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Abstract: Fragment 6 of thiazolyl peptide GE 2270 D2 and frag-
ment 11 of dolabellin were synthesized stereoselectively from 2,4-
dibromothiazole (1) in three (6, 44% overall yield) and five synthet-
ic steps (11, 63% overall yield). Key to the success of the strategy
was a bromine-magnesium exchange, which proceeds with excel-
lent regio- and chemoselectivity at carbon atom C-2 of 1.

Key words: asymmetric synthesis, magnesium, metalations, natu-
ral products, thiazoles

2,4-Disubstituted thiazoles are important subunits in a
number of structurally varied natural products.1 Besides
the classic Hantzsch synthesis2 several new methods for
their preparation have been devised in recent years.3 Re-
search in our group has focussed on easily accessible 2,4-
dibromothiazole4 (1, Scheme 1) as a versatile building
block, which can be used in sequential regioselective
cross-coupling reactions.5 Unfortunately, this approach
has so far not been applicable6 to the construction of 4-
bromothiazoles B, which bear a stereogenic center at the
a-carbon atom of the 2-substituent and are potential
precursors for the synthesis of chiral thiazoles A.

Scheme 1 Retrosynthetic strategy for the preparation of 2,4-disub-
stituted thiazoles with a stereogenic center at the a-carbon atom of the
2-substituent

As a potential alternative approach to compounds B we
envisaged an umpolung at carbon atom C-2 of compound
1 via bromine–metal exchange followed by an electro-
philic quench. In this communication, we report the appli-
cation of this strategy to the synthesis of two natural
product fragments.

In order to access both amines of type A (X = NH2) and
alcohols of type A (X = OH) we planned to treat a 2-met-
alated 4-bromothiazole with nitriles. The intermediate

imines can be reduced directly to amines or they can be
hydrolyzed to the corresponding ketones, which are fur-
ther reduced to alcohols. Since aryl lithium compounds
have been reported to undergo double addition to activat-
ed nitriles7 and since 2-thiazolyl lithium reagents proved
to be unstable at Q≥0 °C we did not employ the known8

regioselective bromine–lithium exchange 1 → 2
(Scheme 2) to prepare a 2-metalated 4-bromothiazole. In-
stead, we attempted a regioselective bromine–magnesium
exchange according to the protocol by Knochel et al.9 It
turned out that this reaction works well and with perfect
regioselectivity to give the desired magnesium reagent 3.
We found the latter compound to be stable even at ambi-
ent temperature. It reacted nicely with nitriles at 0 °C to
form a single addition product.

Scheme 2 Bromine–metal exchange of compound 1 under 
different conditions leading to lithium compound 2 and magnesium
compound 3

In a first application, we used intermediate 3 to prepare
the enantiomerically pure bithiazole fragment 6
(Scheme 3) related to the thiazolyl peptides GE 2270.10

The relative configuration of the 1,2-amino alcohol has
been presumed to be threo.11
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ment 6 by nitrile addition/reduction and subsequent cross-coupling
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Following the approach described above, magnesium
compound 3 was generated and treated with enantiomeri-
cally pure tert-butyldimethylsilyl- (TBS-) protected (R)-
mandelonitrile12 to yield an intermediate imine, which
was directly reduced with NaBH4 in EtOH/THF.13,14 The
reduction proceeded under Felkin–Anh control and the
major product (dr = 79:21) was proven to be the desired
O-TBS-protected threo-amino alcohol 4.15 The total yield
of the sequence nitrile addition/reduction was 73% and
the desired compound was isolated in 62% yield after sep-
aration from the minor erythro-product (11% yield). Sub-
sequent N-tert-butyloxycarbonyl- (Boc-) protection of the
free amino group yielded 4-bromothiazole 5, which was
converted by bromine-metal exchange into the corre-
sponding zinc compound.5c Regioselective Negishi cross-
coupling with another equivalent of 2,4-dibromothiazole
proceeded as expected5 and generated the desired bithiaz-
ole 6.

The nitrile addition/reduction sequence can also be con-
ducted enantioselectively. This was demonstrated in the
synthesis of the a-chiral alcohol 11 whose enantiomer is
found as a fragment in the cytotoxic bisthiazole metabo-
lite dolabellin16 (Scheme 4). The high yield achieved in
the formation of ketone 7 underlines the excellent nucleo-
philicity of magnesium compound 3. Alternative ap-
proaches gave lower chemical yields.8 The enantio-
selective ketone reduction was best conducted using
Corey’s procedure,17 which delivered the desired alcohol
818 in excellent yield.

After triethylsilyl- (TES-) protection of the free alcohol
the 4-lithium thiazole was formed by bromine–lithium ex-

change and trapped with carbon dioxide. Immediate me-
thylation of the free acid yielded compound 10, which was
deprotected to the desired enantiomerically pure alcohol
11.19

In summary, we have described a new route to a-chiral 2-
substituted 4-bromothiazoles, which can be further used
for the synthesis of naturally occurring 2,4-disubstituted
thiazole fragments. Due to its brevity and due to the high
stereoselectivities, which can be achieved, the method ap-
pears to be superior to known procedures. Further synthet-
ic work directed towards the synthesis of a-chiral 2,4-
disubstituted thiazoles is in progress and will be reported
in due course.
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