

Available online at www.sciencedirect.com



Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 3209-3215

# New highly active taxoids from 9β-dihydrobaccatin-9,10-acetals. Part 5

Yasuyuki Takeda,<sup>a</sup> Kouichi Uoto,<sup>a</sup> Michio Iwahana,<sup>b</sup> Takeshi Jimbo,<sup>b</sup> Motoko Nagata,<sup>b</sup> Ryo Atsumi,<sup>c</sup> Chiho Ono,<sup>c</sup> Noriko Tanaka,<sup>d</sup> Hirofumi Terasawa<sup>b</sup> and Tsunehiko Soga<sup>a,\*</sup>

 <sup>a</sup> Medicinal Chemistry Research Laboratory, Daiichi Pharmaceutical Co., Ltd, Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan
<sup>b</sup> New Product Research Laboratories III, Daiichi Pharmaceutical Co., Ltd, Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan
<sup>c</sup> Drug Metabolism & Physicochemical Property Research Laboratory, Daiichi Pharmaceutical Co., Ltd, Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan
<sup>d</sup> Research Planning & Administration Department, Daiichi Pharmaceutical Co., Ltd, Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan

Received 1 March 2004; accepted 31 March 2004

Abstract—To improve the metabolic stability of **3**, which exhibited both in vitro antitumor activity and in vivo efficacy by both iv and po administration, we designed and synthesized new taxane analogues. Most of the synthetic compounds maintained excellent antitumor activity and were scarcely metabolized by human liver microsomes. And some compounds exhibited potent antitumor effects against B16 melanoma BL6 in vivo by both iv and po administration similarly to **3**. © 2004 Elsevier Ltd. All rights reserved.

### 1. Introduction

Paclitaxel (1,  $Taxol^{(B)}$ )<sup>1</sup> and docetaxel (2,  $Taxotere^{(B)}$ )<sup>2</sup> inhibit cell growth by interacting with microtubules and are particularly effective against ovarian and breast cancer and Kaposi's sarcoma. However, their low water solubility requires the co-injection of a detergent, such as Cremophor® EL or Tween® 80. These detergents frequently cause untoward hypersensitivity reaction, and patients receiving these drugs require premedication. In addition, neither is suitable for oral administration because each has low oral bioavailability. Under these circumstances, we had attempted to discover orally active taxane analogues and found that a new taxane analogue, 9-β-dihydro-9,10-O-acetal taxane 3, exhibited marked in vivo efficacy by both iv and po administration.<sup>3</sup> However, during our study of the biological properties of 3, we found that the incubation of 3 with

monkey or human liver microsomes rapidly provided the metabolite M-1 (4). In our previous paper, to improve the metabolic stability of 3, we synthesized taxane analogues having substituents introduced onto the metabolic position, exemplified by 5 and 6, which maintained excellent antitumor activity and were scarcely metabolized by human liver microsomes.<sup>4</sup>

We investigated yet another approach to obtain the compound, which possessed potent antitumor efficacy and high metabolic stability. We report here the synthesis and antitumor activities of new taxane analogues designed to improve the metabolic stability of 3.

## 2. Chemistry

Firstly, we tried to replace the morpholine moiety of **3** with the other amine groups. Oxidation of **7**,<sup>3</sup> the precursor of **3**, with  $OsO_4$  followed by cleavage with  $NaIO_4$ gave the aldehyde, to which the amine moiety was introduced by reductive amination to afford the targeted compounds (**8a–d**)<sup>5</sup> (Scheme 1).

<sup>\*</sup> Corresponding author. Tel.: +81-3-3680-0151; fax: +81-3-5696-8344; e-mail: sogatf7t@daiichipharm.co.jp

<sup>0960-894</sup>X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.03.109



Scheme 1. Reagents and conditions: (a) (i)  $OsO_4$ , NMO, THF, acetone,  $H_2O$ ; (ii)  $NaIO_4$ , THF, MeOH,  $H_2O$ ; (iii) amine, AcOH, NaBH<sub>3</sub>CN, EtOH (82% for 8a, 12% for 8b, 60% for 8c, 56% for 8d).

Next, to avoid the formation of the hydroxypyridine ring through metabolism by human liver microsomes, we tried to replace the pyridine ring with *tert*-butyl, 3-fluoropyridyl, and thiazolyl groups. The synthesis of the key  $\beta$ -lactam intermediates (13, 18a,b, 23, 27) is shown in Scheme 2. The  $\beta$ -lactams (10, 15a,b) were synthesized by the Staudinger reaction between the imines, which were derived from the corresponding aldehydes (9, 14a,b) and *p*-anisidine, and the ketene derived in situ from 2-acetoxyacetyl chloride. The *p*-methoxyphenyl moiety of 10 was removed with ceric ammonium nitrate (CAN) and sequential deacetylation and silylation gave the  $\beta$ -lactam 12. Finally, acylation of 12 was accomplished with di-*tert*-butyl dicarbonate ((Boc)<sub>2</sub>O) and 4-dimethylaminopyridine (DMAP) to afford the targeted  $\beta$ -lactam 13 as a racemic mixture. Compounds 15a and 15b were converted to 16a and 16b, respectively, by the sequential deacetylation and silylation. After removal of the *p*-methoxyphenyl moieties, the racemic mixtures were resolved by using a chiral HPLC column to afford the optically pure  $\beta$ -lactams ((+)-17a, (+)-17b). Acylations of chiral  $\beta$ -lactams (17a,b) with (Boc)<sub>2</sub>O afforded the desired  $\beta$ -lactams (18a,b) in good yield. The chiral  $\beta$ -lactam 23 was obtained from 19 by following a procedure similar to that described for the preparation of 18b from 14b by replacing *p*-anisidine with 2,4-dimethoxybenzylamine. The chiral  $\beta$ -lactam 27, possessing a 4-thiazolyl group, was derived from the reported chiral  $\beta$ -lactam<sup>6</sup> 24 in three steps.



