for coupling efficiency. In the exploratory phase the relative carbohydrate content of the conjugates was determined by carbohydrate analysis, while the average incorporation levels of the products were calculated from average molecular masses of the glycoconjugates determined by matrix-assisted laser desorption ionization mass spectroscopy (MALDI).

Treatment of the monosaccharide hydrazide 47 with 1 molar equiv of dimethyl squarate (70) in pH 7 phos-phate-borate buffer or in methanol containing trisisopropanolamine at $23^{\circ} \mathrm{C}$ converted 47 to a faster-moving compound on thin-layer chromatography. At the later stages, the reaction was accompanied by the development of a light-violet color. The reaction mixture was treated with human serum albumin (HSA) at pH 9. In a parallel experiment, the coupling of the saccharide-squaric acid adduct to the protein was tested at pH 10. Similar treatments of the aminoethyl derivative 48 proceeded without color formation. Samples were withdrawn at day 3 , and the coupling reaction was terminated after 7 days.

Carbohydrate analysis of the neoglycoproteins obtained after exhaustive dialysis followed by freeze-drying indicated that pH 9 promoted slightly higher incorporations into HSA than pH 10 , and at pH 9 longer reaction times increased the incorporation level. The neoglycoprotein obtained from the hydrazide 47 also had a slight violet color. Because squarate $\mathbf{7 0}$ did not develop color in pH 7 or pH 9 buffers in the absence of the hydrazide 47, the color must be associated with a construct of 47 with dimethyl squarate, which retains reactivity toward the protein. Treatment of the violet saccharide-HSA conjugates with NaBH_{4} changed the color to light-yellow without loss of the saccharide content as determined by MALDI. Gel chromatography of the crude saccharidesquarate adduct on Biogel P-2 indicated the presence of several minor compounds in addition to the major one, which, when isolated and reacted with HSA at pH 9 , gave a col orless conjugate (procedure A). These observations indicate that the reaction of the hydrazide $\mathbf{4 7}$ with 70 is more complex than originally proposed ${ }^{35}$ for ω-aminoalkyl/arylglycosides and some of the starting hydrazide and/or squarate may be lost during the first step, which may be inferred from the lower yields (entries 4 and 5 in Table 2) obtained with 47 relative to those found with the aminoethyl derivative 48. When high incorporation levels were targeted, the saccharide-based yield of incorporation was in the range of $10-20 \%$ (Table 2, entries 2, 5 , and 6). Even a 3.4:1 molar ratio of the saccharide to protein amino groups allowed the incorporation of 32

Scheme 14 ${ }^{\text {a }}$

${ }^{\text {a }}$ Reagents and conditions: (a) 5.3 equiv of $36, \mathrm{AgClO}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 54 \%$; (b) 1.5 equiv of $\mathrm{PdCl}_{2}, 8$ equiv of $\mathrm{NaOAc}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}, 23^{\circ} \mathrm{C}, 48 \mathrm{~h}$; (c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$, $\mathrm{MeOH}-\mathrm{AcOH}, 23^{\circ} \mathrm{C}, 100 \mathrm{psi}, 12 \mathrm{~h}$; (d) NaOMe (cat.), $\mathrm{MeOH}, 23$ ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}, 69 \%$ for three steps; (e) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (excess), $\mathrm{MeOH}, 23^{\circ} \mathrm{C}$, $48 \mathrm{~h}, 85 \%$.
saccharide moieties only (Table 2, entry 6). Since this appears to be the highest level of incorporation attained so far with the squarate method, the remaining 16 lysine residues of the 58 present ${ }^{36}$ in HSA must be buried below the accessible surface of the protein. As expected, Iower incorporation targets gave higher yields (Table 2, entries 4, 9, 11-13). Yields similar to those with 47 were achieved for the di- to pentasaccharides (Table 2, entries 9-13); thus, the saccharide portion in this group of compounds does not appear to interfere significantly with the anchoring process on the protein. We conclude that the isolation of the intermediate monoester-monoamide derivative is redundant since the one-pot procedure presented here (procedure B) gave incorporation levels and yields comparable to the previously reported protocols. ${ }^{35}$

Conclusion

While the blockwise strategy appears to be an elegant approach to larger oligosaccharides, classical protecting groups may introduce unfavorable steric demands leading to steric mismatch between the reacting partners. Such "failures" are rarely documented, possibly because of the authors' reluctance to report abortive approaches. Notable exceptions are the reports of Garegg, ${ }^{37}$ van Boeckel, ${ }^{38}$ Sinä̈, ${ }^{39}$ Hasegawa, ${ }^{40}$ and Danishefsky, ${ }^{41}$ who
(36) Peters, T., J r. Adv. Clin. Chem. 1970, 13, 37-111.
(37) Classon, B.; Garegg, P. J.; Helland, A.-C. J. Carbohydr. Chem. 1989, 8, 543.
(38) Spijker, N. M.; van Boeckel, C. A. A. Angew. Chem., Int. Ed. Engl. 1991, 30, 180.
described examples of mismatch between donor and acceptor pairs. In the present study several kojibiose donors (1-4) were synthesized and used for the preparation of kojidextrins in an attempt to evaluate the combined effect of the acyl- and ether-type substituents on the glycosyl donor ability. While we found no significant differences among donors $\mathbf{1 - 4}$ due to the nature of the protecting groups in cases when condensation with the acceptor moiety did occur, we found several examples of steric mismatch in attempted [2 $+\mathrm{n}, \mathrm{n}>2$ 2] block condensations between $\alpha-(1 \rightarrow 2)$ linked gluco-oligosaccharide moieties. Although the steric mismatch between oligosaccharide synthons is still unpredictable, it is likely that the availability of more examples of this occurrence will improve existing guidelines for designing pathways to ol igosaccharides. For example, the reactivity-enhancing properties of the popular benzyl group need to be balanced against its substantial steric requirements, and the success of future ol igosaccharide syntheses is likely to depend on the availability of sterically less demanding and/or flexible protecting groups.

Experimental Section

General Methods. ${ }^{109}$ All chemicals were commercial grade and were used without purification. Human serum albumin (defatted) was purchased from Sigma and was purified by ultrafiltration through a YM10 Diaflow membrane in an Amicon ultrafiltration cell using five changes of water, followed by freeze-drying. Solvents for chromatography were distilled prior to use. Anhydrous sol vents were obtained from Aldrich. All glycosylation reactions were carried out under argon in oven-dried glassware. Column chromatography was performed on silica gel $60(0.040-0.063 \mathrm{~mm})$. The melting points are uncorrected. Optical rotations were measured at $23^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75.5 MHz , respectively. Coupling constants (J) are given in Hz . Ammonia was used as the ionizing gas for the chemical ionization (Cl) mass spectra. The fast atom bombardment (FAB) mass spectra were obtained using 6 keV Xe atoms to ionize samples from dithiothreitol/dithioerythritol, 3-nitrobenzyl al cohol, or glycerol as the matrix. For the MALDI-TOF mass spectra the sample was dissolved in 0.1% TFA in 50% aqueous acetonitrile and applied to the target in a sinapinic acid matrix. Elemental anal yses were performed by Atlantic Microlab, Inc., Norcross, GA. Abbreviations: Ac $=$ acetyl, All $=$ allyl, $\mathrm{Bz}=$ benzoyl, $\mathrm{Bn}=$ benzyl, $\mathrm{CA}=$ chloroacetyl, MP = 4-methoxyphenyl, SE = 2-(trimethylsilyl)ethyl. Subscripts A-E refer to individual sugar residues with A standing for the reducing end unit.
\mathbf{N}-(3,4,6-Tri-O-acetyl-2-O-allyl- β-d-glucopyranosyl) piperidine (6). A mixture of compound ${ }^{16} 5(6.6 \mathrm{~g}, 17.7 \mathrm{mmol})$, allyl iodide ($8.2 \mathrm{~mL}, 90.0 \mathrm{mmol}$), and $\mathrm{Ag}_{2} \mathrm{O}(4.5 \mathrm{~g})$ in DMF (20 mL) was stirred for 2 h at $23^{\circ} \mathrm{C}$. The reaction mixture was filtered and then concentrated. The residue was equilibrated between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was dried ($\mathrm{Na}_{2}-$ SO_{4}) and concentrated. Column chromatography of the residue ($3: 1$ hexanes-EtOAc) gave $\mathbf{6}(6.2 \mathrm{~g}, 85 \%$) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+18^{\circ}(\mathrm{c} 1.3)$; NMR ($\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}} \mathrm{H}, \delta 5.83(\mathrm{~m}, 1$ H), $5.26-5.17$ ($\mathrm{m}, 2 \mathrm{H}$), 5.10 and $4.90(2 \mathrm{dd}, 2 \mathrm{H}), 4.40-4.31$ and $4.10-4.00(2 \mathrm{~m}, 3 \mathrm{H}), 4.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.9$, $\mathrm{J}=12.1$), $3.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2), 3.60-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.82$ and $2.70-$ $2.58(2 \mathrm{~m}, 4 \mathrm{H}), 2.07,2.05$, and $2.01(3 \mathrm{~s}, 9 \mathrm{H}), 1.62-1.40(\mathrm{~m}$, ${ }^{6} \mathrm{H}^{2}$); ${ }^{13} \mathrm{C}, \delta$ 170.7, 170.2, 169.9, 135.1, 116.8, 95.8, 75.3, 73.7, 72.7, 72.4, 69.0, 62.5, 49.1, 26.1, 24.6, 20.7; CI-MS m/z 414 $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{8}: \mathrm{C}, 58.10 ; \mathrm{H}, 7.56$. Found: C, 58.26; H, 7.63.

[^9]Table 2. Covalent Attachment of Oligosaccharides 47, 48, 54, 58, 64, and $\mathbf{6 9}$ to Human Serum Albumin Using Dimethyl Squarate $\mathbf{7 0}$ as the Linker Moiety

entry	saccharide	general procedure ${ }^{\text {a }}$	ratio of saccharide to protein amino groups ${ }^{\text {b }}$	incorporation level ${ }^{\text {(}}\left(\mathrm{mol}^{-1}\right)$	incorporation yield ${ }^{\text {d }}$ (\%)
1	47	A	1:1	23	34
2	47	B	4:1	28	12
3	47	B	1:1	23	40
4	47	B	1:1.7	21	61
5	47	C	3.6:1	21	10
6	48	C	3.4:1	32	17
7	48	B	1:1	24	41
8	48	C	1:1	22	38
9	54	B	1:2	16	55
10	58	A	1:2.1	9	33
11	64	B	1:2	15	51
12	64	C	1:2	11	38
13	69	B	1:2	12	42

 initial amount of the saccharide. ${ }^{c}$ Determined by MALDI-TOF mass spectrometry. ${ }^{d}$ Based on the initial amount of the saccharide.

3,4,6-Tri-O-acetyl-2-O-allyl- α, β-D-glucopyranose (7). A solution of $6(6.2 \mathrm{~g}, 15.0 \mathrm{mmol})$ and $\mathrm{AcOH}(5 \mathrm{~mL})$ in 2:1 acetone $-\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ was boiled under reflux for 15 min . The solution was diluted with toluene and concentrated to give hemiacetal ${ }^{12 \mathrm{~b}} 7$ (quantitative, α / β ratio $\sim 4: 1$) as a colorless syrup, which was used without purification in the next step: NMR $\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}$ (selected data), $\delta 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, 0.8$ $\mathrm{H}, \mathrm{J}=3.7), 4.76(\mathrm{~d}, 0.2 \mathrm{H}, \mathrm{J}=7.8), 3.53(\mathrm{dd}, 0.8 \mathrm{H}, \mathrm{J}=9.8)$, $3.32(\mathrm{dd}, 0.2 \mathrm{H}, \mathrm{J}=8.3), 2.09-2.02(9 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 170.8,169.8$, $133.8,118.2,116.9,97.3,90.4,79.6,77.7,74.0,73.2,72.2,71.8$, 71.5, 68.7, 68.4, 66.9, 62.3, 62.1, 20.8-20.6.

1,3,4,6-Tetra-O-acetyl-2-0-allyl- α, β-d-glucopyranose (8). A sol ution of $\mathbf{7}$ in pyridine (30 mL) was treated with $\mathrm{Ac}_{2} \mathrm{O}$ (30 mL) at $23^{\circ} \mathrm{C}$ for 1 h . Column chromatographic purification (3:1 hexanes-EtOAc) gave 8 (ref 12b) ($5.6 \mathrm{~g}, 96 \%, \alpha / \beta$ ratio $\sim 1: 1$) as a colorless syrup: NMR ($\left.\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ (selected data), δ $6.35(\mathrm{~d}, 0.5 \mathrm{H}, \mathrm{J}=3.6), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{~d}, 0.5 \mathrm{H}, \mathrm{J}=8.1)$, 3.65 (dd, $0.5 \mathrm{H}, \mathrm{J}=9.9$), 3.52 (dd, $0.5 \mathrm{H}, \mathrm{J}=9.2$), 2.17-2.02 (12 H); CI-MS m/z $406\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$].

Phenyl 3,4,6-Tri-O-acetyl-2-0-allyl-1-thio- α, β-d-glucopyranoside (9). A solution of 8 ($10.0 \mathrm{~g}, 25.8 \mathrm{mmol}$), $\mathrm{PhSSiMe}_{3}$ ($5.2 \mathrm{~mL}, 27.1 \mathrm{mmol}$), and $\mathrm{Me}_{3} \mathrm{SiOTf}(1.2 \mathrm{~mL}, 6.5 \mathrm{mmol})$ in dry $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(250 \mathrm{~mL})$ was stirred under reflux for 12 h . The mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and extracted with aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography of the residue ($3: 1$ hexanes-EtOAc) gave 9 ($9.7 \mathrm{~g}, 86 \%$; α / β ratio $94: 6$) as an amorphous white solid: NMR (CDCl_{3}) for $9 \alpha^{1} \mathrm{H}, \delta 5.88(\mathrm{~m}, 1$ H), 5.76 (d, $1 \mathrm{H}, \mathrm{J}=5.5$), 5.35 (dd, $1 \mathrm{H}, \mathrm{J}=9.6$), $5.32-5.26$ and 5.23-5.19 ($2 \mathrm{~m}, 2 \mathrm{H}$), 5.02 (dd, $1 \mathrm{H}, \mathrm{J}=10.0$), 4.56 (ddd, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~J}=5.2$), $4.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.3), 4.28-4.04(\mathrm{~m}$, 2 H), 3.99 (dd, 1 H), 3.88 (dd, 1 H, J $=9.9$), 2.06, 2.05, and $2.02(3 \mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.5,169.8,133.8,133.4-127.4,118.0$, 86.3, 71.5, 62.1, 20.8, 20.6; selected data for $9 \beta^{1} \mathrm{H}, \delta 4.64$ (d, 1 H , J = 9.9); $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 456\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 57.52 ; \mathrm{H}, 5.98 ; \mathrm{S}, 7.31$. Found: C, $57.45 ; \mathrm{H}$, 5.94; S, 7.23.

