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ABSTRACT 

The thio-C-nucleoside analogues 1,3-dihydro-3-methyl-4-(4-thio-a- and -f&D- 

erythrofuranosyl)-l-p-tolyl-2H-imidazole-2-thiones (8 and 9) were obtained by 
acid-catalysed dehydration of 1,3-dihydro-3-methyl-4-(4-thio-~-arabino-te~tol-l- 
yl)-1-p-tolyl-2%imidazole-2-thione. The thiol group was introduced in position 4’ 
of 1 ,3-dihydro-3-methyl-4-(~-arubino-tetritol-l-yl)-l-p-tolyl-2H-imidazole-2-thione 
by selective tosylation, followed by acetylation, displacement of the tosyloxy group 
with potassium thiolacetate, and deacetylation. The conformation of 8 in the solid 
state and the preponderant conformer in solution were the same. 

INTRODUCTION 

Few natural and synthetic 4-thio-N-nucleosides1-7 with sulphur replacing the 
ring oxygen are known in spite of their potential as antibiotics4-7. Although the 
synthesis of C-nucleosides8 has received considerable attention due to their signifi- 
cant antitumour and antiviral activities9, little effort has been devoted to the syn- 
thesis of 4-thio-C-nucleosides. (4-Thio-/3-D-erythrofuranosyl)furan has been de- 
scribedlO, and the corresponding a anomer was detected spectroscopically in a non- 
resolved mixture. 

We now report on the preparation of 4-thio-a- (8) and -&D-erythrofuranosyl 
(9) C-nucleoside analogues from the (4-thio-o-arabino-tetritol-l-yl)dihydro- 
imidazole derivative 5 based on the acid-catalysed dehydration of (alditol-l-yl)- 
heterocyclesll-14. 

RESULTS AND DISCUSSION 

Treatment of 1,3-dihydro-3-methyl-4-(~-arabino-tetritol-l-yl)-l-p-tolyl-2~- 
imidazole-2-thione” 1 with 2 mol. equiv. of tosyl chloride in pyridine followed by 
acetic anhydride gave the 4’-tosylate 2 contaminated with the tetra-acetate 315 (‘H- 

*Author for correspondence. 
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n.m.r. data). Crude 2 reacted with patassium thiolacetate to give the crystalline 
4-thiotetra-acetate 4 (73% from l), which showed a strong i.r. absorption at 1686 
cm-* for S-C=O. The S values of H-4’ and H-4” (Table I) were in agreement with 
S substitution. Treatment of 4 briefly with methanolic sodium methoxide gave the 
(4-thio-D-~~~~~u-te~tol-1-yl)dihydroimid~ole derivative 5 together with a small 
amount of the disulphide 6. When 4 was treated with methanolic sodium methoxide 
for 24 h, a quantitative yield of 6 was obtained due to the ready autoxidationr6 of 
the thiol at high pH. The structure of 6 was based on analytical and spectroscopic 
data (Table I) together with those of the corresponding hexa-acetate 7, The reso- 
nances for H-4’ and H-4” in 7 were shifted up-field compared with those for 4. 
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The conformations of the acetylated compounds 3, 4, and 7 in chloroform 
were different from those of 1 and 6 in methyl sulphoxide, as indicated by the .I,.,,. 
values (Table I), namely, 6.7-7.8 Hz for the former and O-l.2 Hz for the latter. 
The disulphide 6 adopted mainly the P conformation*7 l.5, whereas, for the hexa- 
acetate 7 and the thioacetate 4, there was an equilibrium between the ,G+ (16) and 
,G+zG* (17) ~nformations according to the JzSSSO values (4.9-5.2 Hz). The parallel 
interaction between the heterocycle and the AcO-3’ in 16 is avoided in the sickle 
conformation 17. The 4’-thio derivatives 4, 6, and 7 do not have the chain-end 
flexibility of the oxygen analogues r7-ly. The conformational equilibrium of the 
tetra-acetate 3 comprises mainly the ,G+ form 16, with contributions from the P 
and ,GizG+ (17) ~nfo~ations and the forms $G+,G+ and &+ (not shown) 
associated with chain-end flexibility. Complex conformational equilibria have been 
described for (tetra-O-acetyi-~-arubino-tetritol-1-yl)dihydroimidazoleW. 

Dehydration of the (4-thio-o-arubino-tetritol-1-yl)dihydroimidazole ‘deriva- 
tive 5 with refluxing methanol-water-trifluoroacetic acid gave a 3:2 mixture (‘H- 
n.m.r. data) of the (Y- (8) and ~4-~iof~anoid (9) compounds which were isolated 
by fractional crystallisation in yields of 32% and 15%, respectively. Compounds 8 
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Rd AR’ RA bR 
8 R’=R’=H 9 R=H 

10 R’, R2 = CMe, 11 R. R = CMe, 

12 R’ = @ = TS 13 R I Ts 

14 R’=H.@=Ts 

15 IP) 

R H-4’ 

16 $G+) Vf,G+ ,G+l 

and 9 were also formed in the same ratio by treating 5 with anhydrous trifluoro- 
acetic acid. 