Scheme 2. Reagents and conditions: (a) (1) 4-anisidine,  $Na_2SO_4$ , benzene, (2) 2-AcOCH<sub>2</sub>COCl, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub> (54% for 10, 61% for 15a, 41% for 15b); (b) CAN, CH<sub>3</sub>CN, H<sub>2</sub>O (72%); (c) (1) K<sub>2</sub>CO<sub>3</sub>, THF, MeOH, (2) TESCl, imidazole, DMF (71%); (d) (Boc)<sub>2</sub>O, DMAP, THF (97% for 13, quant. for 18a, 96% for 18b, 98% for 23, 98% for 27); (e) (1) K<sub>2</sub>CO<sub>3</sub>, THF, MeOH, (2) TIPSCl, imidazole, DMF (74% for 16a, 70% for 16b, 38% for 21); (f) (1) CAN, CH<sub>3</sub>CN, H<sub>2</sub>O, (2) Chiralcel OD (24% for 17a, 31% for 17b, 56% for 26 from 24); (g) (1) 2,4-dimethoxylbenzylamine,  $Na_2SO_4$ , benzene, (2) 2-AcOCH<sub>2</sub>COCl, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub> (48%); (h) (1) K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>,  $Na_2$ HPO<sub>4</sub>, CH<sub>3</sub>CN, H<sub>2</sub>O, (2) Chiralcel OD (20%); (i) (1) BC1<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, (2) TIPSCl, imidazole, DMF.



Scheme 3. Reagents and conditions: (a) 13, LiHMDS, THF (86%); (b) TBAF, THF (96%); (c) (1) OsO<sub>4</sub>, NMO, THF, acetone, H<sub>2</sub>O, (2) NaIO<sub>4</sub>, THF, MeOH, H<sub>2</sub>O, (3) amine, AcOH, NaBH<sub>3</sub>CN, EtOH (73% for 31a, 96% for 31b).

The synthesis of the taxane analogues possessing a *tert*butyl group at the C-13 side chain is depicted in Scheme 3. The coupling of  $28^3$  with the 3 equiv of the racemic  $\beta$ lactam 13 was carried out following a procedure similar to that reported by Ojima et al.<sup>7</sup> to afford the single isomer 29 in good yield. Subsequent removal of the protecting group at C-2' gave the compound 30. Oxidation of 30 with OsO<sub>4</sub> followed by cleavage with NaIO<sub>4</sub> gave the aldehyde, which was converted to the desired compounds 31a and 31b by reductive amination.<sup>8</sup>

The targeted compounds (34a-i) were synthesized according to a procedure similar to that described for the preparation of 31a utilizing 28 and the 1.2 equiv of corresponding chiral  $\beta$ -lactams (18a,b, 23, 27) (Scheme 4).<sup>9</sup>

#### 3. Results and discussion

Activities of the synthetic compounds were evaluated in cytotoxicity assays against five cell lines (P388, PC-6, PC-12, PC-6/VCR29-9, and PC-6/VP1-1), and activities were compared with those of paclitaxel, docetaxel, and **3** (Table 1). Among the compounds having another amine group than the morpholine of **3**, the methylamino derivative **8b** exhibited significantly decreased cytotoxicity against cancer cell lines expressing P-glycoprotein (PC-12, PC-6/VCR29-9, and PC-6/VP1-1). It should be noted that compounds in which the pyridine ring of **3** was replaced by a *tert*-butyl or other hetero ring groups exhibited nearly the same cytotoxicity as **3** and good metabolic stability. The cytotoxicity of the other three compounds (**8a,c,d**) was slightly weaker than that of **3**, but stronger than those of paclitaxel and docetaxel.



Scheme 4. Reagents and conditions: (a) 18a, 18b, 23, or 27, LiHMDS, THF (97% for 32a, 77% for 32b, 57% for 32c, 84% for 32d); (b) TBAF, THF (94% for 33a, 98% for 33b, 84% for 33c, 95% for 33d); (c) (1) OsO<sub>4</sub>, NMO, THF, acetone, H<sub>2</sub>O, (2) NaIO<sub>4</sub>, THF, MeOH, H<sub>2</sub>O, (3) amine, AcOH, NaBH<sub>3</sub>CN, EtOH (78% for 34a, 78% for 34b, 70% for 34c, 64% for 34d, 69% for 34e, 57% for 34f, 88% for 34g, 54% for 34h, 51% for 34i).

| Compd | Cytotoxicity GI <sub>50</sub> (ng/mL) <sup>a</sup> |      |       |              |            | Remaining rate (%) <sup>b</sup> |
|-------|----------------------------------------------------|------|-------|--------------|------------|---------------------------------|
|       | P388                                               | PC-6 | PC-12 | PC-6/VCR29-9 | PC-6/VP1-1 |                                 |
| 1     | 2.93                                               | 1.27 | 539   | 455          | 1000       | NT                              |
| 2     | 0.78                                               | 0.26 | 19.1  | 62.1         | 442        | 88.7                            |
| 3     | 0.18                                               | 0.26 | 0.13  | 2.43         | 19.3       | 60.2                            |
| 8a    | 0.41                                               | 0.38 | 0.74  | 4.04         | 54.2       | 84.8                            |
| 8b    | 0.60                                               | 0.54 | 5.82  | 43.2         | 265        | NT                              |
| 8c    | 0.17                                               | 0.54 | 0.30  | 2.22         | 49.4       | 94.4                            |
| 8d    | 0.56                                               | 0.83 | 1.45  | 4.88         | 81.7       | 92.0                            |
| 31a   | 0.34                                               | 0.70 | 0.13  | 0.85         | 5.56       | 92.1                            |
| 31b   | 0.73                                               | 0.67 | 0.50  | 1.42         | 15.7       | 93.1                            |
| 34a   | 0.20                                               | 0.29 | 0.14  | 0.96         | 13.7       | 85.2                            |
| 34b   | 0.67                                               | 0.38 | 0.62  | 2.58         | 21.3       | 91.4                            |
| 34c   | 0.06                                               | 0.12 | 0.13  | 1.37         | 19.7       | 94.8                            |
| 34d   | 0.25                                               | 0.27 | 0.35  | 2.81         | 39.1       | 91.4                            |
| 34e   | 0.06                                               | 0.42 | 0.12  | 1.16         | 39.4       | 84.9                            |
| 34f   | 0.03                                               | 0.65 | 0.08  | 1.02         | 9.13       | 91.2                            |
| 34g   | 0.06                                               | 0.35 | 0.19  | 1.10         | 17.3       | 91.2                            |
| 34h   | 0.04                                               | 0.07 | 0.12  | 0.66         | 20.5       | 86.4                            |
| 34i   | 0.07                                               | 0.30 | 0.17  | 1.63         | 23.8       | 87.4                            |

Table 1. Cytotoxicity and metabolic stability of 7-deoxy-9,10-O-acetal taxane analogues

NT: not tested.