Phenyl 2-O-Allyl-3,4,6-tri-O-benzyl-1-thio- α-D-glucopyranoside (10). A solution of 9 ($9.0 \mathrm{~g}, 20.5 \mathrm{mmol}$) in dry MeOH (150 mL) was treated with a catalytic amount of NaOMe at $23^{\circ} \mathrm{C}$ for 3 h . The mixture was neutralized (Dowex $50 \times$ $8-100, \mathrm{H}^{+}$), filtered, and concentrated. A solution of the residue in dry DMF (80 mL) was treated at $0{ }^{\circ} \mathrm{C}$ with NaH (60% in oil, 3.7 g , approx. 92 mmol) and benzyl bromide (8.1 $\mathrm{mL}, 67.8 \mathrm{mmol}$) and then was stirred at $23^{\circ} \mathrm{C}$ for 3 h . The usual workup afforded a solid from which pure $\mathbf{1 0}$ (9.7, 81\%) was obtained by crystallization (ether-hexanes): mp 76-78 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+184^{\circ}(\mathrm{c} 1.1)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.60-7.10(\mathrm{~m}, 20$ H), $5.95(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.2), 5.32$ and $5.20(2 \mathrm{~m}, 2$ H), 4.99, 4.85, 4.79, 4.60, 4.50, and 4.42 ($6 \mathrm{~d}, 12 \mathrm{H}, \mathrm{J}=10.8-$ 12.0), 4.33 (ddd, $1 \mathrm{H}, \mathrm{J}=9.9,1.9$), $4.28-4.12$ (m, 2 H), 3.87$3.82(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (dd, $1 \mathrm{H}, \mathrm{J}=3.8,10.7$), $3.75-3.66(\mathrm{~m}, 1$ H), 3.62 (dd, 1 H); ${ }^{13} \mathrm{C}, \delta 138.2,137.9,134.5,131.4-127.0$, $117.9,86.9,82.5,79.7,77.4,75.8,75.1,73.4,71.6,71.1,68.5$; $\mathrm{CI}-\mathrm{MS} \mathrm{m} / \mathrm{z} 600\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~S}$: C, 74.20; H, 6.57; S, 5.50. Found: C, 74.28; H, 6.61; S, 5.58.

2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl Chloride (11). (a) A solution of $\mathbf{1 0}(1.0 \mathrm{~g}, 1.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) was treated at $0^{\circ} \mathrm{C}$ with α, α-dichloromethyl methyl ether ($0.78 \mathrm{~mL}, 8.59 \mathrm{mmol}$) and $\mathrm{Me}_{3} \mathrm{SiOTf}(0.16 \mathrm{~mL}, 0.9 \mathrm{mmol})$ for 1 h . Diisopropylethylamine (excess) was added, and the solution was concentrated. Column chromatography of the residue ($20: 1 \rightarrow 4: 1$, hexanes-E tOAc containing 0.1% of diisopropylethylamine) gave 11α ($362 \mathrm{mg}, 41 \%$) as a colorless syrup: $[\alpha]_{D}+89^{\circ}$ (c 1.4) $\left[\right.$ lit. ${ }^{12 \mathrm{~b}}[\alpha]_{\mathrm{D}}+86^{\circ}$ (c 2.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)]; NMR $\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 7.50-7.10(\mathrm{~m}, 15 \mathrm{H}), 6.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.8), 5.93$ $(\mathrm{m}, 1 \mathrm{H}), 5.35-5.30$ and $5.24-5.20(2 \mathrm{~m}, 2 \mathrm{H}), 4.96,4.84,4.80$, 4.60, 4.51, and $4.48(6 \mathrm{~d}, 12 \mathrm{H}, \mathrm{J}=10.7-12.0), 4.20-4.17(\mathrm{~m}$, $2 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.2), 3.81-3.65(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 138.4,137.9,137.6,134.1,128.4-127.7,118.2,93.5$, 81.3, 79.8, 76.3, 75.8, 75.2, 73.4, 73.5, 72.1, 67.7.
(b) To a solution of hemiacetal $\mathbf{1 8}(2.5 \mathrm{~g}, 5.1 \mathrm{mmol})$ and DMF (0.1 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~mL}\right.$) was added at $0^{\circ} \mathrm{C}$ oxalyl chloride ($1.3 \mathrm{~mL}, 14.9 \mathrm{mmol}$). After 4 h the reaction mixture was concentrated. Short column chromatography ($1: 1$ hexanesEtOAc) of the residue gave $\mathbf{1 1}(2.4 \mathrm{~g}, 69 \%, \alpha / \beta$ ratio $7: 3$) as a colorless syrup: NMR (CDCl_{3}) selected data for $\mathbf{1 1} \beta{ }^{1} \mathrm{H}, \delta 5.16$ ($\mathrm{d}, 0.3 \mathrm{H}, \mathrm{J}=8.5$); ${ }^{13} \mathrm{C}, \delta 134.3,117.6,90.4,72.1,68.3$.

Methyl 3-0-Benzyl-4,6-O-benzylidene-2-0-(4-toluenesulfonyl) $-\alpha$-D-glucopyranoside (13). A mixture of tosylate ${ }^{15 \mathrm{~b}}$ ($51.0 \mathrm{~g}, 97 \mathrm{mmol}$), benzyl bromide ($28 \mathrm{~mL}, 235 \mathrm{mmol}$), BaO $(117.0 \mathrm{~g}, 0.8 \mathrm{~mol})$, and $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(31.0 \mathrm{~g}, 98 \mathrm{mmol})$ in dry DMF (250 mL) was stirred at $23^{\circ} \mathrm{C}$ for 8 h . The mixture was filtered, and the filtrate was diluted with CHCl_{3}. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Recrystallization of the residue (EtOH) gave $\mathbf{1 3}(54.3 \mathrm{~g}, 88 \%)$ as a white solid: $\mathrm{mp} 119-121^{\circ} \mathrm{C}$ (lit. $.^{20} \mathrm{mp} 121.5-123.5^{\circ} \mathrm{C}$), $[\alpha]_{578}+4^{\circ}$ (c 1.6) $\left[\right.$ lit. ${ }^{20}[\alpha]_{578}+2^{\circ}$ (c 1.1)].

Methyl 3-0-Benzyl-4,6-0-benzylidene- α-D-glucopyranoside (14). A mixture of $\mathbf{1 3}(30.0 \mathrm{~g}, 57.0 \mathrm{mmol})$ and NaBH_{4} $(30.0 \mathrm{~g}, 0.79 \mathrm{~mol})$ in Me2SO (80 mL) was stirred at $150^{\circ} \mathrm{C}$ for 24 h . After being cooled to $50^{\circ} \mathrm{C}$, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . Filtration afforded a solid that was recrystallized from EtOH to give 14 ($15.1 \mathrm{~g}, 71 \%$): $\mathrm{mp} 183-184^{\circ} \mathrm{C}$ (lit. ${ }^{20} \mathrm{mp} 183-185{ }^{\circ} \mathrm{C}$); $[\alpha]_{578}$ $+86^{\circ}$ (c 1.8) [lit. ${ }^{20}[\alpha]_{578}+87^{\circ}$ (c 0.9)].

Methyl 2-0-Allyl-3-O-benzyl-4,6-O-benzylidene- α-Dglucopyranoside (15). To a solution of $\mathbf{1 4}(30.0 \mathrm{~g}, 80.6 \mathrm{mmol})$ in dry DMF (100 mL) were added at $0^{\circ} \mathrm{C} \mathrm{NaH}(60 \%$ in oil, 4.9 g , approx. 121 mmol) and allyl bromide ($8.9 \mathrm{~mL}, 105.2 \mathrm{mmol}$). The mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h . The usual workup followed by crystallization (EtOH) gave 15 ($29.1 \mathrm{~g}, 88 \%$) as a white solid: $\mathrm{mp} 92-94^{\circ} \mathrm{C}$ (lit. ${ }^{15 \mathrm{a}} \mathrm{mp} \mathrm{93-94}{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}+10^{\circ}$ (C 1.2) $\left[\right.$ lit. $\left.{ }^{.15 a}[\alpha]_{D}+10.6^{\circ}(c 0.88)\right] ;$ NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.60-7.20$ $(\mathrm{m}, 10 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.29$ and $5.20(2 \mathrm{~m}, 2$ $\mathrm{H}), 4.88$ and $4.83(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.4), 4.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7)$, 4.38-4.14 (m, 3 H), 4.00 (dd, $1 \mathrm{H}, \mathrm{J}=9.2$), $3.65-3.49(\mathrm{~m}, 2$ H), 3.61 (dd, 1 H, J = 9.3), 3.52 (dd, 1 H, J = 9.3), 3.44 (s, 3 H); ${ }^{13} \mathrm{C}, \delta 138.7,137.4,134.8,128.9-126.0,117.8,101.2,99.2$, 82.1, 79.2, 78.5, 75.3, 73.1, 69.1, 62.3, 55.3.

Methyl 2-O-Allyl-3-O-benzyl- α-D-glucopyranoside (16). A solution of $\mathbf{1 5}(20.0 \mathrm{~g}, 48.5 \mathrm{mmol})$ in $\mathrm{AcOH}(50 \mathrm{~mL})$ and
$\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was stirred under reflux for 15 min and then was concentrated under vacuum. Toluene was added and evaporated several times. Column chromatographic purification of the residue ($1: 1 \rightarrow 1: 0$ EtOAc-hexanes) gave 16 (14.3 $\mathrm{g}, 91 \%$) as a col orless syrup: $[\alpha]_{\mathrm{D}}+50^{\circ}$ (c 1.3) $\left[\right.$ lit. ${ }^{15 \mathrm{a}}[\alpha]_{\mathrm{D}}+48.8^{\circ}$ (c 1.48)].

Methyl 2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranoside (17). A solution of $\mathbf{1 6}(14.3 \mathrm{~g}, 44.1 \mathrm{mmol})$ in dry DMF $(60 \mathrm{~mL})$ was treated at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{NaH}(60 \%$ in oil, 5.3 g , approximately 132 mmol) and benzyl bromide ($13.6 \mathrm{~mL}, 114.6$ mmol). The mixture was stirred for 3 h , during which time it was allowed to reach $23^{\circ} \mathrm{C}$. The solution was cooled to $0^{\circ} \mathrm{C}$ and was treated with MeOH and $\mathrm{H}_{2} \mathrm{O}$. Extractive work-up ($\mathrm{CHCl}_{3} / \mathrm{H}_{2} \mathrm{O}$) followed by column chromatographic purification ($4: 1$ hexanes-EtOAc) of the residue gave 17 ($20.5 \mathrm{~g}, 92 \%$) as a col orless syrup: $[\alpha]_{D}+44^{\circ}$ (c 1.3) $\left[\text { lit. }{ }^{12 b} \text { [} \alpha\right]_{D}+44.5^{\circ}$ (c 1.2)]; NMR ($\left.\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 7.50-7.10(\mathrm{~m}, 15 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 5.35-$ $5.15(\mathrm{~m}, 2 \mathrm{H}), 4.94,4.83,4.78,4.63,4.49$, and $4.47(6 \mathrm{~d}, 12 \mathrm{H}$, $\mathrm{J}=10.9-12.2), 4.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5), 4.30-4.10(\mathrm{~m}, 2 \mathrm{H})$, 3.94 (t, $1 \mathrm{H}, \mathrm{J}=9.3$), $3.80-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 9.3), $3.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 138.8,138.3,138.0,134.8,128.3-$ $127.6,117.8,98.2,82.0,79.8,77.6,75.7,75.0,73.5,72.6,70.1$, 68.5, 55.1.

2-O-Allyl-3,4,6-tri-O-benzyl- $\alpha_{1} \beta$-d-glucopyranose (18). A solution of $\mathbf{1 7}(14.4 \mathrm{~g}, 28.6 \mathrm{mmol})$ in a $4: 1$ mixture 1 M aqueous HCl and $\mathrm{AcOH}(250 \mathrm{~mL})$ was stirred under reflux for 90 min . The usual workup afforded $18(9.6 \mathrm{~g}, 68 \%, \alpha / \beta$ ratio 7:3) as a white solid: $\mathrm{mp} 135-136^{\circ} \mathrm{C}$ (lit. ${ }^{12 \mathrm{~b}} \mathrm{mp} 134-136{ }^{\circ} \mathrm{C}$); NMR $\left(\mathrm{CDCl}_{3}\right) 18 \alpha{ }^{13} \mathrm{C}, \delta 138.2,137.9,134.5,127.9-127.6$, 117.9, 91.3, 81.6, 80.0, 77.6, 75.7, 75.0, 73.5, 72.4, 70.3, 68.6; $18 \beta{ }^{13} \mathrm{C}, \delta 138.2,137.9,134.4,127.9-127.6,117.2,97.3,84.6$, 82.9, 77.7, 75.7, 75.0, 73.7, 72.4, 70.3, 68.9.

O-(2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl)($1 \rightarrow 2$)-1,3,4,6-tetra-O-acetyl- β-d-glucopyranose (20) and O-(2-O-Allyl-3,4,6-tri-O-benzyl- β-d-glucopyranosyl)-(1 $\rightarrow 2$)-1,3,4,6-tetra-O-acetyl- β-d-glucopyranose (21). A stirred mixture of $19(1.9 \mathrm{~g}, 3.6 \mathrm{mmol}), \mathbf{6}(950 \mathrm{mg}, 2.7 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}$ (843 mg), and $4 \AA \AA$ powdered molecular sieves (3.3 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 1 h with exclusion of light and then cooled to $0^{\circ} \mathrm{C} . \mathrm{AgClO}_{4}(310 \mathrm{mg})$ was added, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 4 h and then filtered through Celite. The insoluble material was washed several times with CHCl_{3}. The combined filtrate and washings were extracted successively with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue in pyridine (7 mL) was treated with $\mathrm{Ac}_{2} \mathrm{O}(7 \mathrm{~mL})$ and a catalytic amount of 4-(dimethylamino)pyridine for 12 h at $23^{\circ} \mathrm{C}$. Concentration followed by extractive workup $\left(\mathrm{CHCl}_{3} / \mathrm{H}_{2} \mathrm{O}\right)$ and column chromatography ($5: 2$, hexanes-EtOAc) afforded 21 ($111 \mathrm{mg}, 5 \%$) as a colorless syrup: $[\alpha]_{D}+20.5^{\circ}$ (c 0.9); NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.45-7.10(\mathrm{~m}, 15 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.9)$, $5.28(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.5), 5.22$ and $5.13(2 \mathrm{~m}, 2 \mathrm{H}), 5.02$ (dd, $1 \mathrm{H}, \mathrm{J}=9.8), 4.91-4.46(\mathrm{~m}, 6 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8)$, $4.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,12.5), 4.29-4.22$ and $4.15-4.02(2 \mathrm{~m}, 3$ H), 3.90-3.82 (m, 2 H,), 3.78-3.65 (m, 2 H), $3.62(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=9.6), 3.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.9), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, 1$ $\mathrm{H}, \mathrm{J}=8.9), 2.07,2.05,2.04$, and $2.02(4 \mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.5$, 169.9, 169.7, 169.0, 138.4, 138.0, 137.8, 134.9, 128.3-127.5, 116.9, 103.9, 92.1, 84.7, 81.3, 77.3, 76.7, 75.5, 74.9, 74.6, 74.5, 73.9, 73.4, 72.5, 68.8, 68.1, 61.6, 20.8, 20.7, 20.6; CI-MS m/ z $838\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{O}_{15}: \mathrm{C}, 64.38 ; \mathrm{H}$, 6.39. Found: C, 64.49; H, 6.45 .

