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The tricyclic core of vibsanin E was constructed without the use of a protecting group in six steps. The El Gal “ed Baylis —Hillman variant was
key to allowing the Brgnsted acid induced tandem cyclization forming rings B and C in one operation.

Vibsanine E {) (Figure 1), later truncated to vibsanin E,
was first isolated fromViburnum awabukby Kawazu in
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Figure 1. Strutures of vibsanin B, C, E, and F.

lesser extent Shérand DuhS have studied th&/iburnum
species elucidating an entire vibsane family [e.g., vibsanin
C (2) and vibsanin B3)] (Figure 1). In addition, Fukuyama
has synthesized épivibsanin F &) proving the absolute
configuration of vibsanin F (Figure 1).

Vibsanin E (), however, has a slightly more complex and
unique tricyclic structure than the other family members,
which attracted the interest of our group. Considering no
synthetic endeavors to this system have been repbsed,
undertook a brief investigation into the construction of the
central core, details of which are disclosed herein.

In the process of elucidating vibsane biochemical path-
ways, Fukuyama investigated the conversion of vibsanin C
(2) to vibsanin E 1)7 and found that conversion proceeded
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smoothly, albeit in moderate yield (50%), using boron recovered starting material (27%)] after 10 h at 8D
trifluoride etherate (BFELO). This precedent formed the (Scheme 2). More recently reported procedures either failed
basis of our retrosynthetic frame (Scheme 1) and is in effect
the key step for the formation of rings B and C.
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to react® or gave a lower yieltf'” of product in our hands.
Utilizing the cyclization procedure reported by Fukuydma
[38.4 mM (CHCIy), BFs-Et,0 (10 equiv),—78°C, 20 min]
and variations thereof afforded only trace amounts of the
desired cyclization productl (Scheme 3). It was soon

It was envisaged that 3-methylcyclohex-2-en@nepuld
be converted to a cyclohexenone of typehich would set
the stage for boron trifluoride etherate mediated ring forma-
tion (i.e., 11).

In the event that this failed, “fall back” measures, such as
Danishefsky’s reductive cyclization of mercurial enofies,
Semmelhack’s tandem oxy-palladation vinylatfand Bart- Scheme 3
lett’s thallium(lil)-induced tetrahydropyran synthe¥lsyere 0
expected to suffice. Following tandem cyclization, regiose- f ~OH  HCI
lective 6- to 7-membered ring expansion (e5).would be
induced with stablized carben®s.

Cyclohexenond& was reacted with the homoprenylcuprate k/( 10
giving the 1,4-addition produd in 85% yield. Dehydro-
genation with IBXNMO, as reported by Nicolaotf, pro-
ceeded smoothly, affording the,-unsaturated keton@
(64%). At this point we utilized the increasingly important
work of El Gaed3'* who reported modified Baylis
Hillman®® conditions suitable for cyclic enones. Of the two

realized that BEEt,O was most likely not the active agent,
but rather hydrofluoric acid. Treating0 with anhydrous
ethereal hydrochloric acid conversely gave cyclized product

) o o . ; . .
procedures available, that is, usibgN-(dimethylamino)- 11 in 58% yield with no accompanying diastereoisomers

pyridine [DMAP/60 °C/5 days}® or imidazole [imidya7 ~ (&:9-12) (Scheme 3).

days}* as the catalyst, the lower yielding DMAP procedure ~ Conformational analysis of the stereochemical models (i.e.,
was chosen based on time conservation. In our case,13 and14) suggestsl4 is significantly more strained than
considerable optimization and modification was required. 13; however, these two compounds are epimeric alpha to a
However, it wasfound that reaction & using DMAP carbonyl. Therefore, irrespective of the kinetic ratioldf
afforded the allylic alcohol0in 32% vyield [43% based on  and12, the reaction should be under thermodynamic control
becausd1and12would easily equilibrate under the reaction
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Figure 2. Stereochemical modelk3 and 14,
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In addition, failed attempts at ring expansion were also
experienced with nonstabilized carbenoitigthyl diazo-
lithioacetate?® and silyloxycyclopropane homologatigh.
Considering ring expansion of 1,3-dicarbonyl functions are
prevalent, for example, Beckwith-Do#dand variart®
protocols,11 was converted td5in 81% overall yield, via
Mander’s reageft and subsequent treatment with ethoxide
(retro Claisen/Claisen reaction). A requirement of the Beck-
with—Dowd protocol is the installation of a methylene halide
function, however, all attempts to convé&fto the methylene
iodide 17 or bromidel8 failed whenl5was reacted directly
with diiodo- or dibromomethane. Reaction d6 with
formalir®® gave the methylene hydroxy derivati¥8in 84%

yield, which underwent smooth conversion to the methylene

iodide17in 75% yield, using triphenylphosphine, iodine and
imidazole. Unfortunately, treating iodider with samarium
diiodide?® afforded separable mixtures of cyclopropatél

(72%) and unidentified products, whereas recent develop-

ments with zinc metél promoted ring expansion returned
only starting material (Scheme 4). Surprisingly, brief attempts
(e.g., DBU, NaOEt) to ring opeb6 have been disappointing.
Thanks to the ingenious Zercher reactf8rhowever,
treating15 with diethyl zinc and diiodomethane gave in one
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step the vibsanin E cor@(® in 50% vyield (dr >95:5)
(Scheme 5).
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In conclusion, we have demonstrated that the core of
vibsanin E () can be constructed expediently and astonish-
ingly without the use of a single protecting group. We believe
that new developments in asymmetric 1,4-additions to
cyclohexenoné8in conjunction with the El Gad Baylis-
Hillman variant and the remarkable Zercher reaction will
pave the way for a successful total synthesis and structural
confirmation of vibsanin EX).
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