<sup>a</sup> Concentration that inhibited the growth of cells by 50% at 72 h continuous exposure for the five cell lines [mouse leukemia (P388), human lung cancer cell lines (PC-6 and PC-12), and resistant cancer cell lines (PC-6/VCR29-9 and PC-6/VP1-1)].<sup>11</sup> Resistance factors (GI<sub>50</sub> of the drug for the selection for the resistance cell line/that for the parent cell line) of PC-6/VCR29-9 and PC-6/VP1-1 were 842 and 20, respectively.

<sup>b</sup>Remaining rate of the substrate after 5 min of incubation with human liver microsomes.

Comparing the cytotoxicity of **8c** and **8d**, **8d** exhibited weaker cytotoxicity against all cell lines than **8c**. This decrease in cytotoxicity might be due to a steric hindrance. As compared with the cytotoxicity of compounds possessing the dimethylamino moiety on their acetal moiety, the compounds possessing the morpholine moiety on their acetal moiety showed slightly stronger cytotoxicity.

The metabolic stability of all the synthetic compounds except **8b** was examined, and the results were shown as the rate remaining after 5 min of incubation with human liver microsomes. All compounds in which the pyridine ring was replaced by a *tert*-butyl or other hetero ring groups also exhibited good metabolic stability as we had expected. On the other hand, the metabolic stability of

**35** (Fig. 1),<sup>3</sup> whose C-13 side chain is the same as that of docetaxel, got worse.<sup>10</sup> These results clarify that the substitution of the pyridine ring, which is considered main metabolic position, with a suitable moiety such as a *tert*-butyl or other hetero ring groups may contribute to the improvement of metabolic stability. Interestingly, the compounds in which the morpholine moiety of **3**, which was not the metabolic position, was replaced by another amine group exhibited good metabolic stability. Hence, it was elucidated that the modification of the pyridine ring was not the only method to improve the metabolic stability of **3**.

To evaluate the antitumor effects in vivo, we used B16 melanoma BL6 cells subcutaneously implanted into mice, and the activities of all the synthetic compounds

H OBz OAc



Figure 1. Structures of taxane analogues.

except 8b,c and 34e,g,i were compared with those of docetaxel and 3 when administered intravenously (iv) and orally (po) (Table 2). Our synthetic compounds exhibited potent antitumor effects by both iv and po administration; however, the effective dose ranges of some compounds, including 5 and 6, were narrow. They showed potent antitumor activity at only one dosage by oral administration; whereas the higher dosage resulted in death and the lower dosage did not exhibit the high antitumor effect. On the other hand, compounds 8a, 31a, and 34a,b,c exhibited potent antitumor effects over a wide dosage range by both iv and po administration as 3. The detailed data of these six compounds (3, 8a, 31a, and 34a,b,c) are shown in Table 3. Compounds 8a and 34a,b could be assumed to have good oral bioavailabilities, because these compounds administered orally gave nearly the same antitumor effects and body weight losses as compared with those when they were administered intravenously. In contrast, docetaxel when administered orally at a dose of 600 mg/kg exhibited no antitumor effect and no body weight loss as a result of its poor oral bioavailability.

In summary, we designed and synthesized new taxane analogues to improve the metabolic stability of **3**, and it was suggested that some compounds had nearly the same biological properties as **3** and were scarcely metabolized by human liver microsomes. We expect to find an optimal compound to be selected for clinical development among these compounds.

Table 2. Antitumor activity against B16 melanoma BL6<sup>a</sup>

| Compd | Effective dos   | e range (mg/kg) <sup>b</sup> |
|-------|-----------------|------------------------------|
|       | ро              | iv                           |
| 3     | 12.0-27.0       | 5.3-18.0                     |
| 5     | 7.9             | 3.5                          |
| 6     | 13.3            | 5.9                          |
| 8a    | 7.9–17.8        | 7.9–17.8                     |
| 8c    | NT <sup>c</sup> | NT <sup>c</sup>              |
| 8d    | 11.9-27.6       | 7.9                          |
| 31a   | 11.9-17.8       | 7.8–11.9                     |
| 31b   | 11.9            | 11.9                         |
| 34a   | 11.9-17.8       | 11.9–17.8                    |
| 34b   | 7.9–11.0        | 5.3–11.9                     |
| 34c   | 11.9-26.7       | 7.9–17.8                     |
| 34d   | 11.9            | 7.8–17.8                     |
| 34e   | NT <sup>c</sup> | NT <sup>c</sup>              |
| 34f   | 7.9             | 3.5–5.3                      |
| 34g   | NT <sup>c</sup> | NT <sup>c</sup>              |
| 34h   | None            | 7.9                          |
| 34i   | NT <sup>c</sup> | NT <sup>c</sup>              |

<sup>a</sup> Cultured B16 melanoma BL6 was kindly provided by Dr. Tsuruo (Institute of Molecular and Cellular Biosciences, University of Tokyo) by courtesy of Dr. Fidler (The University of Texas M. D. Andersen Cancer Center).<sup>12</sup> B16 melanoma BL6 cells were subcutaneously inoculated into C57BL/6 mice (six mice per group) on day 0. Compounds were administered intravenously or orally on day 4 (single administration). Tumor masses were weighed on day 15.

<sup>b</sup> Effective dose range means that the doses resulted in inhibition rate of more than 58% without both body weight loss of less than 20% and no death due to toxicity.

<sup>c</sup> NT: not tested. Compounds **8c** and **34e** could not be administered due to their low solubility. Maximum tolerated dose (MTD) of **34g** and **34i** were significantly decreased in a preliminary test.