Further elution gave a $1: 1$ mixture of $\mathbf{2 0}$ and $\mathbf{2 1}(585 \mathrm{mg}$, 26.4%) and then 20 ($1.24 \mathrm{~g}, 56 \%$) as a col orless syrup: [$\alpha]_{\mathrm{D}}$ $+62^{\circ}(\mathrm{c} 1.6)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.40-7.05(\mathrm{~m}, 15 \mathrm{H}), 5.83(2$ $\mathrm{m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2), 5.30(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6), 5.26$ and $5.18(\mathrm{~m}, 2 \mathrm{H}, 5.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3), 5.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.8)$, 4.84, 4.80, 4.73, 4.60, 4.45, and 4.43 ($6 \mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=10.8-12.1$), 4.31 (dd, $1 \mathrm{H}, \mathrm{J}=4.4, \mathrm{~J}=12.5), 4.22-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.43$ (dd, $1 \mathrm{H}, \mathrm{J}=9.8), 2.13,2.08,2.02$, and $1.96(4 \mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.5$, 169.9, 169.8, 168.4, 138.5, 138.4, 137.7, 134.5, 128.3-127.4, 117.7, 97.4, 93.5, 81.2, 79.7, 77.0, 75.6, 74.8, 73.6, 73.5, 72.6, 72.5, 71.1, 68.2, 67.8, 61.5, 21.1, 20.8, 20.7, 20.6; CI-MS m/z $838\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{52} \mathrm{O}_{15}: \mathrm{C}, 64.38 ; \mathrm{H}$, 6.39. Found: C, 64.30; H, 6.40.

O-(2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl)(1 $\rightarrow 2$)-(3,4,6-tri-O-acetyl)- α, β-D-glucopyranose (22). A mix-
ture of $\mathbf{2 0}$ ($1.3 \mathrm{~g}, 1.6 \mathrm{mmol}$) and hydrazine acetate (220 mg , 2.4 mmol) in DMF (7 mL) was kept at $23^{\circ} \mathrm{C}$ for 2 h . The solution was diluted with EtOAc and then washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography ($3: 2$ hexanes-EtOAc) of the residue gave 22 ($1.1 \mathrm{~g}, 92 \%, \alpha / \beta$ ratio $\sim 1: 1$), as a colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}, \delta 170.7,170.1,169.8,169.3,138.2,137.7,137.6$, 133.9 133.4, 128.4-127.6, 119.5, 118.8, 100.8, 96.8, 96.4, 90.4, 75.7, 74.6, 73.54, 73.49, 73.36, 68.1, 67.8, 62.1, 62.0, 20.8, 20.7, 20.6; CI-MS m/z $796\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{14}$: C, 64.77; $\mathrm{H}, 6.47$. Found: C, 64.72; H, 6.48 .

O-(2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl)(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α, β-D-glucopyranosyl Chloride (1). To a stirred solution of $22(3.5 \mathrm{~g}, 5.1 \mathrm{mmol})$ and DMF (100 $\mu \mathrm{L}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added oxalyl chloride (1.20 mL , 13.8 mmol) at $0^{\circ} \mathrm{C}$, dropwise. The solution was allowed to reach $23^{\circ} \mathrm{C}$. After 4 h , the solution was concentrated. The residue was filtered through a layer of silica gel $(4.5 \mathrm{~g})$ using 1:1 hexanes-EtOAc as the eluant. The solution was concentrated to give 1 ($3.3 \mathrm{~g}, 92 \%, \alpha / \beta$ ratio $\sim 1: 1$) as a colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$, selected data $\delta 6.23(\mathrm{~d}, 0.5 \mathrm{H}, \mathrm{J}=$ 3.9), 5.37 (d, $0.5 \mathrm{H}, \mathrm{J}=8.1$); ${ }^{13} \mathrm{C}$, selected data $\delta 170.6,170.5$, 169.9, 169.8, 169.7, 169.5, 138.6-137.7, 134.51, 134.47, 128.4127.6, 117.8, 117.6, 97.1, 96.5, 91.0, 89.6, 61.7, 61.3, 20.820.5; CI-MS m/ z 814 [(M $\left.+\mathrm{NH}_{4}\right)^{+}$].

O-(2-O-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl)(1 \rightarrow 2)-3,4,6-tri-O-acetyl- α-D-glucopyranosyl Trichloroacetimidate (2). A solution of 22 ($200 \mathrm{mg}, 257 \mu \mathrm{~mol}$) in CH_{2-} $\mathrm{Cl}_{2}(7 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with trichloroacetonitrile (780 $\mu \mathrm{L}, 7.7 \mathrm{mmol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene ($23 \mu \mathrm{~L}$, $154 \mu \mathrm{~mol})$ for 90 min . Removal of the volatiles followed by purification by column chromatography ($5: 2$ hexanes-EtOAc) gave $2(201 \mathrm{mg}, 85 \%)$ as a colorless syrup: $[\alpha]_{\mathrm{D}}+92^{\circ}$ (c 1.1); NMR $\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.05(\mathrm{~m}, 15 \mathrm{H}), 6.62(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.6), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.7), 5.25$ and $5.16(2 \mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.9), 5.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.2)$, 4.80, 4.67, 4.57, 4.45, 4.43, and 4.29 ($6 \mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=10.9-12.1$), 4.28 (dd, $1 \mathrm{H}, \mathrm{J}=4.2, \mathrm{~J}=12.2$), 4.24-4.07 (m, 4 H), 4.01 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$), 3.41 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$), 2.06, 2.04, and 1.98 (3 s , 9 H); ${ }^{13} \mathrm{C}, \delta 170.6,170.0,169.7,160.9,138.7-127.3,117.4,97.9$, $93.2,81.2,79.4,77.1,75.4,74.9,74.6,73.5,72.3,71.3,69.9$, 68.1, 67.9, 61.6, 20.8, 20.7; CI-MS m/z $941\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{Cl}_{3} \mathrm{NO}_{14}: \mathrm{C}, 57.24 ; \mathrm{H}, 5.46$. Found: $\mathrm{C}, 57.15$; H, 5.50.

2,4,6-Tri-O-acetyl-3-O-benzyl- α-d-glucopyranosyl Chloride (24). A solution of $\mathbf{2 3}$ (ref 26) ($8.0 \mathrm{~g}, 18.7 \mathrm{mmol}$), $\alpha, \alpha-$ dichloromethyl methyl ether ($8.0 \mathrm{~mL}, 88.4 \mathrm{mmol}$), and $\mathrm{ZnCl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}\left(2.2 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.83 \mathrm{~mL}, 1.8 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was stirred at $23^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was poured in a cold saturated aqueous NaHCO_{3}, diluted with CHCl_{3}, and then washed several times with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ until neutralization. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by column chromatography ($3: 1$ hexanes-EtOAc) gave 24 (6.9 $\mathrm{g}, 91 \%$) as a col orless syrup: $[\alpha]_{\mathrm{D}}+100^{\circ}$ (c 1.0); NMR (CDCl_{3}) ${ }_{1} \mathrm{H}, \delta 7.40-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9), 5.15(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=9.7, \mathrm{~J}=9.9), 4.97(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.8), 4.75$ and $4.63(2 \mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=11.7$), 4.25-4.01 (m, 4 H), 2.09, 2.08, and 1.96 ($3 \mathrm{~s}, 9$ H); ${ }^{13} \mathrm{C}, \delta 170.6-169.3,137.8-127.6,90.9,76.6,75.2,73.2,70.9$, 68.5, 61.4, 20.7; CI-MS m/z 432 [(M $\left.+\mathrm{NH}_{4}\right)^{+}$]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClO}_{8}: \mathrm{C}, 55.01 ; \mathrm{H}, 5.59$. Found: C, $55.08 ; \mathrm{H}, 5.56$.

2-(Trimethylsilyl)ethyl 2,4,6-Tri-O-acetyl-3-O-benzyl-β-D-glucopyranoside (25). A mixture of the chloride 24 (10.0 $\mathrm{mg}, 24.1 \mathrm{mmol}$), 2-(trimethylsilyl)ethanol ($10.4 \mathrm{~mL}, 72.7$ mmol), sym-col lidine ($2.8 \mathrm{~mL}, 21.1 \mathrm{mmol}$), and $4 \AA$ powdered molecular sieves (7 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 3 h and then cooled to $0^{\circ} \mathrm{C}$. AgOTf ($11.9 \mathrm{~g}, 46.3$ mmol) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h with exclusion of light. The reaction mixture was neutralized by addition of a saturated aqueous NaHCO_{3} and then filtered through celite. The insoluble material was washed several times with CHCl_{3}. The combined organic layers were washed successively with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and then concentrated. The residue was treated with pyridine (25 mL) and $\mathrm{Ac}_{2} \mathrm{O}(25 \mathrm{~mL})$ for 12 h at $23^{\circ} \mathrm{C}$ followed by concentration. Purification of the residue by column chromatography ($3: 1$ hexanes-EtOAc) gave 25 (9.4 g ,
79%) as a colorless syrup: $[\alpha]_{\mathrm{D}}-21^{\circ}(c 1.9) ;$ NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$, $\delta 7.50-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6), 5.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 9.6), 4.62 and $4.58(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12.2), 4.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9)$, $4.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1, \mathrm{~J}=12.2), 4.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.7), 4.00-$ 3.90 and $3.62-3.49(2 \mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.6)$, 2.08, 2.01, and $1.98(3 \mathrm{~s}, 9 \mathrm{H}), 1.11-0.82(\mathrm{~m}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$, $\delta 169.3,169.2,137.8-127.8,100.7,80.2,72.5,72.0,69.7,73.6$, 67.2, 62.4, 20.9, 20.8, 17.9, -1.5; CI-MS m/ z $514\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{9} \mathrm{Si}: \mathrm{C}, 58.04 ; \mathrm{H}, 7.31$. Found: C, 58.04; H, 7.28.

2-(Trimethylsilyl)ethyl 3-0-Benzyl- β-d-glucopyranoside (26). A solution of $25(16.0 \mathrm{~g}, 32.3 \mathrm{mmol})$ in dry MeOH (100 mL) was treated with a catalytic amount of NaOMe at $50^{\circ} \mathrm{C}$ for 1.5 h . After neutralization (Dowex $50 \times 8-100, \mathrm{H}^{+}$) the reaction mixture was filtered then concentrated to give 26 (11.9 g, 99\%) as an amorphous white solid: $[\alpha]_{D}-20^{\circ}$ (c $0.5, \mathrm{MeOH})$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.45-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.01$ and 4.75 (2 d, $2 \mathrm{H}, \mathrm{J}=11.6$), 4.32 (d, $1 \mathrm{H}, \mathrm{J}=7.6$), 3.89 (dd, 1 H , $\mathrm{J}=3.4, \mathrm{~J}=11.8$), $3.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8), 1.10-0.90(\mathrm{~m}, 2 \mathrm{H})$, 0.03 (s, 9 H); ${ }^{13} \mathrm{C}, \delta 138.4,128.6-128.0,102.4,83.6,75.1,74.6$, 70.2, 74.6, 67.8, 62.6, 18.3, -1.4; CI-MS m/ z $388\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 58.35 ; \mathrm{H}, 8.16$. Found: C, 58.22; H, 8.05.

2-(Trimethylsilyl)ethyl 3-0-Benzyl-2-0-(chloroacetyl)-4,6-O-(4-methoxybenzylidene)- β-d-glucopyranoside (27). A solution of $26(11.8 \mathrm{~g}, 31.9 \mathrm{mmol})$, 4-methoxybenzaldehyde dimethyl acetal ($10.0 \mathrm{~mL}, 58.7 \mathrm{mmol}$), and camphorsulfonic acid ($850 \mathrm{mg}, 3.7 \mathrm{mmol}$) in dry DMF (30 mL) was stirred under vacuum at $23^{\circ} \mathrm{C}$ for 2 h . The solution was diluted with CHCl_{3} and washed several times with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. A solution of the residue in pyridine (40 mL) was treated at $0{ }^{\circ} \mathrm{C}$ with chloroacetic anhydride ($18.0 \mathrm{~g}, 105.3 \mathrm{mmol}$), then was allowed to reach 23 ${ }^{\circ} \mathrm{C}$. After 1 h , the sol ution was treated at $0^{\circ} \mathrm{C}$ with saturated aqueous NaHCO_{3} and then was diluted with CHCl_{3}. The organic layer was extracted with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Crystallization of the residue from MeOH gave 27 ($13.4 \mathrm{~g}, 74 \%$) as a solid: $\mathrm{mp} 58-59^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-12^{\circ}$ (c 1.2); NMR ($\left.\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.55-7.25$ and $7.05-6.90(2 \mathrm{~m}, 9 \mathrm{H}$, aromatic), 5.57 (s, 1 H), $5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.90$ and 4.66 (2 d, $2 \mathrm{H}, \mathrm{J}=12.1$), $4.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1), 4.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0$, 10.5), 4.02-3.40 (m, 8 H$), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.10-0.90(\mathrm{~m}, 2 \mathrm{H})$, 0.03 (s, 9 H); ${ }^{13} \mathrm{C}, \delta 165.8,137.2-127.3,113.7,101.3,100.8$, 81.6, 78.3, 74.5, 74.2, 68.6, 67.7, 66.3, 55.3, 40.7, 18.1, -1.5; $\mathrm{CI}-\mathrm{MS} \mathrm{m} / \mathrm{z} 582\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right], 565\left[(\mathrm{M}+\mathrm{H})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{ClO}_{8} \mathrm{Si}: \mathrm{C}, 59.51 ; \mathrm{H}, 6.60$. Found: C, $59.30 ; \mathrm{H}, 6.62$.

2-(Trimethylsilyl)ethyl 4,6-Di-O-acetyl-3-O-benzyl-2-O-chloroacetyl- β-d-glucopyranoside (28). A solution of 27 $(13.0 \mathrm{~g}, 23.0 \mathrm{mmol})$ in a mixture 1:6 MeOH-EtOAc (140 mL) was treated at $0^{\circ} \mathrm{C}$ with tetrafluoroboric acid (54% in diethyl ether, 1.6 mL). The solution was allowed to reach $23^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, \mathrm{NaOAc}$ was added to the reaction mixture until $\mathrm{pH} \sim 6$ was reached, and then the mixture was concentrated. A solution of the residue in CHCl_{3} was washed with $\mathrm{H}_{2} \mathrm{O}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. Acetylation of the residue [pyridine (40 mL), $\mathrm{Ac}_{2} \mathrm{O}(40 \mathrm{~mL}), 12 \mathrm{~h}, 23^{\circ} \mathrm{C}$] gave after column chromatography ($8: 1 \rightarrow 3: 1$ hexanes-EtOAc) $\mathbf{2 8}(10.1 \mathrm{~g}, 83 \%$) as a colorless syrup: $[\alpha]_{D}-16^{\circ}(c 1.1) ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$, δ $7.40-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.6), 5.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 9.5), 4.64 and 4.58 ($2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.7$), $4.46(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0)$, 4.24 (dd, $1 \mathrm{H}, \mathrm{J}=5.1, \mathrm{~J}=12.2$), 4.13 (dd, $1 \mathrm{H}, \mathrm{J}=2.7$), 3.993.93 and $3.63-3.50(2 \mathrm{~m}, 3 \mathrm{H}), 3.92$ and $3.84(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 14.8), 3.74 (t, $1 \mathrm{H}, \mathrm{J}=9.5$), 2.09 and $2.00(2 \mathrm{~s}, 6 \mathrm{H}), 1.20-$ 0.85 (m, 2 H), $0.01(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.8,169.3,165.6,137.7-$ $127.9,100.1,80.0,74.2,74.0,72.0,69.8,67.4,66.2,40.5,20.7$, 17.9, -1.5; $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 548\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{ClO}_{9} \mathrm{Si}: \mathrm{C}, 54.28 ; \mathrm{H}, 6.64$. Found: C, 54.28; H, 6.59.