The steric course of the acid-catalysed dehydration of polyhydroxyalkyl- 
furans and -pyrroles has been explained by a mechanism involving a resonance- 
stabilised C-l’ carbocation21,22 as has that of (4-thio-D-erythrofuranosyl)furans from 
[4-S-(fert-butyl)-4-thio-D-arubino-tetritol-l-yl]furans1~. However, this mechanism 
does not explain the preponderant formation of the sterically less-stable cu-anomer 
8, since the transition state leading to 25 from the C-l’ carbocation 21 should be 
more stable than that leading to 24. It is possible that the CY anomer is formed via 
the 1’,2’-epoxide 22 generated by displacement of protonated HO-l’ by HO-2’. 
The formation of the /3-anomer 9 by the attack of the thiol group on C-l’ in 20 or 
in the epoxide 23 is also a possibility. Not only can the heterocycle stabilise the C-l ’ 

carbocation but it can also stabilise23 the S,2 transition state at C-l. Displacement 
of protonated HO-l’ by HO-4’ has been proposed for the dehydration of (pentitol- 
l-yl)uracils24. The S,2 mechanism can be predominant in the intramolecular de- 
hydration of (o-thioalditolyl)-heterocycles due to the high nucleophilicity of the 
sulphurz. 

The dehydration of 1 with anhydrous trifluoroacetic acid at room temperature 
yielded’” a 1: 1 @-mixture (18 and 19) and the p anomer preponderated when 
refluxing dilute acid was used, probably because of the reversible ring opening of 
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the (Y anomer. However, the stability of the thiofuranoside rings= is such that de- 
hydration of 5 under strong or mild conditions yielded a 3:2 @mixture. 

The anomeric configuration of 8 and 9 was assigned as follows. The /3 anomer 
9 was strongly levorotatory and the (r anomer 8 was dextrorotatory, in agreement 

with the data reported for the analogues 18 and 19r3 and other pairs of erythro- 
furanosyl-C-nucleosides13J1.26. The resonance of H-1’~ (Table II) was at lower field 
than that of H-l’a as in D-ribo-N and C-nucleosides27,28. The value of JrUz. was 
smaller for the (Y anomer (3.4 Hz) than for the p anomer (7.3 Hz). Similar Jr,.,. 
values have been reported for their analogues 18 and 1913, suggesting that the pre- 
ferred conformation of the sugar ring does not change markedly on replacement of 
the ring oxygen by sulphur. 

The resonances of C-l ’ and C-4’ of 8 and 9 (Table III) were at lower field 
than those for C-2’ and C-3’, reflecting the presence of the ring sulphur. In the 
‘H-coupled-r3C-n.m.r. spectrum, C-3’ of 9 was coupled only with H-3’ and with 

one H-4’ in agreementz9 with the conformation $T calculated from Jr,,, values. 
Conventional acetonation of 8 and 9 yielded the 2,3-0-isopropylidene deriva- 

tives 10 and 11, respectively, the rH-n.m.r. spectra (Table II) of which confirmed 
the assigned anomeric configurations; J, P.2e was larger for the (Y anomer 10 than for 
the /3 anomer 11, as described for related compounds30. Also, H-l ‘(Y resonated at 
higher field than H-1’P as reported I3 for the isopropylidene derivatives of the 
analogues 18 and 19, but opposite to that described for 2,3-O-isopropylidene-D- 
ribofuranosyl-C-nucleosides n. The AS values (0.17 for 10 and 0.23 for 11) for the 
isopropylidene moiety accord with the Imbach rule3r. 

Tosylation of 8 and 9 by phase-transfer catalysis32 yielded the 2,3-ditosylates 
12 and 13, respectively, which are useful as transformation intermediates33s-M. Con- 
ventional treatment of 8 with 2.2 mol. equiv. of tosyl chloride in pyridine gave a 
3:7 mixture of 12 and the 3-tosylate 14; the 2-tosylate was not detected (*H-n.m.r.). 
The bulky substituent on C-l’ is responsible for the high stereoselectivity of the 
tosylation on HO-3’. The position of the tosyloxy groups was indicated by the fact 
that the chemical shift of the H-2’ resonance in 14 (4.54 p.p.m.) was at higher field 
than that of 12 (5.26 p.p.m.) (Table II). The i.r. bands associated with H-5 were at 
higher frequencies for the cY-anomers 8,10, and 12 (3155,3125,3140 cm-r) than for 
the /3-anomers 9,11, and 13 (3120, 3080, 3115 cm-l). Similar relations have been 
observed for the analogues with oxygen in the ring”. 