Table 3. Antitumor activity of selected five compounds against B16 melanoma BL6

| Compd | Route | Dose (mg/kg) | IR (%) <sup>a</sup> | BWLmax (%) <sup>b</sup> | Mortality | Route | Dose (mg/kg) | IR (%) <sup>a</sup> | BWLmax (%) <sup>b</sup> | Mortality |
|-------|-------|--------------|---------------------|-------------------------|-----------|-------|--------------|---------------------|-------------------------|-----------|
| 2     | ро    | 600.0        | 6.2                 | <0                      | 0/6       | iv    | 100.0        | 95.1                | <0                      | 0/6       |
| 3     | ро    | 27.0         | 97.3                | 4.5                     | 0/6       | iv    | 18.0         | 95.6                | 3.7                     | 0/6       |
|       | I.    | 18.0         | 93.3                | 0.3                     | 0/6       |       | 12.0         | 94.4                | <0                      | 0/6       |
|       |       | 12.0         | 84.9                | <0                      | 0/6       |       | 8.0          | 87.2                | <0                      | 0/6       |
|       |       | 8.0          | 27.2                | <0                      | 0/6       |       | 5.3          | 62.4                | <0                      | 0/6       |
| 8a    | ро    | 26.7         | 97.5                | 13.1                    | 1/6       | iv    | 26.7         |                     |                         | 6/6       |
|       |       | 17.8         | 97.0                | 8.8                     | 0/6       |       | 17.8         | 97.7                | 8.6                     | 0/6       |
|       |       | 11.9         | 88.8                | <0                      | 0/6       |       | 11.9         | 95.0                | 1.0                     | 0/6       |
|       |       | 7.9          | 72.8                | <0                      | 0/6       |       | 7.9          | 82.3                | <0                      | 0/6       |
| 31a   | ро    | 26.7         |                     |                         | 6/6       | iv    | 17.8         | _                   |                         | 6/6       |
|       |       | 17.8         | 90.3                | 11.7                    | 0/6       |       | 11.9         | 93.8                | 10.5                    | 0/6       |
|       |       | 11.9         | 63.4                | 0.4                     | 0/6       |       | 7.8          | 71.9                | 1.2                     | 0/6       |
|       |       | 7.9          | 25.5                | <0                      | 0/6       |       | 5.3          | 28.6                | <0                      | 0/6       |
| 34a   | ро    | 26.7         | 97.4                | 16.6                    | 1/6       | iv    | 26.7         | _                   |                         | 6/6       |
|       | -     | 17.8         | 88.5                | 2.2                     | 0/6       |       | 17.8         | 94.7                | 11.9                    | 0/6       |
|       |       | 11.9         | 65.9                | <0                      | 0/6       |       | 11.9         | 85.7                | <0                      | 0/6       |
|       |       | 7.9          | -16.3               | 0.8                     | 0/6       |       | 7.9          | 28.6                | 0.3                     | 0/6       |
| 34b   | ро    | 17.8         | 94.8                | 13.9                    | 5/6       | iv    | 17.8         |                     |                         | 6/6       |
|       |       | 11.9         | 97.4                | 12.9                    | 0/6       |       | 11.9         | 95.6                | 12.0                    | 0/6       |
|       |       | 7.9          | 91.5                | 3.8                     | 0/6       |       | 7.9          | 91.5                | 2.9                     | 0/6       |
|       |       | 5.3          | 42.4                | <0                      | 0/6       |       | 5.3          | 67.6                | 2.0                     | 0/6       |
| 34c   | ро    | 40.0         |                     |                         | 6/6       | iv    | 26.7         | 98.3                | 15.0                    | 2/6       |
|       | -     | 26.7         | 97.8                | 10.0                    | 0/6       |       | 17.8         | 96.9                | 7.1                     | 0/6       |
|       |       | 17.8         | 97.0                | 8.8                     | 0/6       |       | 11.9         | 85.7                | <0                      | 0/6       |
|       |       | 11.9         | 77.9                | <0                      | 0/6       |       | 7.9          | 79.1                | 1.5                     | 0/6       |

<sup>a</sup>  $IR(\%) = (1 - TWt/TWc) \times 100$ . TWt: the mean tumor weight of the treated group. TWc: the mean tumor weight of the control group. <sup>b</sup> BWLmax (%): Maximum rate of body weight loss (<0 indicates no body weight loss).

#### Acknowledgements

The authors are greatly indebted to Drs. T. Tsuruo, Institute of Molecular and Cellular Biosciences, University of Tokyo and I. J. Fidler, the University of Texas M. D. Anderson Cancer Center for their kind supply of B16 melanoma BL6.