2-(Trimethylsilyl)ethyl 4,6-Di-O-acetyl-3-O-benzyl- β-dglucopyranoside (29). A solution of 28 ($5.6 \mathrm{~g}, 10.5 \mathrm{mmol}$) in dry dioxane (40 mL) was treated with hydrazine dithiocarbonate (approximately 30 mmol prepared as described in ref 28) at $23^{\circ} \mathrm{C}$ for 1 h . The solution was concentrated, and the residue was equilibrated between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Column chromatography ($3: 1$ hexanes-EtOAc) of the residue gave 29 ($3.7 \mathrm{~g}, 76 \%$) as a white solid: mp $71-72^{\circ} \mathrm{C}$ (diisopropyl etherhexanes); $[\alpha]_{D}-48^{\circ}$ (c 1.3); NMR (CDCl_{3}): ${ }^{1} \mathrm{H}, \delta 7.40-7.25$
(m, 5 H), 5.05 (dd, $1 \mathrm{H}, \mathrm{J}=9.6,9.0)$, 4.86 and $4.70(2 \mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=11.8$), $4.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.4), 4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1), 4.01$ (dd, $1 \mathrm{H}, \mathrm{J}=2.5,12.2$), 4.05-3.96 and 3.66-3.52 ($2 \mathrm{~m}, 5 \mathrm{H}$), 2.07 and $1.97(2 \mathrm{~s}, 6 \mathrm{H}), 1.08-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$, $\delta 170.8-169.5,138.2,128.4,127.8,102.3,81.3,74.5,74.4,72.0$, $69.6,67.7,62.5,20.8,18.2,-1.4 ; \mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 472\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 58.13 ; \mathrm{H}, 7.54$. Found: C, 58.14; H, 7.51 .

Phenyl 2,4,6-Tri-O-acetyl-3-O-benzyl-1-thio- β-d-glucopyranoside (30). A solution of 23 (ref 26) ($28.5 \mathrm{~g}, 65.1$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with PhSH ($27 \mathrm{~mL}, 263 \mathrm{mmol}$) and $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(9.5 \mathrm{~mL}, 77 \mathrm{mmol})$. After 30 min , the mixture was extracted with cold saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was crystallized from diisopropyl ether-hexanes to give $\mathbf{3 0}(27.8 \mathrm{~g}, 88 \%)$: $\mathrm{mp} 118-122^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}$ -15° (c 1.3) [lit. $\left.29 \mathrm{mp} \mathrm{108-109}{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}-16^{\circ}\right]$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.56-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.08$ and $5.06(2 \mathrm{t}, 2 \mathrm{H})$, 4.66-4.56 (m, 3 H), 4.23-4.14 (m, 2 H), 3.70 (dd, $1 \mathrm{H}, \mathrm{J}=$ 9.0, 9.6), 3.67-3.61 (m, 1 H), 2.08, 2.05, and $1.97(3 \mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.7,169.3,169.2,132.5,128.9-127.8,86.2,81.5,76.1$, 74.2, 71.3, 69.6, 62.5, 21.0-20.8; CI-MS m/ z $506\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$.

Phenyl 3-O-Benzyl-1-thio- β-D-glucopyranoside (31). A solution of $\mathbf{3 0}(55.0 \mathrm{~g}, 113 \mathrm{mmol})$ in dry $\mathrm{MeOH}(500 \mathrm{~mL})$ was treated with a catalytic amount of NaOMe at $23^{\circ} \mathrm{C}$ for 24 h . The usual workup followed by crystallization (diethyl etherhexanes) gave 31 ($39.0 \mathrm{~g}, 95 \%$) as a white solid: $\mathrm{mp} 104-106$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-64^{\circ}(\mathrm{c} 1.3)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.57-7.19(\mathrm{~m}, 10 \mathrm{H})$, 5.00 and $4.76(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.5)$, $4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0), 3.94-$ $3.30(2 \mathrm{~m}, 2 \mathrm{H}), 3.40-3.38(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 132.7,129.1-128.0$, 88.6, 85.0, 79.4, 74.9, 72.6, 69.9, 62.7; CI-MS m/ z 380 [(M + $\left.\mathrm{NH}_{4}\right)^{+}$]. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}: ~ \mathrm{C}, 62.96 ; \mathrm{H}, 6.12$. Found: C, 62.85; H, 6.14.

Phenyl 3-O-Benzyl-4,6-0-(4-methoxybenzylidene)-1-thio- β-d-glucopyranoside (32). A solution of 31 ($39.0 \mathrm{~g}, 108$ mmol), 4-methoxybenzal dehyde dimethyl acetal ($40.0 \mathrm{~mL}, 235$ mmol), and camphorsulfonic acid ($2.6 \mathrm{~g}, 11.2 \mathrm{mmol}$) in dry DMF (50 mL) was stirred under vacuum at $23^{\circ} \mathrm{C}$ for 2 h . To the reaction mixture was added $\mathrm{Et}_{3} \mathrm{~N}$ (excess), followed by $\mathrm{H}_{2} \mathrm{O}$ and hexanes. Filtration of the mixture gave 32 ($49.6 \mathrm{~g}, 96 \%$): $\mathrm{mp} 148-152{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-38^{\circ}(\mathrm{c} 1.4)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 7.58-$ 7.24 and $6.95-6.87(2 \mathrm{~m}, 14 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.95$ and 4.78 (2 d, $2 \mathrm{H}, \mathrm{J}=11.5$), $4.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8\right.$), $3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta$ 133.2, 129.0-127.3, 113.6, 101.2, 88.4, 81.6, 81.0, 74.8, 72.2, 70.8, 68.6, 55.3; CI-MS: m/ z $481\left[(\mathrm{M}+\mathrm{H})^{+}\right], 498\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 67.48 ; \mathrm{H}, 5.87$. Found: C, 67.22; H, 5.97.

Phenyl 2-O-Allyl-3-O-benzyl-4,6-0-(4-methoxyben-zylidene)-1-thio- β-D-glucopyranoside (33). To a solution of $32(49.6 \mathrm{~g}, 103.3 \mathrm{mmol})$ in dry DMF (200 mL) were added at $0{ }^{\circ} \mathrm{C} \mathrm{NaH}(60 \%$ in oil, 5.8 g , approximately 145 mmol$)$ and allyl bromide ($14.5 \mathrm{~mL}, 171 \mathrm{mmol}$). The mixture was stirred for 1 h at $23^{\circ} \mathrm{C}$. The usual workup afforded a solid from which pure 33 ($51.5 \mathrm{~g}, 96 \%$) was obtained by crystallization (EtOH): mp 144-147 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-51^{\circ}(\mathrm{c} 1.1)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.55-$ 6.90 (m, 14 H), 5.99 (m, 1 H), 5.54 (s, 1 H), 5.36-5.18 (m, 2 $\mathrm{H}), 4.91$ and $4.79(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.0), 4.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.8)$, 4.39-4.33 and 3.74-3.80 ($2 \mathrm{~m}, 5 \mathrm{H}$), $3.82(\mathrm{~m}, 3 \mathrm{H})$, $3.65(\mathrm{t}, 1$ $\mathrm{H}, \mathrm{J}=9.2), 3.43-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2) ;{ }^{13} \mathrm{C}, \delta$ 134.6, 132.2, 129.0-127.2, 117.3, 113.6, 101.1, 88.2, 82.8, 81.2, 80.2, 75.3, 74.7, 70.3, 68.6, 55.3; CI-MS m/ z $521\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ and $538\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 69.21$; H, 6.20. Found: C, 69.12; H, 6.22 .

Phenyl 2-O-Allyl-3-O-benzyl-1-thio- β-d-glucopyranoside (34). A solution of $33(51.0 \mathrm{~g}, 98.1 \mathrm{mmol})$ in a $1: 1$ mixture $\mathrm{MeOH}-E t O A c(260 \mathrm{~mL})$ was treated at $0^{\circ} \mathrm{C}$ with tetrafluoroboric acid (54% in diethyl ether, 3.0 mL) and stirred at 23 ${ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{NaOAc}$ was added to the reaction mixture until $\mathrm{pH} \sim 6$ was reached, and then the mixture was concentrated. A solution of the residue in CHCl_{3} was extracted with $\mathrm{H}_{2} \mathrm{O}$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated. Crystallization of the residue from diisopropyl ether gave 34 ($30.9 \mathrm{~g}, 78 \%$): $\mathrm{mp} 108-$ $110{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-56^{\circ}(\mathrm{c} 1.3)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.57-7.21(\mathrm{~m}$, 10 H), $6.02(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.38(\mathrm{~m}, 2 \mathrm{H}), 4.98$ and $4.73(2 \mathrm{~d}, 2$ $\mathrm{H}, \mathrm{J}=11.3$), $4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.7), 4.45$ and $4.26(2 \mathrm{~m}, 2 \mathrm{H})$, $3.85(d d, 1 \mathrm{H}, \mathrm{J}=3.4,11.8), 3.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.1), 3.54(\mathrm{t}, 1$ $\mathrm{H}, \mathrm{J}=9.0$), 3.46 (dd, $1 \mathrm{H}, \mathrm{J}=8.5$, J $=9.0$), 3.37-3.29 ($\mathrm{m}, 2$
$\mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 134.4,131.6,129.0-127.6,117.6,87.6,85.9,80.5$, 79.1, $75.474 .2,70.2,62.7$; CI-MS m/ z $420\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 65.65 ; \mathrm{H}, 6.51$. Found: C, 65.47; H , 6.46 .

Phenyl 4,6-Di-O-acetyl-2-O-allyl-3-O-benzyl-1-thio- β-Dglucopyranoside (35). A solution of $34(33.6 \mathrm{~g}, 83.8 \mathrm{mmol})$ in pyridine $(30 \mathrm{~mL})$ was treated with $\mathrm{Ac}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into ice-water. Filtration gave 35 ($38.9 \mathrm{~g}, 96 \%$) as a white solid: $\mathrm{mp} 78-80$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-53^{\circ}(\mathrm{c} 1.1) ; \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.60-7.22(\mathrm{~m}, 10 \mathrm{H}) \text {, }, ~, ~}$ 6.06-5.92 (m, 1 H$), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.32-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=9.8), 4.84$ and $4.64(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.3), 4.60(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.6), 4.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.3,11.9), 4.26-4.16$ and $3.64-$ 3.54 ($2 \mathrm{~m}, 4 \mathrm{H}$), 4.10 (dd, $1 \mathrm{H}, \mathrm{J}=1.6$), 3.42 (dd, $1 \mathrm{H}, \mathrm{J}=9.0$), 2.07 and $1.92(2 \mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 170.7,169.6,134.4,132.2$, 128.9-127.7, 117.7, 87.5, 83.7, 80.2, 75.8, 75.5, 74.3, 69.5, 62.6, 20.7; $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 504\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 64.18 ; \mathrm{H}, 6.21$. Found: C, 63.99; H, 6.26.

4,6-Di-O-acetyl-2-O-allyl-3-O-benzyl- α-D-glucopyranosyl Chloride (36). (a) A solution of the thioglucoside 35 (8.0 $\mathrm{g}, 16.5 \mathrm{mmol}$), α, α-dichloromethyl methyl ether ($15.2 \mathrm{~mL}, 168$ mmol), and $\mathrm{ZnCl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\left(2.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~mL}, 6.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was extracted with cold saturated aqueous NaHCO_{3} and ice-water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification of the residue by column chromatography (3:1 hexanes-EtOAc) gave 36 ($6.4 \mathrm{~g}, 94 \%$) as a col orless syrup: $[\alpha]_{D}+74^{\circ}(c 2.5)$; NMR $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}, \delta 7.45-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 6.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.4), 6.00-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.40-$ $5.22(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.0), 4.88$ and $4.64(2 \mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=11.6), 4.34-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.9,12.3)$, 3.93 (dd, $1 \mathrm{H}, \mathrm{J}=9.4$), 3.72 (dd, $1 \mathrm{H}, \mathrm{J}=9.3$), 2.08 and 1.93 ($2 \mathrm{~s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}, \delta 170.6-169.5,138.2,133.9-127.8,118.5,92.8$, 79.5, 78.2, 75.4, 72.3, 70.8, 68.3, 61.5 (C-6), 20.7; CI-MS m/ z $430\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$.
(b) A solution of $37(6.0 \mathrm{~g}, 13.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was treated at $0^{\circ} \mathrm{C}$ with α, α-dichloromethyl methyl ether ($2.25 \mathrm{~mL}, 24.9 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}\left(2.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.63$ $\mathrm{mL}, 1.4 \mathrm{mmol}$) and then was allowed to reach $23^{\circ} \mathrm{C}$. After 30 min, the reaction mixture was processed as described above to give 36 ($5.2 \mathrm{~g}, 91 \%$).

1,4,6-Tri-O-acetyl-2-0-allyl-3-O-benzyl- α, β-D-glucopyranose (37). A solution of $16(4.8 \mathrm{~g}, 14.8 \mathrm{mmol})$ in pyridine (8 $\mathrm{mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(8 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 2 h and then was concentrated. A solution of the residue in CHCl_{3} was sequentially extracted with aqueous $\mathrm{NaHCO}_{3}, 2 \%$ aqueous HCl , and $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. A solution of the residue in $\mathrm{Ac}_{2} \mathrm{O}(20 \mathrm{~mL})$ was treated at $0{ }^{\circ} \mathrm{C}$ with concd $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$. After 3 min , the reaction mixture was poured into cold saturated aqueous NaHCO_{3}. The solution was extracted several times with CHCl_{3}. The combined CHCl_{3} phase was extracted with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Column chromatography of the residue ($3: 1$ hexanes-EtOAc) gave $37(4.71 \mathrm{~g}, 73 \%, \alpha / \beta$ ratio $4: 1)$ as a colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H}, \delta 7.45-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.32$ $(\mathrm{d}, 0.8 \mathrm{H}, \mathrm{J}=3.6), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~d}, 0.2 \mathrm{H}, \mathrm{J}=8.0), 5.35-$ $5.15(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.02(2 \mathrm{t}, 1 \mathrm{H}), 4.89-4.61(4 \mathrm{~d}, 2 \mathrm{H}), 3.63$ ($\mathrm{t}, 0.8 \mathrm{H}, \mathrm{J}=9.4$), 3.52 (dd, $0.2 \mathrm{H}, \mathrm{J}=9.0$), 2.18, 2.16, 2.09, 2.06, 1.94, $1.93(6 \mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 170.3-169.1,134.3,134.0$, 127.7-126.4, 118.2, 117.3, 93.7, 89.8, 81.6, 80.3, 78.6, 78.4, $75.3,75.2,73.9,72.8,72.4,70.0,68.9,68.0,61.94,61.88,21.1-$ 20.8; $\mathrm{Cl}-\mathrm{MS}: \mathrm{m} / \mathrm{z} 454\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$]. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{9}$: C, 60.54; H, 6.47. F ound: C, 60.45; H, 6.47.

2-(Trimethylsilyl)ethyl O-(4,6-Di-O-acetyl-2-O-allyl-3-O-benzyl- $\alpha-$-glucopyranosyl)-(1 $\rightarrow 2$)-4,6-di-O-acetyl-3-0-benzyl- β-d-glucopyranoside (38). A mixture of 29 (1.7 g, $3.7 \mathrm{mmol}), 36(2.3 \mathrm{~g}, 5.6 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g})$, and $4 \AA$ powdered molecular sieves $(4 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 1 h with exclusion of light and then was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{AgClO}_{4}(360 \mathrm{mg}, 1.3 \mathrm{mmol})$ was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 48 h and then was filtered through Celite. The insoluble material was washed several times with CHCl_{3}, and the combined filtrate and washings were washed successively with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Column chroma-
tography (4:1 hexanes-EtOAc) of the residue gave an impure fraction from which pure 38 ($723 \mathrm{mg}, 23 \%$) was obtained by successive deacetylation (NaOMe), chromatography (EtOAc), and reacetylation (pyridine/ $\mathrm{Ac}_{2} \mathrm{O}$). Further elution gave 38 ($895 \mathrm{mg}, 29 \%$, combined yield 52%) as a colorless syrup: $[\alpha]_{D}$ $+20^{\circ}(\mathrm{c} 0.8) ;$ NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.45-7.25(\mathrm{~m}, 10), 5.89(\mathrm{~m}, 1$ $\mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7), 5.40-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.11$ and $4.93(2$ dd, 2 H$), 4.90-4.61(\mathrm{~m}, 4 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.4), 2.08,2.00$, 1.95, $1.80(4 \mathrm{~s}, 12 \mathrm{H}), 1.08-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta$ 170.8-169.4, 138.4, 137.4, 134.1, 128.4-127.3, 117.9, 102.7, $95.3,80.8,79.2,78.6,75.6,75.1,74.8,72.2,71.8,70.7,69.0$, 67.5, 67.3, 62.4, 61.4, 20.8, 18.5, -1.5 ($\left.\mathrm{CH}_{3} \mathrm{Si}\right) ; \mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 848$ $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{15} \mathrm{Si}: \mathrm{C}, 60.71 ; \mathrm{H}, 7.04$. Found: C, 60.49; H, 7.07

O-(4,6-Di-O-acetyl-2-O-allyl-3-O-benzyl- α-D-glucopyra-nosyl)-(1 $\rightarrow 2$)-4,6-di-O-acetyl-3-O-benzyl- α, β-D-glucopyranose (39). A solution of $38(820 \mathrm{mg}, 988 \mu \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was treated at $0^{\circ} \mathrm{C}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(4 \mathrm{~mL})$. The mixture was allowed to reach $23^{\circ} \mathrm{C}$. After 12 h , the solution was diluted with toluene and concentrated. Toluene was added to and evaporated from the residue several times. Column chromatographic purification (1:1 hexanes-EtOAc) gave 39 (631 mg, 87\%) as a colorless syrup: NMR (CDCl $)^{13} \mathrm{C}, \delta 170.8-$ 169.4, 138.1, 137.4, 134.8, 133.7, 128.4-127.6, 119.0, 118.9, 97.4, 97.0, 95.6, 90.0, 62.3, 62.1, 61.8, 61.5, 20.8; CI-MS m/ z $748\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{O}_{15}: \mathrm{C}, 60.81 ; \mathrm{H}$, 6.34. Found: C, 60.67; H, 6.33.

O-(4,6-Di-O-acetyl-2-O-allyl-3-O-benzyl- $\alpha-$ D-glucopyra-nosyl)-(1 $\rightarrow 2$)-4,6-di-O-acetyl-3-O-benzyl- α, β-D-glucopyranosyl Chloride (3). To a solution of 39 ($1.0 \mathrm{~g}, 1.4 \mathrm{mmol}$) and DMF ($150 \mu \mathrm{~L}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ oxalyl chloride ($400 \mu \mathrm{~L}, 4.6 \mathrm{mmol}$) dropwise. The solution was stirred at $23^{\circ} \mathrm{C}$ for 5 h and then was concentrated. Short column chromatography ($3: 2$ hexanes-EtOAc) of the residue gave 3 ($840 \mathrm{mg}, 82 \%$) as a colorless syrup: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ (selected data for 3α), $\delta 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 2.9), $5.95(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6)$, 5.00 (dd, $1 \mathrm{H}, \mathrm{J}=9.5,10.0), 4.86$ and $4.83(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.7)$, 3.57 (dd, $1 \mathrm{H}, \mathrm{J}=9.7$), 2.09, 2.01, 1.94, $1.84(4 \mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$, $\delta 170.6-169.4,138.3,134.3-127.6,118.2,94.7,91.0,79.3,78.3$, 77.5, 75.7, 75.2, 72.4, 70.9, 68.9, 68.6, 68.5, 61.7, 61.4, 20.7; $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 766\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{ClO}_{14}$: C, 59.32; H, 6.05. Found: C, 59.15; H, 6.12.

O-(3,4,6-Tri-O-acetyl-2-O-benzyl- α-D-glucopyranosyl)(1 $\rightarrow 2$)-3,4,6-tri-0-acetyl- α, β-d-glucopyranosyl Chioride (4). To a sol ution of $\mathbf{4 0}$ ($3.4 \mathrm{~g}, 5.0 \mathrm{mmol}$) and DMF $(250 \mu \mathrm{~L})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added oxalyl chloride ($0.50 \mathrm{~mL}, 6.6 \mathrm{mmol}$) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 20 min. Concentration followed by a short column chromatography (1:1 hexanes-EtOAc) of the residue gave $4(2.9 \mathrm{~g}, 83 \%$, α / β ratio 3:2) as a colorless syrup: $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}$, selected data $\delta 170.6-169.6,137.4,128.7-127.9,97.5,96.6,90.8,89.0$, 61.6, 61.5, 61.3, 61.2, 20.8, 20.6, 20.5; CI-MS m/ z 720 [(M + $\left.\mathrm{NH}_{4}\right)^{+}$]. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{ClO}_{16}: \mathrm{C}, 52.96 ; \mathrm{H}, 5.59$. Found: C, 52.82; H, 5.56.

5-(Methoxycarbonyl)pentyl 3,4,6-Tri-O-acetyl-2-O-ben-zyl- α-d-glucopyranoside (44). Bromine ($320 \mu \mathrm{~L}, 6.2 \mathrm{mmol}$) was added to a solution of thioglucoside 42 ($3.0 \mathrm{~g}, 6.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was allowed to reach $23^{\circ} \mathrm{C}$ in 5 min . Hex-1-ene (1 mL), ethyldiisopropylamine (1.5 $\mathrm{mL}, 8.6 \mathrm{mmol})$, and 5-(methoxycarbonyl)pentanol ${ }^{32}$ (8 mL) were added, and then the reaction mixture was concentrated in a rotary evaporator to remove most of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The residue was kept at $23^{\circ} \mathrm{C}$ for 36 h . Column chromatography ($3: 1$ hexanes-EtOAc) of the reaction mixture gave $44(2.54 \mathrm{~g}$, 80%) as a colorless syrup: $[\alpha]_{\mathrm{D}}+75^{\circ}(\mathrm{c} 1.5)$; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$, $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.6), 4.96$ (dd, $1 \mathrm{H}, \mathrm{J}$ $=9.8), 4.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5), 4.65$ and $4.57(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $12.3), 4.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.5,12.2), 4.00(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2)$, 3.95 (ddd, 1 H), 3.67-3.60 and 3.44-3.35 ($2 \mathrm{~m}, 4 \mathrm{H}$), 3.67 (s, $3 \mathrm{H}), 3.56(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.0), 2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.5), 2.07-$ $2.00(3 \mathrm{~s}, 9 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta$ 170.6, 170.1, 169.9, 137.8-127.8, 96.8, 76.8, 72.9, 71.9, 68.8, 68.4, 67.1, 62.1, 51.5, 33.9, 29.0, 25.6, 24.6, 20.8, 20.7; CI-MS $\mathrm{m} / \mathrm{z} 542\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{11}: \mathrm{C}, 59.53$; H, 6.92. Found: C, 59.57; H, 6.89.

5-(Methoxycarbonyl) pentyl 3,4,6-Tri-O-acetyl- α-D-glucopyranoside (45). A mixture of $44(2.5 \mathrm{~g}, 4.77 \mathrm{mmol}), 10 \%$ Pd-C (200 mg), EtOH (50 mL), and AcOH (1 mL) was stirred under hydrogen at $23^{\circ} \mathrm{C}$ at 200 psi for 24 h . Removal of the catalyst by filtration and the volatiles under vacuum fol lowed by column chromatographic purification (2:1 hexanes-EtOAc) gave 45 ($1.7 \mathrm{~g}, 83 \%$) as a colorless syrup: $[\alpha]_{\mathrm{D}}+111^{\circ}$ (c 1.3); NMR ($\left.\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 5.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.8,9.6), 5.01(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=10.0), 4.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9), 4.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.6,12.3)$, 4.07 (dd, $1 \mathrm{H}, \mathrm{J}=2.3$), 3.95 (ddd, 1 H), 3.82-3.62 and 3.56$3.46(2 \mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.3), 2.09,2.08$, $2.04(3 \mathrm{~s}, 9 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta$ 173.9, 171.0, 170.6, 169.5, 98.2, 73.5, 70.8, 68.4, 68.0, 67.6, 62.0, 51.7, 33.8, 28.9, 25.6, 24.5, 20.9, 20.7, 20.6; CI-MS m/z 452 $\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{11}: \mathrm{C}, 52.53 ; \mathrm{H}, 6.96$. Found: C, 52.36; H, 6.90.

5-(Methoxycarbonyl)pentyl α-D-Glucopyranoside (46). A solution of 45 ($1.6 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry $\mathrm{MeOH}(10 \mathrm{~mL})$ was treated with NaOMe (cat.) at $23^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was treated with Dowex ($50 \times 8-100, \mathrm{H}^{+}$), filtered, and then concentrated to give 46 (1.1 g , quantitative) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+101^{\circ}\left(\mathrm{c} 0.4, \mathrm{H}_{2} \mathrm{O}\right)$; NMR ($\mathrm{D}_{2} \mathrm{O}$) ${ }^{1} \mathrm{H}, \delta 4.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.9), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=$ 7.4), 1.72-1.58 (m, 4H), 1.47-1.34 (m, 2 H); ${ }^{13} \mathrm{C}, \delta 178.4,98.8$, 73.9, 72.5, 72.1, 70.3, 68.7, 61.3, 52.9, 34.4, 29.0, 25.7, 24.8; $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 326\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{8}: \mathrm{C}$, 50.64; H, 7.85. Found: C, 50.66; H, 7.90.

5-(Hydrazinocarbonyl)pentyl α-D-Glucopyranoside (47). A solution of 46 ($1.0 \mathrm{~g}, 3.1 \mathrm{mmol}$) in dry EtOH (5 mL) was treated with hydrazine hydrate (2.5 mL) at $23^{\circ} \mathrm{C}$ for 3 days. The usual workup followed by col umn chromatographic purification of the residue (1:1 EtOAc-MeOH) gave 47 (800 mg , 80%) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+99^{\circ}\left(\mathrm{c} 0.2, \mathrm{H}_{2} \mathrm{O}\right)$; NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)^{1} \mathrm{H}, \delta 4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.5), 2.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.4)$, $1.73-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{33} \mathrm{C}, \delta 176.5,98.8,73.9$, 72.5, 72.1, 70.3, 68.7, 61.3, 34.4, 29.0, 25.3 (2C); CI-MS m/ z $309\left[(\mathrm{M}+\mathrm{H})^{+}\right], 326\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24}$ $\mathrm{N}_{2} \mathrm{O}_{7}$: N, 9.09. Found: $\mathrm{N}, 9.25$.

5-[[(2-Aminoethyl)amino]carbonyl]pentyl α-D-Glucopyranoside (48). A solution of the ester 46 ($250 \mathrm{mg}, 0.8 \mathrm{mmol}$) in ethylenediamine (2 mL) was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The solution was concentrated under vacuum. Water was added to and evaporated from the residue several times. Column chromatographic purification of the residue ($\mathrm{MeOH}-E t O A c$ 1:1 then MeOH) afforded 48 ($225 \mathrm{mg}, 83 \%$): $[\alpha]_{\mathrm{D}}+51^{\circ}$ (c 0.4); NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)^{1 \mathrm{H}} \mathrm{H}, \delta 4.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.8), 3.26(\mathrm{t}, 2 \mathrm{H}), 2.74(\mathrm{t}$, $2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.4), 1.71-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.32$ $(\mathrm{m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 98.8,73.9,72.6,72.1,70.4,68.7,61.3,42.4$, 40.6, 36.4, 29.1, 25.9, 25.7; CI-MS m/z $337\left[(\mathrm{M}+\mathrm{H})^{+}\right]$and $350\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}: \mathrm{N}, 8.33$. Found: N, 8.24.

5-(Methoxycarbonyl)pentyl O-(2-0-Allyl-3,4,6-tri-0-benzyl- β-D-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α-Dglucopyranoside (49) and 5-(Methoxycarbonyl)pentyl O-(2-0-Allyl-3,4,6-tri-O-benzyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α-D-glucopyranoside (50). A mixture of $45(200 \mathrm{mg}, 4.6 \mathrm{mmol}), 11(330 \mathrm{mg}, 6.5 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(145$ $\mathrm{mg}, 526 \mu \mathrm{~mol}$), and $4 \AA$ powdered molecular sieves (160 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 1 h with exdusion of light and then cooled to $0^{\circ} \mathrm{C} . \mathrm{AgClO}_{4}(50 \mathrm{mg}, 241 \mu \mathrm{~mol})$ was added, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 80 min and then was filtered through celite. The insoluble material was washed several times with CHCl_{3}, and the combined filtrate and washings were washed successively with saturated aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and then concentrated. Column chromatography ($2: 1$ hexanes-EtOAc) of the residue gave 49 ($73.2 \mathrm{~g}, 17.3 \%$) as a colorless syrup: $[\alpha]_{\mathrm{D}}+51^{\circ}$ (c 0.4); NMR (CDCl_{3}); ${ }^{1} \mathrm{H}, \delta 7.40-7.10(\mathrm{~m}, 15 \mathrm{H}), 5.88(\mathrm{~m}, 1$ H), 5.47 (dd, 1 H, J = 9.6), 5.25 and $5.12(2 \mathrm{~m}, 2 \mathrm{H}), 5.07$ (d, 1 $\mathrm{H}, \mathrm{J}=3.6), 4.99$ (dd, $1 \mathrm{H}, \mathrm{J}=9.9$), 4.92, 4.81, 4.76, 4.56, 4.48, 4.47 ($6 \mathrm{~d}, 12 \mathrm{H}, \mathrm{J}=10.7-12.1$), $4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7$), 4.29 (dd, $1 \mathrm{H}, \mathrm{J}=4.4,12.3), 4.28-4.18$ and $4.14-3.98(2 \mathrm{~m}, 4 \mathrm{H})$, 3.76 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$), 3.73-3.36 (m, 7 H), 3.63 ($\mathrm{s}, 3 \mathrm{H}$), 3.28 (dd, $1 \mathrm{H}, \mathrm{J}=8.5), 2.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J} \sim 7.5), 2.09,2.02(2 \mathrm{~s}, 9 \mathrm{H})$, 1.70-1.54 (m, 4 H), 1.44-1.32 (m, 2 H); ${ }^{13} \mathrm{C}, \delta 170.7,170.3$, $169.8,138.5,138.0,137.9,135.0,128.4-127.6,116.7,104.6$, 98.5, 84.6, 81.3, 77.4, 77.1, 75.7, 75.0, 74.6, 73.5, 73.4, 71.8,
69.0, 68.9, 68.6, 67.0, 62.1, 51.5, 33.9, 29.0, 25.6, 24.6, 21.0, 20.8, 20.7; CI-MS m/z $924\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{62} \mathrm{O}_{15}$: C, 66.05; H, 7.01. Found: C, 66.12; H, 7.05. Further elution gave 50 ($238 \mathrm{mg}, 57 \%$) as a colorless syrup: $[\alpha]_{\mathrm{D}}+100^{\circ}(\mathrm{c} 1.1)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 7.40-7.05(\mathrm{~m}, 15 \mathrm{H})$, $5.89(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.5,9.7), 5.27$ and $5.18(2 \mathrm{~m}$, $2 \mathrm{H}), 5.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6), 4.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.7), 4.95(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=3.3$), $4.88,4.81,4.74,4.58,4.46,4.45(6 \mathrm{~d}, 12 \mathrm{H}$, J $=10.9-$ 12.1), 4.27 (dd, $1 \mathrm{H}, \mathrm{J}=4.4,12.2$), 3.63 (s, 3 H), 3.45 (dd, 1 H , $\mathrm{J}=9.5), 2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.5), 2.09,2.03,1.96(3 \mathrm{~s}, 9 \mathrm{H})$, $1.74-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 170.6,170.0$, 169.8, 138.7, 138.5, 137.8, 134.7, 128.3-127.4, 117.3, 97.0, 96.4, 81.4, 79.6, 77.2, 75.5, 75.4, 74.8, 73.5, 72.1, 71.6, 71.0, 68.8, 68.7, 68.1, 67.2, 62.1, 51.4, 33.9, 29.1, 25.7, 24.7, 20.9, 20.8, 20.7; CI-MS m/z $924\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{62} \mathrm{O}_{15}$: C, $66.05 ; \mathrm{H}, 7.01$. Found: C, $66.16 ; \mathrm{H}, 6.99$.