#### **References and notes**

- Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; MacPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
- Guéritte-Voegelein, F.; Guénard, D.; Lavelle, F.; Le Goff, M.-T.; Mangatal, L.; Potier, P. J. Med. Chem. 1991, 34, 992.
- Takeda, Y.; Yoshino, T.; Uoto, K.; Chiba, J.; Ishiyama, T.; Iwahana, M.; Jimbo, T.; Tanaka, N.; Terasawa, H.; Soga, T. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 185.
- Takeda, Y.; Uoto, K.; Chiba, J.; Horiuchi, T.; Iwahana, M.; Atsumi, R.; Ono, C.; Terasawa, H.; Soga, T. *Bioorg. Med. Chem.* 2003, 11, 4431.
- 5. Spectral data of 8a-d are as follows. Compound 8a: mp 148–149 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 1.26 (3H, s), 1.44 (9H, s), 1.48 (3H, s), 1.61 (3H, s), 1.72 (3H, s), 1.88-1.94 (3H, m), 2.05–2.13 (2H, m), 2.32–2.39 (2H, m), 2.38 (6H, s), 2.38 (3H, s), 2.63–2.76 (2H, m), 2.93 (1H, d, J = 4.4 Hz), 4.12 (1H, d, J = 7.3 Hz), 4.22 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 7.2 Hz), 4.90-4.92 (2H, m), 5.01 (1H, t, t)J = 5.4 Hz, 5.24 (1H, d, J = 6.4 Hz), 5.36 (1H, d, J = 9.3 Hz), 5.94–5.99 (2H, m), 6.09 (1H, t, J = 8.7 Hz), 7.23 (1H, dd, J = 4.9, 7.3 Hz), 7.41 (1H, d, J = 7.8 Hz), 7.47 (2H, t, *J* = 7.8 Hz), 7.60 (1H, t, *J* = 7.3 Hz), 7.72 (1H, t, J = 7.3 Hz), 8.12 (2H, d, J = 7.8 Hz), 8.54 (1H, d, J = 4.9 Hz), FAB-MS (m/z): 864 (M+H)<sup>+</sup>. Anal. Calcd for C<sub>46</sub>H<sub>61</sub>N<sub>3</sub>O<sub>13</sub>·0.5H<sub>2</sub>O: C, 63.29; H, 7.16; N, 4.81. Found: C, 63.12; H, 7.06; N, 4.70; IR: 3450, 2946, 1722, 1712, 1592, 1506, 1469, 1452, 1438 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  –4.6 (*c* 0.5, CHCl<sub>3</sub>). Compound **8b**: mp 139–142 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) *b*: 1.27 (3H, s), 1.44 (9H, s), 1.49 (3H, s), 1.61 (3H, s), 1.72 (3H, s), 1.84–2.13 (5H, m), 2.26–2.39 (2H, m), 2.35 (3H, s), 2.55 (3H, s), 2.94-2.95 (3H, m), 4.16 (1H, d, J = 7.3 Hz, 4.22 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz, 4.90–4.92 (2H, m), 5.00 (1H, br s), 5.26 (1H, d, J = 6.4 Hz), 5.36 (1H, d, J = 8.3 Hz), 5.94–5.99 (2H, m), 6.09 (1H, t, J = 8.3 Hz), 7.22–7.25 (1H, m), 7.42 (1H, d, J = 7.8 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz), 7.72 (1H, t, J = 7.8 Hz), 8.12 (2H, d, J = 7.8 Hz), 8.54 (1H, d, J = 3.9 Hz); FAB-MS (m/z): 850 (M+H)<sup>+</sup>; HR-MS Calcd for  $C_{45}H_{60}N_3O_{13}$ : 850.4126. Found, 850.4165; IR: 3423, 2931, 1712, 1592, 1492, 1434, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –4.8 (*c* 0.1, CHCl<sub>3</sub>). Compound **8c**: mp 210–212 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 0.37–0.41 (2H, m), 0.44– 0.48 (2H, m), 1.26 (3H, s), 1.43 (9H, s), 1.49 (3H, s), 1.61 (3H, s), 1.72 (3H, s), 1.78-2.11 (6H, m), 2.25-2.34 (2H, m), 2.35 (3H, s), 2.93 (1H, d, J = 4.9 Hz), 3.04 (2H, d, J = 4.9 Hz, 4.15 (1H, d, J = 6.8 Hz), 4.22 (1H, d, J = 8.3 Hz, 4.32 (1H, d, J = 8.8 Hz), 4.90–4.92 (2H, m), 4.97 (1H, t, J = 4.9 Hz), 5.25 (1H, d, J = 6.8 Hz), 5.35 (1H, d, J = 9.3 Hz), 5.94-5.99 (2H, m), 6.09 (1H, t, t)J = 8.3 Hz), 7.22–7.25 (1H, m), 7.42 (1H, d, J = 7.8 Hz), 7.47 (2H, t, *J* = 7.8 Hz), 7.60 (1H, t, *J* = 7.8 Hz), 7.72 (1H, t, J = 7.8 Hz), 8.12 (2H, d, J = 7.8 Hz), 8.53 (1H, d, J = 4.4 Hz; FAB-MS (m/z): 876 (M+H)<sup>+</sup>. Anal. Calcd for  $C_{47}H_{61}N_3O_{13} \cdot 0.5H_2O$ : C, 63.79; H, 7.06; N, 4.75. Found: C, 63.73; H, 7.01; N, 4.58; IR: 3542, 2973, 1724, 1596, 1529, 1442 cm<sup>-1</sup>;  $[\alpha]_D^{22}$  –8.2 (*c* 0.34, CHCl<sub>3</sub>). Com-

pound **8d**: mp 211–212 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (3H, s), 1.44 (9H, s), 1.47 (3H, s), 1.61 (3H, s), 1.72 (3H, s), 1.65–2.31 (13H, m), 2.35 (3H, s), 2.87 (2H, d, J = 5.4 Hz), 2.94 (1H, d, J = 5.4 Hz), 3.33–3.36 (1H, m), 4.15 (1H, d, J = 7.3 Hz), 4.22 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.90–4.92 (2H, m), 4.95 (1H, t, J = 4.9 Hz), 5.24 (1H, d, J = 6.8 Hz), 5.35 (1H, d, J = 7.9 Hz), 5.94–6.00 (2H, m), 6.09 (1H, t, J = 8.3 Hz), 7.22–7.25 (1H, m), 7.42 (1H, d, J = 7.8 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz), 8.54 (1H, d, J = 3.9 Hz); FAB-MS (m/z): 890 (M+H)<sup>+</sup>. Anal. Calcd for C<sub>48</sub>H<sub>63</sub>N<sub>3</sub>O<sub>13</sub>·0.25H<sub>2</sub>O: C, 64.45; H, 7.15; N, 4.70. Found: C, 64.29; H, 7.15; N, 4.89; IR: 3264, 2983, 1735, 1698, 1596, 1529, 1479, 1446 cm<sup>-1</sup>; [ $\alpha$ ]<sub>22</sub><sup>2</sup> –6.0 (c 0.27, CHCl<sub>3</sub>).