5-(Methoxycarbonyl)pentyl 0-(3,4,6-Tri-O-acetyl-2-0-benzyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α-Dglucopyranoside (52). Treatment of 45 ($3.6 \mathrm{~g}, 8.2 \mathrm{mmol}$) with the chloride $51(6.0 \mathrm{~g}, 14.5 \mathrm{mmol})$ in the presence of $\mathrm{Ag}_{2}-$ $\mathrm{CO}_{3}(8.0 \mathrm{~g}, 29.0 \mathrm{mmol}), 4 \AA$ powdered molecular sieves (3 g), and $\mathrm{AgClO}_{4}(600 \mathrm{mg}, 2.9 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at 23 ${ }^{\circ} \mathrm{C}$ for 24 h under the conditions described for the preparation of 49 gave, after column chromatography ($2: 1$ hexanesEtOAc), 52 ($5.2 \mathrm{~g}, 78 \%$) as a colorless syrup: $[\alpha]_{D}+119^{\circ}$ (c 0.9); NMR ($\left.\mathrm{CDCl}_{3}\right)^{1 \mathrm{H}}, \delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.44(2 \mathrm{t}, 2 \mathrm{H})$, $4.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7), 4.96(2 \mathrm{t}, 2 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3)$, 4.62 and $4.57(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12.0)$, 4.31-4.00 (m, 6 H), 3.54 (dd, 1 H, J $=9.4$), 3.69-3.47 (m, 3 H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.09,2.08,2.04,2.03,2.01$, and 1.98 ($6 \mathrm{~s}, 18 \mathrm{H}$), 1.72$1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 174.0,170.5-169.7$, 137.4, 128.5-127.5, 98.1, 96.8, 77.6, 76.8, 73.1, 71.7 (2С), 68.9, 68.6, 68.4, 68.1, 67.2, 62.0, 61.4, 51.4, 33.8, 29.0, 25.6, 24.6, 20.8, 20.7, 20.6; CI-MS m/ z $830\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{O}_{19}$: $\mathrm{C}, 56.15 ; \mathrm{H}, 6.45$. Found: C, $56.01 ; \mathrm{H}, 6.48$.

5-(Methoxycarbonyl)pentyl O-(3,4,6-Tri-O-acetyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α-D-glucopyranoside (53). Treatment of $52(5.2 \mathrm{~g}, 6.4 \mathrm{mmol})$ with 10% $\mathrm{Pd}-\mathrm{C}(300 \mathrm{mg})$ in EtOH (50 mL) and $\mathrm{AcOH}(1 \mathrm{~mL})$ under H_{2} at $23^{\circ} \mathrm{C}$ at 300 psi for 24 h under the conditions described for the preparation of $\mathbf{4 5}$ gave $53(4.0 \mathrm{~g}, 86 \%)$ as a white crystalline material (${ }^{(} \mathrm{Pr}_{2} \mathrm{O}$): mp $97-98{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}+153^{\circ}$ (c 1.3); NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 5.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.9,9.6), 5.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 9.6), 5.02 (dd, $1 \mathrm{H}, \mathrm{J}=9.8$), $5.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6), 4.99(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=9.6), 4.96(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7), 4.29$ and $4.25(2 \mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ 4.6, 12.2), 4.08 ($2 \mathrm{dd}, 2 \mathrm{H}$), $4.02-3.93$ (m, 2 H), 3.89 (dd, 1 H , $\mathrm{J}=9.9)$, $3.78-3.60$ and $3.50-3.40(2 \mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 2.47 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=11.4$), $2.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J} \sim 7.5), 2.11,2.09,2.07$, 2.06, 2.05, and 2.02 ($6 \mathrm{~s}, 18 \mathrm{H}$), 1.72-1.61 (m, 4 H), 1.47-1.36 $(\mathrm{m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.7-169.5,96.7,95.4,74.6,73.1,71.0,70.5$, $68.5,68.4,68.3,67.6,67.4,61.9,61.6,51.5,33.8,29.0,25.6$, 24.5, 20.9, 20.71, 20.67, 20.6; CI-MS m/ z $740\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{19}$: C, 51.52; H, 6.42. Found: C, 51.42; H, 6.37.

5-(Hydrazinocarbonyl)pentyl O- α-D-Glucopyranosyl(1 $\rightarrow \mathbf{2}$)- α-D-glucopyranoside (54). A solution of 53 ($1.0 \mathrm{~g}, 1.4$ mmol) in dry $\mathrm{MeOH}(20 \mathrm{~mL}$) was treated with a catalytic amount of NaOMe at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was neutralized (Dowex $50 \times 8-100, \mathrm{H}^{+}$), filtered, and concentrated. A solution of the crude residue in $\mathrm{EtOH}(5 \mathrm{~mL})$ was treated with hydrazine hydrate (1.5 mL) at $23^{\circ} \mathrm{C}$ for 12 h . The usual workup followed by column chromatographic purification of the residue (MeOH) gave 54 ($475 \mathrm{mg}, 72 \%$), which was obtained as an amorphous white solid after freezedrying: $[\alpha]_{\mathrm{D}}+131^{\circ}\left(\mathrm{c} 0.9, \mathrm{H}_{2} \mathrm{O}\right)$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)^{1} \mathrm{H}, \delta 5.15$ and 5.08 ($2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.7$), $2.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J} \sim 7.2$), 1.74-1.58 (m, $4 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 176.6,96.7,95.9,75.7,73.5$, 72.6, 72.4, 72.2, 72.1, 70.3, 70.2, 68.7, 61.3, 61.1, 34.4, 28.9, 25.67, 25.64; FAB-MS m/ z $471\left[\left((\mathrm{M}+1)^{+}\right]\right.$, $493\left[\left((\mathrm{M}+\mathrm{Na})^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{12}$: $\mathrm{N}, 5.95$. Found: $\mathrm{N}, 5.53$.

5-(Methoxycarbonyl)pentyl O-(4,6-Di-O-acetyl-2-O-al-lyl-3-O-benzyl- $\alpha-$ D-glucopyranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-0-acetyl- $\alpha-\mathrm{D}-\mathrm{gl}$ ucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-0-acetyl- α-Dglucopyranoside (55). A mixture of 53 ($7.7 \mathrm{~g}, 10.7 \mathrm{mmol}$), 36 ($10.6 \mathrm{~g}, 25.7 \mathrm{mmol}$), 2,6-di-tert-butyl-4-methyl pyridine (6.0 $\mathrm{g}, 29.2 \mathrm{mmol})$, and $4 \AA$ powdered molecular sieves (5 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 1 h and then was
treated with AgOTf ($9.0 \mathrm{~g}, 35 \mathrm{mmol}$). After 20 min , the reaction mixture was processed as described for 49 to give, after column chromatography ($3: 2$ hexanes-EtOAc), 55 (8.9 $\mathrm{g}, 76 \%$) as a colorless syrup: $[\alpha]_{\mathrm{o}}+95^{\circ}$ (c 1.4); NMR (CDCI ${ }_{3}$) ${ }^{1} \mathrm{H}, \delta 7.39-7.22(\mathrm{~m}, 5), 6.01-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.47$ and $5.43(2 \mathrm{t}$, $2 \mathrm{H}), 5.35-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.18,5.03$, and $4.88(3 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ 3.3-3.6), 4.79 and $4.58(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11.5), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.37$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{J} \sim 7.4$), 2.09 (6 H), 2.08, 2.07, $2.06(6 \mathrm{H}), 2.00,1.98$, and $1.90(6 \mathrm{~s}, 24 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.6-169.5,138.0,134.1,128.5-127.9,119.3$, 98.9 , 98.2, 97.5, 79.4, 78.9, 78.6, 75.4, 73.3. 72.4, 70.8, 69.1, 69.0, $68.9,68.8$ (2C), 68.6, 68.0, 67.3, 62.2, 61.7, 61.3, 51.5, 34.0, 29.1, 25.8, 24.7, 21.0-20.7; CI-MS m/z $1116\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{70} \mathrm{O}_{26}$: $\mathrm{C}, 55.73 ; \mathrm{H}, 6.42$. Found: $\mathrm{C}, 55.65$; H, 6.45.
5-(Methoxycarbonyl)pentyl 0-(4,6-Di-O-acetyl-3-O-ben-zyl- α-D-glucopyranosyl)-(1-2)-0-(3,4,6-tri-O-acetyl- α-D-glucopyranosyl)-(1-2)-3,4,6-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopyranoside (56). A mixture of 55 ($3.7 \mathrm{~g}, 3.4 \mathrm{mmol}$), $\mathrm{NaOAc}(2.2$ $\mathrm{g}, 27.3 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(910 \mathrm{mg}, 5.1 \mathrm{mmol}$) in a $20: 1$ mixture of $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 24 h and then was filtered through Celite. The insoluble material was washed several times with CHCl_{3}. The combined filtrate and washings were extracted successively with $\mathrm{H}_{2} \mathrm{O}$, aqueous NaHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and then concentrated. Column chromatography ($1: 1$ hexanesEtOAc) of the residue gave $56(2.87 \mathrm{~g}, 79 \%)$ as a colorless syrup: $[\alpha]_{0}+131^{\circ}$ (c 2.1); NMR (CDCl_{3}); ${ }^{13} \mathrm{C} \delta 170.5-169.3$, 138.2, 128.3-127.6, 96.4, 95.4, 93.0, 79.0, 74.6, 74.1, 72.9, 72.3, $71.2,70.3,68.9,68.7,68.6,68.3,68.1,67.9,67.5,61.9(2 \mathrm{C}), 61.3$, 51.4, 33.7, 29.0, 25.6, 24.5, 20.6; Cl-MS m/z 1076 [(M + $\left.\mathrm{NH}_{4}\right)^{+3}$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{O}_{26}$: C, 54.44; H, 6.28. Found: C, 54.33; H, 6.32.
5-(Methoxycarbonyl)pentyl O- α-D-Glucopyranosyl($\mathbf{1}-2$)-O- $\alpha-\mathrm{D}$-glucopyranosyl)-($1 \rightarrow 2$)-O- α-D-glucopyranoside (57). Compound 55 ($1.0 \mathrm{~g}, 945 \mu \mathrm{~mol}$) was sequentially debenzylated $\left[\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}(600 \mathrm{mg})\right.$, in $\mathrm{EtOH}(40 \mathrm{~mL})$, AcOH (0.5 mL), $\left.23^{\circ} \mathrm{C}, 200 \mathrm{psi}, 24 \mathrm{~h}\right]$ and deacetylated $[\mathrm{MeOH}$ (15 mL), NaOMe (cat.), $23^{\circ} \mathrm{C}, 24 \mathrm{~h}$] under conditions described for 52 to give 57 ($436 \mathrm{mg}, 73 \%$) as a col orless syrup: $[\alpha]_{\mathrm{D}}+157^{\circ}$ (c 1.2, MeOH); NMR ($\mathrm{D}_{2} \mathrm{O}$) ${ }^{\mathrm{H}} \mathrm{H}, \delta 5.33$, 5.19 , and 5.13 ($3 \mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}=3.4-3.7), 2.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J} \sim 7.4), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.46-$ $1.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 178.4,96.6,96.2,94.4,68.6,61.3,61.2$, 61.1, 52.9, 34.4, 29.1, 25.8, 24.9; FAB-MS m/z 633 [(M +1$\left.)^{+}\right]$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{18} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.52 ; \mathrm{H}, 7.18$. Found: C, 45.76; H, 7.00.
5-(Hydrazinocarbonyl)pentyl O- $\alpha-\mathrm{D}$-Glucopyranosyl($1 \rightarrow 2$)-O- $\alpha-D-$ glucopyranosyl-($1 \rightarrow 2$)- $\alpha-D$-glucopyranoside (58). Treatment of 57 ($350 \mathrm{mg}, 554 \mu \mathrm{~mol}$) in MeOH (5 mL) with hydrazine hydrate (0.5 mL) at $23^{\circ} \mathrm{C}$ for 48 h under the conditions described for 54 gave, after column chromatography (MeOH) and freeze-drying, 58 ($252 \mathrm{mg}, 72 \%$) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+154^{\circ}$ (c $0.9, \mathrm{H}_{2} \mathrm{O}$); NMR ($\mathrm{D}_{2} \mathrm{O}$) ${ }^{1} \mathrm{H}, \delta 5.33,5.19$, and 5.13 ($3 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.4-3.7$), 2.28-2.20, $1.78-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}, \delta 176.6,96.7,96.1$, 94.5, 68.5, 61.3, 61.2, 61.1, 34.4, 29.1, 25.73, 25.66; FAB-MS $\mathrm{m} / \mathrm{z} 633\left[(\mathrm{M}+1)^{+}\right], 655\left[\left((\mathrm{M}+\mathrm{Na})^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{17}: \mathrm{N}, 4.43$. Found: $\mathrm{N}, 4.39$.

5-(Methoxycarbonyl) pentyl 0-(4,6-Di-O-acetyl-2-O-al-lyl-3-O-benzyl- α-D-glucopyranosyl)-(1-2)-O-(4,6-di-O-acetyl-3-0-benzyl- α-D-glucopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopyranoside (59). Treatment of $\mathbf{4 5}$ (522 mg , 1.2 mmol) with the chloride $\mathbf{3}(600 \mathrm{mg}, 0.80 \mathrm{mmol}$) in the presence of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(420 \mathrm{mg}, 1.5 \mathrm{mmol}), 4 \AA$ powdered molecular sieves (600 mg), and $\mathrm{AgClO}_{4}(145 \mathrm{mg}, 700 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ for 12 h under the conditions described for 49 gave, after column chromatography ($2: 3$ hexanes-EtOAc), 59 ($645 \mathrm{mg}, 70 \%$) as a colorless syrup: [$\alpha]_{\mathrm{D}}$ $+105^{\circ}$ (c 1.0); NMR (CDCI3) ${ }^{13} \mathrm{C}, \delta 170.7-169.5,138.1,137.6$, 134.3, 128.4-127.8, 118.8, 97.2, 96.8, 95.4, 78.7, 78.6, 77.7, $76.9,76.0,75.07,74.99,72.6,71.0,69.4,69.2,69.1,68.6,68.5$, $68.2,67.2,62.1,61.6$ (2C), 51.5, 33.9, 29.3, 25.9, 24.7, 20.7; FAB-MS m/z $1279\left[(\mathrm{M}+\mathrm{Cs})^{+}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{75^{-}}$ ClO_{25} : C, $58.63 ; \mathrm{H}, 6.50$. Found: C, $58.53 ; \mathrm{H}, 6.48$

5-(Methoxycarbonyl)pentyl 0-(4,6-Di-O-acetyl-3-0-ben-zyl- α-D-glucopyranosyl)-(1-2)-0-(4,6-di-O-acetyl-3-0-ben-zyl- $\alpha-\mathrm{D}$-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- $\alpha-\mathrm{D}$-glu-
copyranoside (60). A mixture of 59 ($350 \mathrm{mg}, 0.30 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(81 \mathrm{mg}, 0.47 \mathrm{mmol}\right.$), and $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(330 \mathrm{mg}, 2.4$ mmol) in $20: 1 \mathrm{ACOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at $23^{\circ} \mathrm{C}$ for 24 h and then processed as described for compound 56 to afford the alcohol 60 ($337 \mathrm{mg}, 84 \%$) as a colorless syrup: NMR $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}, \delta 7.43-7.09(\mathrm{~m}, 10 \mathrm{H}), 5.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.8), 5.13$, 5.10, and $4.95(3 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=3.4-3.6), 5.03(2 \mathrm{H})$ and $4.96(2 \mathrm{t}$, $3 \mathrm{H}), 4.93,4.76,4.62$, and $4.56(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=10.9-11.5), 3.66$ (s, 3 H), 2.34 (t, $2 \mathrm{H}, \mathrm{J}=7.6$), 2.12, 2.09 (6 H), 2.07, 2.03, 1.92, and $1.90(6 \mathrm{~s}, 21 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.9-169.4,137.8,137.4,128.5-127.7,95.7,94.8,92.0$, $75.575 .4,61.9,61.7,61.5,51.5,33.8,29.0,25.6,24.7,20.8 ;$ FAB-MS m/z 1129 [($\left.\mathrm{M}+\mathrm{Na})^{+}\right]$.
5-(Methoxycarbonyl)pentyl O-(2-0-Allyl-3,4,6-tri-0-benzyl- α - D -glucopyraosyl)-($1 \rightarrow 2$)-0-(3,4,6-tri-O-acetyl- α -D-glucopyranosyl)-($1 \rightarrow 2$)-O-($3,4,6$-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopy-ranosyl)-($1 \rightarrow 2$)-3,4,6-tri- 0 -acetyl $-\alpha$ - D -glucopyranoside (61). Treatment of $53(3.8 \mathrm{~g}, 4.0 \mathrm{mmol})$ with the chloride $\mathbf{1}(3.2 \mathrm{~g}$, $5.3 \mathrm{mmol})$ in the presence of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(3.1 \mathrm{~g}, 11.2 \mathrm{mmol}), 4 \AA$ powdered molecular sieves (5.0 g), and $\mathrm{AgClO}_{4}(215 \mathrm{mg}$, 1.0 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ for 48 h under the conditions described for 49 gave, after column chromatography (2:1 hexanes-EtOAc), 61 ($3.2 \mathrm{~g}, 54 \%$) as a colorless syrup: [$\alpha]_{\mathrm{D}}$ $+20.5^{\circ}(\mathrm{c} 0.9)$; NMR ($\left.\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}, \delta 170.6-169.6,138.3,138.2$, 137.7, 134.3, 128.4-127.6, 119.1, 99.3, 99.0, 98.5, 97.1, 81.9, 80.0, 78.8, 77.2 (2C), 75.7, 75.0, 73.6, 73.2, 72.3, 72.0, 71.4, 70.6, 69.3 (2C), 69.2, 68.8, 68.4, 68.0, 67.9 (2C), 67.2, 62.5, 61.4 (2C), 51.4, 34.0, 29.2, 25.9, 24.7, 21.0, 20.8, 20.7, 20.6, 20.5; $\mathrm{CI}-\mathrm{MS} \mathrm{m} / \mathrm{z} 1482\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{73} \mathrm{H}_{94} \mathrm{O}_{32}$: C, 59.10; H, 6.39. Found: C, 59.17; H, 6.41. Further elution gave the starting compound 53 ($1.5 \mathrm{~g}, 39.5 \%$).

5-(Methoxycarbonyl) pentyl 0-(3,4,6-Tri-O-benzyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-0-acetyl- $\alpha-\mathrm{D}$-glucopy-ranosyl)-(1-2)-O-(3,4,6-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopyranosyl)($1 \rightarrow 2$)-O-3,4,6-tri-O-acetyl- α-D-glucopyranoside (62). A mixture of $61(2.2 \mathrm{~g}, 1.5 \mathrm{mmol}), \mathrm{NaOAc}(1.6 \mathrm{~g}, 11.8 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(400 \mathrm{mg}, 2.3 \mathrm{mmol})$ in a $20: 1$ mixture of $\mathrm{AcOH}-$ $\mathrm{H}_{2} \mathrm{O}$ (21 mL) was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . Workup as described for $\mathbf{5 6}$ gave, after column chromatography ($3: 2$ hexanes-EtOAc) of the residue, $\mathbf{6 2 (1 . 8 \mathrm { g } , 8 2 \%) \text { as a col orless }}$ syrup: $[\alpha]_{\mathrm{D}}+153^{\circ}$ (c 1.0); NMR ($\left.\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}, \delta 170.6-169.6$, 138.7-137.8, 128.4-127.5, 96.8, 96.1, 95.2, 94.6, 82.5, 76.9, $75.7,75.2,74.7,73.5,73.0,72.2,71.8,71.3,71.2,70.5,68.9$ (2C), 68.5, 68.3, 67.9, 67.6, 67.3, 62.2, 61.47, 61.39, 51.4, 33.9, 29.1, 25.7, 24.6, 20.8, 20.7, 20.6; FAB-MS m/z 1466 [(M + $\mathrm{Na})^{+}$]. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{90} \mathrm{O}_{32}: \mathrm{C}, 58.25 ; \mathrm{H}, 6.28$. Found: C, 58.17; H, 6.26 .
5-(Methoxycarbonyl)pentyl O- α-D-Glucopyranosyl($1 \rightarrow 2$)-O-($3,4,6$-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopyranosyl)-($1 \rightarrow 2$)-0($3,4,6$-tri-O-acetyl- α-D-glucopyranosyl)-(1 -2)-3,4,6-tri-O-acetyl- $\alpha-\mathrm{D}$-glucopyranoside (63). Compound $\mathbf{6 2}$ ($2.4 \mathrm{~g}, 1.66$ mmol) in a mixture of $\mathrm{EtOH}(50 \mathrm{~mL}$) and ACOH (1 mL) was hydrogenolyzed in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(300 \mathrm{mg})$ at 23 ${ }^{\circ} \mathrm{C}$ at 200 psi for 12 h . Filtration, followed by concentration and column chromatography ($98: 2 \mathrm{EtOAc}-\mathrm{MeOH}$) of the residue, gave $\mathbf{6 3}(1.54 \mathrm{~g}, 79 \%)$ as a col orless syrup: $[\alpha]_{\mathrm{D}}+177^{\circ}$ (c 0.7); NMR (CDCl ${ }^{1}{ }^{1} \mathrm{H}, \delta 5.45-5.26(3 \mathrm{t}, 3 \mathrm{H}), 5.33,5.31$, $5.15,4.91(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=3.3-3.5), 5.09-4.96(3 \mathrm{t}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J} \sim 7.4), 2.11-2.02(27 \mathrm{H}), 1.76-1.60(\mathrm{~m}$, 4 H), $1.50-1.38$ (m, 2 H), ${ }^{13} \mathrm{C}, \delta 170.7-169.6,97.4,95.5,93.9$ (2C), 51.6, 33.8, 29.0, 25.5, 24.5 20.9, 20.7, 20.6, 20.5; CI-MS $\mathrm{m} / \mathrm{z} 1190\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{32} \cdot \mathrm{O}^{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$: C, 49.45; H, 6.18. Found: C, 49.36; H, 6.11.
5-(Hydrazinocarbonyl)pentyl O- $\alpha-\alpha-$ Glucopyranosyl($\mathbf{1} \boldsymbol{1} 2$)-O- $\alpha-D-$ glucopyranosyl-($1 \rightarrow 2$)-O- $\alpha-D-$ glucopyranosyl($1-2$)- $\alpha-\mathrm{D}-\mathrm{gl}$ ucopyranoside (64). Compound 62 ($1.0 \mathrm{~g}, 853$ $\mu \mathrm{mol}$) was deacetylated [NaOMe (cat.), $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$), $23^{\circ} \mathrm{C}$, 24 h] and then treated in MeOH (5 mL) with hydrazine hydrate (0.5 mL) at $23^{\circ} \mathrm{C}$ for 48 h as described for 54 to give, after column chromatography (MeOH) and freeze-drying, 64 ($509 \mathrm{mg}, 73 \%$) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+166^{\circ}$ (c 0.9 , $\mathrm{H}_{2} \mathrm{O}$); NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right)^{1} \mathrm{H}, \delta 5.39(2 \mathrm{H}), 5.26$, and $5.19(3 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}$ $=3.2-3.6), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.44-$ $1.32(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 176.5,96.4,96.1,94.4,94.2,68.6,61.3$ (3C), 61.1, 34.4, 29.3, 25.9, 25.7; FAB-MS m/z 795 [(M + 1)+], $817\left[\left((\mathrm{M}+\mathrm{Na})^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{22}: \mathrm{N}, 3.52$. Found: N, 3.58.

5-(Methoxycarbonyl)pentyl 0-(3,4,6-Tri-O-acetyl-2-0-benzyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-O-acetyl- $\alpha-$ D-glucopyranosyl)-(1 $\rightarrow 2$)-O-(3,4,6-tri-O-acetyl- α-D-glucopy-ranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-0-acetyl- α-D-glucopyranoside (65). Treatment of 53 ($1.85 \mathrm{~g}, 2.56 \mathrm{mmol}$) with the chloride 4 (1.95 $\mathrm{g}, 5.12 \mathrm{mmol})$ in the presence of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(1 \mathrm{~g}, 3.6 \mathrm{mmol}), 4 \AA$ powdered molecular sieves (4 g), and $\mathrm{AgClO}_{4}(150 \mathrm{mg}, 725$ $\mu \mathrm{mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ for 30 h under the conditions described for $\mathbf{4 9}$ gave, after column chromatography (1:1 hexanes-EtOAc), 65 ($2.4 \mathrm{~g}, 66 \%$) as a colorless syrup: $[\alpha]_{D}$ $+156^{\circ}$ (c 0.8); NMR (CDCl_{3}) $\delta 7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.54-5.22$ $(4 \mathrm{t}, 4 \mathrm{H}), 5.21,5.13,4.91$, and $4.80(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=3.1-3.4)$, $5.06-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.66$ and $4.58(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12.0), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 36 \mathrm{H}), 1.80-1.65(\mathrm{~m}$, $4 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}, \delta 170.6-169.6,137.0,129.0-$ $128.2,99.2,98.9,97.6,96.7,79.7,78.2,77.0,76.5,74.2,72.2$, 72.0, 71.6, 71.1, 69.3, 68.9, 68.7 (2C), 68.5, 67.9 (3C), 67.2, 62.5, 61.7, 61.4, 61.1, 51.4, 33.9, 29.2, 25.8, 24.6, 20.6; CI-MS m/ z $1406\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{84} \mathrm{O}_{35}: \mathrm{C}, 53.60 ; \mathrm{H}$, 6.09. Found: C, 53.60; H, 6.07 .

5-(Methoxycarbonyl) pentyl 0-(3,4,6-Tri-O-acetyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-O-(3,4,6-tri-O-acetyl- α-D-glucopy-ranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-O-acetyl- α-D-glucopyranosyl)($1 \rightarrow 2$)-3,4,6-tri-O-acetyl- α-D-glucopyranoside (66). A mixture of compound 65 ($1.4 \mathrm{~g}, 1.0 \mathrm{mmol}$), $10 \% \mathrm{Pd}-\mathrm{C}(200$ mg) in EtOH (50 mL), and AcOH (1 mL) was stirred under hydrogen at $23^{\circ} \mathrm{C}$ at 300 psi for 12 h . Filtration through a layer of Celite followed by concentration and column chromatography of the residue ($1: 2$ hexanes-EtOAc) gave 66 (1.2 g , 87%) as a col orless syrup: $[\alpha]_{\mathrm{D}}+181^{\circ}$ (c 0.7); NMR (CDCl ${ }_{3}$) ${ }^{13} \mathrm{C}, \delta 170.9-169.7,95.7,95.5,93.7,93.2,74.7,73.6,73.1,72.6$, 71.4, 71.2, 71.1, 70.1, 68.9 (2С), 68.5 (2C), 68.3, 68.0 (2C), 67.5 (2C), 62.1, 61.7, 61.4 (2C), 51.5, 33.8, 29.0, 25.6, 24.6, 20.6; $\mathrm{Cl}-\mathrm{MS} \mathrm{m} / \mathrm{z} 1316\left[\left(\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{78} \mathrm{O}_{35}$ $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.15 ; \mathrm{H}, 6.12$. Found: C, $50.12 ; \mathrm{H}, 6.12$.

5-(Methoxycarbonyl)pentyl 0-(4,6-Di-O-acetyl-2-0-al-lyl-3-O-benzyl- $\alpha-D-$ glucopyranosyl $)$-($1 \rightarrow 2$)-O-(3,4,6-tri-0-acetyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-O-acetyl- $\alpha-$ D-glucopyranosyl)-(1 $\rightarrow 2$)-0-(3,4,6-tri-O-acetyl- α-D-glucopyranosyl)-(1 $\rightarrow 2$)-3,4,6-tri-O-acetyl- α-dglucopyranoside (67). A mixture of 66 ($1.5 \mathrm{~g}, 1.15 \mathrm{mmol}$), $36(2.5 \mathrm{~g}, 6.1 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{CO}_{3}(600 \mathrm{mg}), 4 \AA$ powdered molecular sieves (5 g), and $\mathrm{AgClO}_{4}\left(110 \mathrm{mg}, 531 \mu \mathrm{~mol}\right.$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ mL) was stirred at $23{ }^{\circ} \mathrm{C}$ for 48 h under the conditions described for 49 to give after column chromatography (1:1 hexanes-EtOAc) 67 ($768 \mathrm{mg}, 38 \%$) as a colorless syrup: [$\alpha]_{D}$ $+141^{\circ}(\mathrm{c} 1.2)$; NMR $\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}, \delta 170.5-169.5,137.7,133.9$, 128.5-127.8, 119.8, 100.5, 99.3, 99.1, 97.2, 96.9, 80.7, 80.3, 78.4, 78.2, 78.1, 75.2, 74.9, 73.2, 72.34, 72.29, 71.9, 70.1, 69.7, $69.1,69.0,68.9,68.8,68.7,68.6,68.3,67.6,67.5,67.0,62.4$, $61.78,61.72,61.1,51.4,33.9,29.2,25.8,24.6,21.0-20.5$; FABMS m/z $1698\left[\left((\mathrm{M}+\mathrm{Na})^{+}\right], 1808\left[(\mathrm{M}+\mathrm{Cs})^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{75} \mathrm{H}_{102} \mathrm{O}_{42}$: C, 53.73; H, 6.14. Found: C, 53.66; $\mathrm{H}, 6.10$.

Subsequent elution gave 66 ($854 \mathrm{mg}, 57 \%$) as a colorless syrup.