- Li, L.; Thomas, S. A.; Klein, L. L.; Yeung, C. M.; Maring, C. J.; Grampovnik, D. J.; Lartey, P. A.; Plattner, J. J. J. Med. Chem. 1994, 37, 2655.
- Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. *Tetrahedron* 1992, 48, 6985.
- 8. Spectral data of 31a and 31b are as follows. Compound **31a**: mp 159–160 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 1.05 (9H, s), 1.25 (3H, s), 1.39 (9H, s), 1.49 (3H, s), 1.60 (3H, s), 1.79 (3H, s), 1.64–2.03 (5H, m), 2.31–2.38 (2H, m), 2.34 (3H, s), 2.59-2.68 (4H, m), 2.70-2.82 (2H, m), 2.92 (1H, d, J = 4.8 Hz, 3.74 (4H, t, J = 4.9 Hz), 3.93 (1H, d, J = 10.3 Hz), 4.07 (1H, s), 4.13 (1H, d, J = 6.8 Hz), 4.24 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.60 (1H, s), 4.93 (1H, s), 5.06 (1H, t, J = 4.9 Hz), 5.10 (1H, d, J = 10.3 Hz), 5.24 (1H, d, J = 6.3 Hz), 6.00 (1H, d, J = 4.8 Hz), 6.05 (1H, t, J = 8.3 Hz), 7.48 (2H, t, J = 7.8 Hz, 7.61 (1H, t, J = 7.8 Hz), 8.13 (2H, d, J = 7.8 Hz; FAB-MS (m/z): 885 (M+H)<sup>+</sup>. Anal. Calcd for C47H68N2O14·H2O: C, 62.51; H, 7.81; N, 3.10. Found: C, 62.70; H, 7.73; N, 2.99; IR: 3450, 2956, 1712, 1602, 1492, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  -10.6 (*c* 0.39, CHCl<sub>3</sub>). Compound **31b**: mp 142–144 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.05 (9H, s), 1.25 (3H, s), 1.39 (9H, s), 1.49 (3H, s), 1.62 (3H, s), 1.80 (3H, s), 1.86–2.06 (5H, m), 2.30–2.38 (2H, m), 2.34 (3H, s), 2.38 (6H, s), 2.66 (1H, dd, J = 5.4, 13.2 Hz), 2.75 (1H, dd, J = 3.9, 13.2 Hz), 2.93 (1H, d, J = 4.9 Hz), 3.93 (1H, d, J = 10.8 Hz), 4.14 (1H, d, J = 7.4 Hz), 4.25 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.60 (1H, s), 4.94 (1H, s), 5.04 (1H, t, J = 4.9 Hz), 5.09 (1H, d, J = 10.8 Hz, 5.26 (1H, d, J = 6.9 Hz), 6.00 (1H, d, J = 4.9 Hz), 6.05 (1H, t, J = 7.8 Hz), 7.48 (2H, t, J = 7.8 Hz), 7.61 (1H, t, J = 7.8 Hz), 8.13 (2H, d, J = 7.8 Hz; FAB-MS (m/z): 843  $(M+H)^+$ . Anal. Calcd for C<sub>45</sub>H<sub>66</sub>N<sub>2</sub>O<sub>13</sub>·H<sub>2</sub>O: C, 62.77; H, 7.96; N, 3.25. Found: C, 62.97; H, 7.94; N, 2.98; IR: 3450, 2954, 1712, 1602, 1492, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  -21.2 (c 0.2, CHCl<sub>3</sub>).
- 9. Spectral data of 34a-i are as follows. Compound 34a: mp 166–167 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 1.29 (3H, s), 1.40 (9H, s), 1.49 (3H, s), 1.61 (3H, s), 1.79 (3H, s), 1.70-2.03 (5H, m), 2.30-2.44 (2H, m), 2.35 (3H, s), 2.61-2.65 (4H, m), 2.70–2.82 (2H, m), 2.94 (1H, d, J = 4.8 Hz), 3.75 (4H, t, J = 4.9 Hz, 4.14 (1H, d, J = 7.3 Hz), 4.23 (1H, d, J = 8.3 Hz, 4.33 (1H, d, J = 7.8 Hz), 4.67 (1H, s), 4.92 (1H, s), 5.05 (1H, t, J = 4.9 Hz), 5.25 (1H, d, J = 7.3 Hz),5.65 (1H, d, J = 7.8 Hz), 5.99 (1H, d, J = 5.4 Hz), 6.09 (1H, t, J = 7.8 Hz), 6.20 (1H, d, J = 8.3 Hz), 7.29-7.33(1H, m), 7.43–7.49 (3H, m), 7.60 (1H, t, J = 7.3 Hz), 8.13 (2H, d, J = 7.3 Hz), 8.40 (1H, d, J = 4.9 Hz); FAB-MS924  $(M+H)^{+}$ . Anal. Calcd (m/z): for C<sub>48</sub>H<sub>62</sub>FN<sub>3</sub>O<sub>14</sub>·0.25H<sub>2</sub>O: C, 62.09; H, 6.78; N, 4.53; F, 2.05. Found: C, 62.09; H, 6.77; N, 4.61; F, 2.01; IR: 3565, 2950, 1722, 1693, 1600, 1500, 1448 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –17.9 (*c* 0.45, CHCl<sub>3</sub>). Compound **34b**: mp 147–149 °C. <sup>1</sup>H NMR

(CDCl<sub>3</sub>) *δ*: 1.29 (3H, s), 1.41 (9H, s), 1.49 (3H, s), 1.63 (3H, s), 1.79 (3H, s), 1.86–2.08 (5H, m), 2.32–2.38 (2H, m), 2.34 (3H, s), 2.38 (6H, s), 2.66 (1H, dd, J = 5.4, 13.6 Hz), 2.75 (1H, dd, J = 3.9, 13.6 Hz), 2.94 (1H, d, J = 4.9 Hz), 4.14 (1H, d, J = 6.9 Hz), 4.23 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.68 (1H, d, J = 2.9 Hz), 4.92 (1H, s),5.02 (1H, t, J = 4.9 Hz), 5.25 (1H, d, J = 6.8 Hz), 5.65 (1H, d, J = 8.3 Hz), 6.00 (1H, d, J = 4.9 Hz), 6.09 (1H, t, t)J = 7.8 Hz, 6.21 (1H, d, J = 8.3 Hz), 7.28–7.33 (1H, m), 7.43–7.49 (3H, m), 7.60 (1H, t, J = 7.3 Hz), 8.14 (2H, d, J = 7.3 Hz), 8.40 (1H, d, J = 4.4 Hz); FAB-MS (m/z): 882  $(M+H)^+$ . Anal. Calcd for  $C_{46}H_{60}FN_3O_{13}\cdot 1.5H_2O$ : C, 60.78; H, 6.99; N, 4.62; F, 2.09. Found: C, 60.86; H, 6.94; N, 4.54; F, 2.17; IR: 3575, 2946, 1722, 1702, 1602, 1492, 1446 cm<sup>-1</sup>;  $[\alpha]_D^{22}$  –18.9 (*c* 1.0, CHCl<sub>3</sub>). Compound **34c**: mp 152–156 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.25 (3H, s), 1.21-1.73 (2H, m), 1.45 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.73 (3H, s), 1.78-2.11 (3H, m), 2.34 (3H, s), 2.31-2.37 (2H, m), 2.57–2.68 (4H, m), 2.70–2.82 (2H, m), 2.93 (1H, d, J = 4.9 Hz), 3.74 (4H, t, J = 4.9 Hz), 4.12 (1H, d, J = 6.8 Hz, 4.22 (1H, d, J = 8.3 Hz), 4.32 (1H, d, J = 7.8 Hz, 4.92 (1H, br s), 5.00 (1H, d, J = 2.0 Hz), 5.04 (1H, t, J = 4.4 Hz), 5.23 (1H, d, J = 6.8 Hz), 5.60 (1H, d, J = 9.3 Hz), 5.92 (1H, d, J = 9.3 Hz), 5.99 (1H, d, J)J = 4.9 Hz, 6.12 (1H, t, J = 7.8 Hz), 7.31 (1H, d, J = 3.4 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz), 7.76 (1H, d, J = 3.4 Hz), 8.12 (2H, d, J = 7.8 Hz; FAB-MS (m/z): 912 (M+H)<sup>+</sup>. Anal. Cacld for  $C_{46}H_{61}N_3O_{13}$ ·H<sub>2</sub>O: C, 59.40; H, 6.83; N, 4.52; S, 3.45. Found: C, 59.53; H, 6.82; N, 4.23; S, 3.51; IR: 3438, 2956, 1718, 1602 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  –9.0 (*c* 0.25, CHCl<sub>3</sub>). Compound **34d**: mp 151–154 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.25 (3H, s), 1.21-1.75 (2H, m), 1.45 (9H, s), 1.48 (3H, s), 1.61 (3H, s), 1.74 (3H, s), 1.75-2.08 (3H, m), 2.32-2.39 (2H, m), 2.34 (3H, s), 2.38 (6H, s), 2.66 (1H, dd, J = 5.4, 13.6 Hz), 2.75 (1H, dd, J = 3.9, 13.6 Hz), 2.93 (1H, d, J = 4.9 Hz), 4.12(1H, d, J = 6.8 Hz), 4.22 (1H, d, J = 8.3 Hz), 4.32 (1H, d, d, J = 8.3 Hz), 4.32 (1H, d, d, d, d)J = 8.3 Hz), 4.92 (1H, s), 4.99–5.03 (2H, m), 5.24 (1H, d, J = 6.8 Hz, 5.60 (1H, d, J = 9.3 Hz), 5.92 (1H, d, J = 9.3 Hz, 5.99 (1H, d, J = 4.9 Hz), 6.13 (1H, t, J = 7.8 Hz), 7.31 (1H, d, J = 2.9 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz), 7.76 (1H, d, J = 2.9 Hz), 8.12 (2H, d, J = 7.8 Hz); FAB-MS (m/z): 870 (M+H)+. Anal. Calcd for C44H59N3O13S·H2O: C, 59.51; H, 6.92; N, 4.73; S, 3.61. Found: C, 59.56; H, 6.71; N, 4.76; S, 3.60; IR: 3409, 2948, 1712, 1602, 1490, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –13.8 (*c* 0.2, CHCl<sub>3</sub>). Compound **34e**: mp 209–210 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 0.37–0.51 (4H, m), 1.25 (3H, s), 1.45 (9H, s), 1.49 (3H, s), 1.61 (3H, s), 1.74 (3H, s), 1.82-2.12 (6H, m), 2.25-2.29 (1H, m), 2.33-2.37 (1H, m), 2.35 (3H, s), 2.94 (1H, d, J = 5.4 Hz), 3.04 (2H, d, J = 4.9 Hz, 4.15 (1H, d, J = 7.3 Hz), 4.23 (1H, d, J = 8.3 Hz), 4.33 (1H, d, J = 8.3 Hz), 4.92 (1H, br s), 4.97-5.00 (2H, m), 5.26 (1H, d, J = 7.3 Hz), 5.59 (1H, d, J = 9.8 Hz, 5.93 (1H, d, J = 9.8 Hz), 6.00 (1H, d, J = 4.9 Hz), 6.13 (1H, t, J = 8.3 Hz), 7.31 (1H, d, J = 2.9 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz, 7.76 (1H, d, J = 2.9 Hz), 8.12 (2H, d, J = 7.8 Hz; FAB-MS (m/z): 882 (M+H)<sup>+</sup>. Anal. Calcd for C<sub>45</sub>H<sub>59</sub>N<sub>3</sub>O<sub>13</sub>S·0.5H<sub>2</sub>O: C, 60.66; H, 6.79; N, 4.72; S, 3.60. Found: C, 60.61; H, 6.59; N, 4.74; S, 3.59; IR: 3490, 2967, 1741, 1706, 1602, 1531, 1454, 1369 cm<sup>-1</sup>;  $[\alpha]_{\rm D}^{24}$  –12.4 (*c* 0.21, CHCl<sub>3</sub>). Compound **34f**: mp 159–160 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ: 1.26 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.60 (3H, s), 1.71 (3H, s), 1.82-2.12 (6H, m), 2.31-2.39 (1H, m), 2.35 (3H, s), 2.59-2.67 (4H, m), 2.72 (1H, dd, J = 4.9, 13.2 Hz), 2.80 (1H, dd, J = 3.9, 13.2 Hz), 2.92 (1H, d, J = 4.9 Hz), 3.74 (4H, t, J = 4.9 Hz), 4.12 (1H, d, J = 4.9