5-(Methoxycarbonyl)pentyl O- α-D-Glucopyranosyl(1 $\rightarrow 2$)-O- $\alpha-D-$ glucopyranosyl-(1 $\rightarrow 2$)-O- $\alpha-D$-glucopyranosyl($1 \rightarrow 2$)-O- α-D-glucopyranosyl-($1 \rightarrow 2$)- α-D-glucopyranoside (68). Compound $67(1.0 \mathrm{~g}, 597 \mu \mathrm{~mol})$ was sequentially deallylated $\left[\mathrm{PdCl}_{2}(160 \mathrm{mg}, 900 \mu \mathrm{~mol}), \mathrm{NaOAcH} \mathrm{H}_{2} \mathrm{O}(650 \mathrm{mg}\right.$, 4.8 mmol) in a $20: 1$ mixture $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(21 \mathrm{~mL}), 48 \mathrm{~h}, 23$ ${ }^{\circ} \mathrm{C}$], debenzylated $\left[\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}(500 \mathrm{mg}), \mathrm{MeOH}(25 \mathrm{~mL})\right.$, $\left.\mathrm{AcOH}(0.25 \mathrm{~mL}), 23^{\circ} \mathrm{C}, 100 \mathrm{psi}, 24 \mathrm{~h}\right]$, and deacetylated [NaOMe (cat.), $\mathrm{MeOH}\left(10 \mathrm{~mL}\right.$), $23^{\circ} \mathrm{C}, 12 \mathrm{~h}$] to give 68 (395
$\mathrm{mg}, 69 \%$) as an amorphous white solid: $[\alpha]_{\mathrm{D}}+172^{\circ}$ (c 1.5, $\mathrm{MeOH})$; NMR $\left(\mathrm{D}_{2} \mathrm{O}\right){ }^{1} \mathrm{H}, \delta 5.51,5.41(2 \mathrm{H}), 5.29$ and $5.24(4 \mathrm{~d}$, $5 \mathrm{H}, \mathrm{J}=3.3-3.4), 2.42(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.42-$ 1.30 (m, 2 H); ${ }^{13} \mathrm{C}, \delta 178.4,96.0,95.5,93.3$ (br, 3C), 75.5 (br, 2C), 75.3, 74.9 (br), 68.7, 61.3 (br, 2C), 61.2, 61.1, 61.0, 52.9, 34.3, 29.0, 25.6, 24.9; FAB-MS m/z $979\left[\left((\mathrm{M}+\mathrm{Na})^{+}\right]\right.$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{28} \cdot 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.96 ; \mathrm{H}, 6.98$. Found: $\mathrm{C}, 43.93$; H, 6.79.

5-(Hydrazinocarbonyl)pentyl O- α-D-Glucopyranosyl(1 $\rightarrow 2$)-O- $\alpha-D-$ glucopyranosyl-($1 \rightarrow 2$)-O- $\alpha-D-$ glucopyranosyl($1 \rightarrow 2$)-O- α-D-glucopyranosyl-(1 $\rightarrow 2$)- α-D-glucopyranoside (69). Treatment of 68 ($300 \mathrm{mg}, 314 \mu \mathrm{~mol}$) in MeOH (5 $\mathrm{mL})$ with hydrazine hydrate (0.5 mL) at $23^{\circ} \mathrm{C}$ for 48 h under the conditions described for 54 gave, after purification on Biogel P-4 (0.02 M pyridine-AcOH), 69 ($255 \mathrm{mg}, 85 \%$) as an amorphous white solid: $[\alpha]_{D}+152^{\circ}\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right)$; NMR ($\mathrm{D}_{2} \mathrm{O}$) ${ }^{1} \mathrm{H}, \delta 5.49,5.40(2 \mathrm{H}), 5.27$, and $5.22(4 \mathrm{~d}, 5 \mathrm{H}, \mathrm{J}=3.3-3.6)$, $2.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=7.3), 1.76-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2$ H); ${ }^{13} \mathrm{C}, \delta 176.5,96.2,95.6,93.7$ (3 C), 76.0 (br, 2C), 75.5, 75.2 (br), 68.7, 61.2 (br, 3C), 61.1, 61.0, 34.4, 29.1, 25.7, 24.6; FABMS m/z $\left.957[(M+H))^{+}\right]$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{27}: \mathrm{N}$, 2.93. Found: 2.84.

Dimethyl Squarate-mediated Coupling of Oligosaccharides 47, 48, 54, 58, 64, and 69 to Human Serum Albumin. Procedure A. To a solution of hydrazide 47 (53 $\mathrm{mg}, 172 \mu \mathrm{~mol}$) in pH 7.00 phosphate-boratebuffer (2 mL) was added 3,4-dimethoxy-3-cyclobutene-1,2-dione ($29 \mathrm{mg}, 206 \mu \mathrm{~mol}$) at $22^{\circ} \mathrm{C}$. The pH of the solution was kept at 7.0 by addition of 0.05 M sodium tetraborate. After 45 min , the solution was freeze-dried. The major fraction obtained after purification of the residue through a Biogel P-2 column ($90 \times 2 \mathrm{~cm}$) using 0.02 M pyridine-acetic acid buffer as the eluant was freezedried to afford an off-white residue (61 mg). A solution of this residue ($21.5 \mathrm{mg}, 51.4 \mu \mathrm{M}$) and human serum al bumin (58 mg , $0.089 \mu \mathrm{M}$) in 1 mL of pH 9 phosphate-borate buffer was kept at $22^{\circ} \mathrm{C}$ for 3 days. The mixture was concentrated in an Amicon ultrafiltration cell (10 or 50 mL) equipped with a YM 10 membrane using five changes of ion-exchanged water followed by freeze-drying to afford a colorless amorphous sol id in 70-85\% yield.

Procedure B. A sol ution of the hydrazide $\mathbf{4 7}(26.1 \mathrm{mg}, 84$ $\mu \mathrm{mol}$), 3,4-dimethoxy-3-cyclobutene-1,2-dione ($12.5 \mathrm{mg}, 88$ $\mu \mathrm{mol}$), and trisisopropanolamine ($13.4 \mathrm{mg}, 70 \mu \mathrm{~mol}$) in MeOH $(2.5 \mathrm{~mL})$ was kept at $22^{\circ} \mathrm{C}$ for 12 h and then was concentrated. To a solution of the residue in pH 9 buffer was added human serum albumin ($24 \mathrm{mg}, 0.362 \mu \mathrm{~mol}$). After 7 days at $22^{\circ} \mathrm{C}$, the mixture was processed as described in Procedure A.

Procedure C. To a solution of hydrazide 47 ($18.9 \mathrm{mg}, 61.4$ $\mu \mathrm{mol}$) in pH 7.00 phosphate-borate buffer (3 mL) was added 3,4-dimethoxy-3-cyclobutene-1,2-dione ($8.7 \mathrm{mg}, 61.2 \mu \mathrm{~mol}$) at $22^{\circ} \mathrm{C}$. (For compound 48 the pH was adjusted to 7.0 by addition of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution before addition of compound 70.) The pH of the solution was kept at 7.0 by addition of 0.05 M sodi um tetraborate. After 4 h , the solution was treated with human serum albumin ($20 \mathrm{mg}, 0.3 \mu \mathrm{M}$) and its pH was adjusted to 9.0 with sodium tetraborate. After 7 days at 22 ${ }^{\circ} \mathrm{C}$ the mixture was processed as described in procedure A .

Acknowledgment. The authors thank Drs. J ohn B. Robbins and Rachel Schneerson for their help and support throughout this work and Noel Whittaker for the Cl mass spectra.
J O962300Y

[^0]: † This paper is dedicated to Professor Hans Paulsen on occasion of his 75th birthday.
 \ddagger National Institute of Child Health and Human Development.
 § National Institute of Diabetes, and Digestive and Kidney Diseases.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, April 1, 1997.
 (1) Sato, A.; Aso, K.; Matsuda, K. Nature 1957, 180, 984-985.
 (2) (a) Prehm, P.; Stirm, S.; J ann, B.; J ann, K.; Boman, G. Eur. J Biochem. 1976, 66, 369-377. (b) Holst, O.; Zähringer, U.; Brade, H.; Zamojski, A. Carbohydr. Res. 1991, 215, 323-335.
 (3) (a) Leontein, K.; Lindberg, B.; Lönngren, J .; Carlo, D. J Carbohydr. Res. 1983, 114, 257-266. (b) Leontein, K.; Lindberg, B.; Lönngren, J. Can. J. Chem. 1981, 59, 2081-2085.
 (4) Matsuda, K.; Watanabe, H.; F ujimoto, K.; Aso, K. Nature 1961, 191, 278.
 (5) Wicken, A. J .; Baddiley, J. Biochem. J. 1963, 87, 54-62.
 (6) Alvarado, E.;'Nukada, T.; Ogawa, T.; Ballou, C. E. Biochemistry 1991, 30, 881-886.
 (7) Hisamatsu, M.; Yamada, T.; Akaki, M.; Nashinoki, H.; Takai, Y.; Amemura, A. Agric. Biol. Chem. 1985, 49, 1447-1451.
 (8) Watanabe, T.; K amo, Y.; Matsuda, K.; Dudman, W. F. Carbohydr. Res. 1982, 110, 170-175.
 (9) Kent, P. W. J. Chem. Soc. 1951, 364-368.

[^1]: (10) K ojibiose: (a) Matsuda, K. Nature 1957, 985. (b) Helferich, B.; Zirner, J. Chem. Ber. 1962, 95, 2604-2611. (c) Wolfrom, M. L.; Thompson, A.; Lineback, D. R. J. Org. Chem. 1963, 28, 860-861. (d) Igarashi, K.; Irisawa, J.; Honma, T. Carbohydr. Res. 1975, 39, 341343. (e) Aspinall, G. O.; Gurjar, M. K. Carbohydr. Res. 1985, 143, 266270. (f) Nepogodev, S. A.; Backinowsky, L. V.; Grzeszczyk, B.; Zamojski, A. Carbohydr. Res. 1994, 254, 43-60. (g) Pozsgay, V.; Robbins, J. B. Carbohydr. Res. 1995, 277, 51-66. (h) Dubois, E. P.; Robbins, J. B.; Pozsgay, V. Bioorg. Med. Chem. Lett. 1996, 6, 1387-1392.
 (11) Thiokojibiose: Andrews, J . M.; Pinto, M. Carbohydr. Res. 1995, 270, 51-62.
 (12) K ojitriose: (a) Takeo, K. Carbohydr. Res. 1981, 88, 158-161. (b) Takeo, K.; Suzuki, Y. Carbohydr. Res. 1987, 162, 95-109. (c) Ref. 10 g . (d) Reference 10 h .
 (13) K ojitetraose and kojipentaose: (a) Reference 10 g . (b) Reference 10h. (c) Reference 12b.
 (14) (a) Pozsgay, V.; Nánási, P.; Neszmélyi, A. Carbohydr. Res. 1979, 75, 310-313. (b) Kanie, O.; Takeda, T.; Hada, N.; Ogihara, Y. J. Carbohydr. Chem. 1991, 10, 561-581. (c) Ref 10e.

[^2]: (15) An earlier work by Takeo ${ }^{12 b}$ used methyl 2-O-allyl-4,6-O-benzylidene- α-D-glucopyranoside as the precursor, which was prepared by several groups [(a) Küster, J . M.; Dyong, I. Liebigs Ann. Chem. 1975, 2179-2189. (b) J enkins, D. J.; Potter, B. V. L. Carbohydr. Res. 1994, 265, 145-149. (c) Dasgupta, F.; Garegg, P. J. Synthesis 1994, 11211123] by regioselective monoallylation of methyl 4,6-O-benzylidene-
 mixtures of the 2-O- and 3-0-allyl derivatives from which the isolation of the 2-O-allyl derivative proved to be impractical.
 (16) Hodge, J. E.; Rist, C. E. J . Am. Chem. Soc. 1952, 74, 1498.
 (17) (a) Pozsgay, V.; Jennings, H. J. Tetrahedron Lett. 1987, 28, 1375-1376. (b) Pozsgay, V.; J ennings, H. J. J . Org. Chem. 1988, 53, 4042-4052.

[^3]: (18) α, α-Dichloromethyl methyl ether (DCMME) has been used extensively for the introduction of chlorine to the anomeric center in methyl glycosides and glycosyl acetates, see, e.g.: Pozsgay, V.; Coxon, B.; Yeh, H. Bioorg. Med. Chem. 1993, 1, 237-257. F or the only reported use of DCMME for the conversion of thioglycosides to glycosyl chlorides, see: Farkas, I.; Bognár, R.; Menyhárt, M. M.; Tarnai, A. K.; Bihari, M.; Tamás, J . Acta Chim. 1975, 84, 325-334.
 (19) For an excellent review on the use of DCMME for the conversion of glycosyl acetates and O- and S-glycosides into glycosyl chlorides, see: Gross, H. Z. Chem. 1978, 18, 201-210.
 (20) For a related conversion using LiAlH_{4} in ether to cleave the S-O linkage, see: Borén, H. B.; Ekborg, G.; Lönngren, J . Acta Chim. Scand. 1975, B29, 1085-1088.
 (21) Pozsgay, V.; Coxon, B. Carbohydr. Res. 1994, 257, 189-215.
 (22) Iversen, Y.; Bundle, D. R. Carbohydr. Res. 1982, 103, 29.

[^4]: (23) Brennan, S.; Finan, P. A. J . Chem. Soc. 1970, C, 1742-1744.
 (24) Excoffier, G.; Gagnaire, D.; Utille, J .-P. Carbohydr. Res. 1975, 39, 368-372.
 (25) (a) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731. (b) Numata, M.; Sugimoto, M.; Koike, K.; Ogawa, T. Carbohydr. Res. 1987, 163, 209.
 (26) Freudenberg, K.; Plankenhorn, E. Liebigs Ann. Chem. 1938, 536, 257-266.
 (27) F or related observations, see: (a) Szurmai, Z.; Lipták, A. Carbohydr. Res. 1982, 107, 33-41. (b) Szurmai, Z.; Lipták, A.; Schnatzke, G. Carbohydr. Res. 1990, 200, 201-208. (c) Borbás, A; Lipták, A. Carbohydr. Res. 1993, 241, 99-116.

[^5]: (28) van Boeckel, C. A. A.; Beetz, T. Tetrahedron Let. 1983, 24, 3775.
 (29) The synthesis of compound 30 from the same precursor in 42% yield was reported: Chénedé, A.; Perrin, E.; Rekaï, E. D.; Sinay, P. Synlett 1994, 420-422.
 (30) For an excellent review on the use of 2-(trimethylsilyl)ethyl glycosides in oligosaccharide synthesis, see: Magnusson, G. Trends Glycosci. Glycotechnol. 1992, 4, 358-367.

[^6]: (31) Dubois, E.; Neszmélyi, A.; Lotter, H.; Pozsgay, V. Tetrahedron Let. 1996, 37, 3627-3630.
 (32) Sabesan, S.; Paulson, J . C. J . Am. Chem. Soc. 1986, 108, 20682080.

[^7]: (33) Pozsgay, V.; Coxon, B. Carbohydr. Res. 1995, 277, 171-178.
 (34) (a) Bose, R.; Scheffold, R. Angew. Chem. 1976, 88, 578-579. (b) Ogawa, T.; Nakabayashi, S. Carbohydr. Res. 1981, 93, c1-c5.

[^8]: (35) (a) Tietze, L. F .; Schröter, C.; Gabius, S.; Brinck, U.; GoerlachGraw, A.; Gabius, H.-J. Bioconjugate Chem. 1991, 2, 148-153. (b) Tietze, L. F.; Arlt, M.; Beller, M.; Glüsenkamp, K.-H.; J ähde, E.; Rajewsky, M. F. Chem. Ber. 1991, 124, 1215-12217. (c) Kamath, V. P.; Diedrich, P.; Hindsgaul, O. GlycoconjugateJ . 1996, 13, 315-319.

[^9]: (39) Zhang, Y.-M.; Brodzky, A.; Sinä̈, P.; Saint-M arcoux, G.; Perly, B. Tetrahedron: Asymmetry 1995, 6, 1195-1216.
 (40) Kiyoi, T.; Nakai, Y.; K ondo, H.; Ishida, H.; Kiso, M.; Hasegawa, A. Bioorg. Med. Chem. 1996, 4, 1167-1176.
 (41) Park,T. K.; Kim, I. J.; Hu, S.; Bilodeau, M. T.; Randol ph, J. T.; Kwon, O.; Danishefsky, S. J.J.Am. Chem. Soc. 1996, 118, 1148811500.