J = 7.3 Hz), 4.22 (1H, d, J = 8.8 Hz), 4.32 (1H, d, J = 8.3 Hz, 4.56 (1H, br s), 4.92 (1H, s), 4.93 (1H, d, J = 2.4 Hz), 5.04 (1H, t, J = 4.9 Hz), 5.23 (1H, d, J = 6.8 Hz), 5.49 (1H, d, J = 9.2 Hz), 5.75 (1H, d, J = 9.8 Hz, 5.99 (1H, d, J = 4.9 Hz), 6.10 (1H, t, J = 7.8 Hz), 7.32 (1H, s), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz), 8.12 (2H, d, J = 7.8 Hz), 8.80 (1H, d, d)J = 1.9 Hz; FAB-MS (m/z): 912 (M+H)<sup>+</sup>. Anal. Calcd for C46H61N3O14S·0.5H2O: C, 59.98; H, 6.78; N, 4.56; S, 3.48. Found: C, 60.04; H, 6.58; N, 4.56; S, 3.60; IR: 3559, 2948, 1720, 1697, 1687, 1600, 1500, 1452 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –5.2 (*c* 0.42, CHCl<sub>3</sub>). Compound **34g**: mp 141–144 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>) *b*: 1.26 (3H, s), 1.43 (9H, s), 1.48 (3H, s), 1.62 (3H, s), 1.72 (3H, s), 1.82-2.12 (6H, m), 2.34-2.38 (1H, m), 2.34 (3H, s), 2.38 (6H, s), 2.66 (1H, dd, J = 4.9, 13.2 Hz), 2.75 (1H, dd, J = 3.9, 13.2 Hz), 2.93 (1H, d, J = 4.9 Hz), 4.12 (1H, d, J = 6.9 Hz), 4.22 (1H, d, J = 8.3 Hz), 4.32 (1H, d, J = 8.3 Hz), 4.92 (1H, s), 4.93 (1H, d, J = 1.9 Hz), 5.02 (1H, t, J = 4.9 Hz), 5.24 (1H, d, J = 6.8 Hz), 5.49 (1H, d, J = 9.2 Hz), 5.75 (1H, d, J = 9.8 Hz), 5.99 (1H, d, J = 4.9 Hz), 6.10 (1H, t, J = 8.3 Hz), 7.31 (1H, d, J = 1.4 Hz), 7.47 (2H, t, J = 7.8 Hz), 7.60 (1H, t, J = 7.8 Hz, 8.13 (2H, d, J = 7.8 Hz), 8.80 (1H, d, J = 1.4 Hz; FAB-MS (m/z): 870 (M+H)<sup>+</sup>. Anal. Calcd for C<sub>44</sub>H<sub>59</sub>N<sub>3</sub>O<sub>13</sub>S·0.75H<sub>2</sub>O: C, 59.81; H, 6.90; N, 4.76; S, 3.63. Found: C, 59.84; H, 6.75; N, 4.48; S, 3.56; IR: 3423, 2948, 1712, 1602, 1492, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –16.3 (*c* 0.15, CHCl<sub>3</sub>). Compound **34h**: mp 152–155 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.23 (3H, s), 1.19–1.72 (2H, m), 1.42 (9H, s), 1.47 (3H, s), 1.60 (3H, s), 1.63 (3H, s), 1.75-2.06 (3H, m), 2.31 (3H, s), 2.32-2.38 (2H, m), 2.57-2.68 (4H, m), 2.70-2.82 (2H, m), 2.91 (1H, d, J = 4.9 Hz), 3.74 (4H, t, J = 4.9 Hz, 4.09 (1H, d, J = 6.8 Hz), 4.24 (1H, d, J = 8.4 Hz, 4.33 (1H, d, J = 8.4 Hz), 4.60 (1H, br s), 4.94 (1H, br s), 5.04 (1H, t, J = 4.9 Hz), 5.22 (1H, d, J = 6.9 Hz, 5.62–5.68 (2H, m), 6.00 (1H, d, J = 4.9 Hz), 6.10 (1H, t, *J* = 7.8 Hz), 7.48 (2H, t, *J* = 7.8 Hz), 7.59 (1H, t, J = 7.8 Hz), 7.92 (1H, s), 8.12 (2H, d, J = 7.8 Hz), 8.75 (1H, s); FAB-MS (m/z): 912  $(M+H)^+$ . Anal. Calcd for  $C_{46}H_{61}N_3O_{14}S$  1.25 $H_2O$ : C, 59.12; H, 6.85; N, 4.50; S, 3.43. Found: C, 59.16; H, 6.58; N, 4.51; S, 3.47; IR: 3423, 2956, 1712, 1600, 1490, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  - 3.4 (*c* 0.1, CHCl<sub>3</sub>). Compound **34i**: mp 153–157 °C. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.23 (3H, s), 1.20–1.69 (2H, m), 1.42 (9H, s), 1.47 (3H, s), 1.61 (3H, s), 1.65 (3H, s), 1.75-2.05 (3H, m), 2.30-2.39 (2H, m), 2.31 (3H, s), 2.38 (6H, s), 2.66 (1H, dd, J = 4.9, 13.5 Hz), 2.75 (1H, dd, J = 3.9, 13.5 Hz), 2.91 (1H, d, J = 4.9 Hz), 4.10 (1H, d, J = 6.8 Hz), 4.24 (1H, d, J)J = 8.3 Hz, 4.33 (1H, d, J = 8.3 Hz), 4.60 (1H, br s), 4.94 (1H, br s), 5.02 (1H, t, J = 4.4 Hz), 5.23 (1H, d, J = 6.8 Hz), 5.62–5.71 (2H, m), 6.01 (1H, d, J = 4.9 Hz), 6.10 (1H, t, *J* = 7.8 Hz), 7.48 (2H, t, *J* = 7.8 Hz), 7.61 (1H, t, J = 7.8 Hz), 7.92 (1H, s), 8.12 (2H, d, J = 7.8 Hz), 8.75 (1H, s); FAB-MS (m/z): 870 (M+H)<sup>+</sup>. Anal. Calcd for C44H59N3O13S·H2O: C, 59.51; H, 6.92; N, 4.73; S, 3.61. Found: C, 59.37; H, 6.67; N, 4.77; S, 3.57; IR: 3430, 2948, 1710, 1600, 1490, 1452, 1367 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  –18.7 (*c* 0.2, CHCl<sub>3</sub>).

- 10. The condition of the metabolic stability test of **35** differed from those of the other compounds. Under this condition, the remaining rates of **35** and **3** after 5 min of incubation with human liver microsomes were about 66% and 84%, respectively.
- PC-6/VCR29-9: PC-6 cell line, which is resistant to Vincristine<sup>®</sup>. PC-6/VP1-1: PC-6 cell line, which is resistant to VP-16 (Etoposide<sup>®</sup>).
- 12. Poste, G.; Doll, J.; Hart, I. R.; Fidler, I. J. Cancer Res. 1980, 40, 1636.