Numerous communications35-39 have dealt with the conformational analysis 
of the furanosyl ring of nucleosides. The torsion angles (@u,u) between the vicinal 
protons of 9 (Table IV), calculated from the observed 3J values using the equation 
proposed by CoxorP, were very similar to those for the solid state, except that for 
@J 3,hrme 7-h @B,B values for the solid state were calculated from the endocyclic 
torsion angles Ti, obtained from the X-ray diffraction data of crystalline 941, and a 

trigonal projection symmetry was assumed (1.20” symmetry). The use of the empir- 
ical correlation between 7i and @,.ru deduced by Altona39 for P-D-ribofuranosyl 
nucleosides gave values of @,,,2 (159.3”) and @2,,3, (52.2”) higher than the mean 
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value G,n deduced from the different non-proton angles (@r,,r, 154.2”, @r2’,s, 48.8”). 
From the endocyclic torsion angles 7i, the phase angles of pseudorotation (P 186.6”) 
and the puckering amplitude (@,,, 48.4) defined by Altona and Sundaralingam4* 
were calculated. This P value corresponds to a conformation intermediate between 
twist ST and envelope Es. Similar results were obtaineda using the ring puckering 
co-ordinates defined by Cremer and Pople43. From the similarities between @n,n 
values in the solid state and @n,n values deduced from the 3Jr.rH values (Table IV), 
it appears that the thio sugar exists in solution preferentially in a conformation 
close to $T (29) or, at least, that there is a strong preference for S conformers, 
which occupy the southern part of the pseudorotational circle (P = 180 *Xl’). 

It is generally assumed that the furanose ring in solution exists in equilibrium 
between N and S conformers35-B. Using the I&plus equation with the parameters 
A 10.2 and B -1.2 used in the conformational analysis of C-nucleosidessr and as- 
suming an equilibrium between conformations ST (P 0”) (28) and $T (P 180”) (29) 
with the ring puckering found in the solid state (@,,, 48.4), it was calculated from 
the values of J1,,2, (7.3 Hz) and J30,4”_ (3.2 Hz) that the sugar ring of 9 in solution 
in methyl sulphoxide existed as the conformers 28 (N) and 29 (S) in the ratio 29:71 
(mean deviation, 2%). In the same way, the ditosylate 13 in solution in chloroform 
showed an equilibrium between conformers N and S in the ratio 38: 62 (mean devia- 
tion, 8%). 

On the other hand, the 4-thiofuranosyl ring of the a-anomers 12 (2,3-di- 

tosylate) and 14 (3-tosylate) exhibited a preference for conformations N, as de- 
duced from the high values (8.3-8.8 Hz) of J3,,4,trW. Using the method of Tran-Dinh 
et ~1.3’ for the conformational analysis of a-C-nucleosides, the pseudorotational 
parameters PN, Ps, and @,,, were deduced from the values of J1,,2, and J2,,3, and the 
N/S ratio was calculated from that of J3p,4,n_. Thus the conformational behaviour 

of 12 can be described by PN -4”, Ps 176”, a,,, 50, and NIS 88: 12 and that of 14 by 
PN -lo, Ps -179”, a,,, 52, and N/S 80:20. The calculated values of P indicated the 
sugar ring to be in equilibrium between conformers close to ;T (26) and $T (27), as 
assumed for the p anomers. The G& values (50-52) calculated for the a anomers 
are close to that (48.4) found for 9 in the solid state. The contribution of the ST 

TABLE IV 

VICINAL-PROTON TORSION ANGLES (a, DEGREES) FOR 9 IN THE SOLID STATE AND DEDUCED FROM THE ‘H- 
N.M.R. DATA 

H.H J H,H aHH (in solution) QH,” (in solid state)b 

1’,2’ 7.3 152.9 (18.9)c 152.6 
2’,3’ 3.2 49.4 (126.5) -48.0 
3’,4’& 4.4 41.5 (133.9) 40.2 
3’ 9 4” Iran.3 3.2 126.5 (49.4) -79.8 

‘Calculated by using the expression proposed by Coxon 4o, “Deduced from endocyclic torsion angles” 
T, = 32.6, r2 = -48.0, q = 40.2. Values in parentheses are not compatible with the structure. 
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conformer 27 in the equilibrium is low for the a anomers, due to the steric inter- 
action between the heterocycle and the substituent on C-3’. The contribution of the 
;T conformer 28 is not so low for the j3 anomers, because the interaction is between 
the heterocycle and H-3’. 

-.. 
26 :7(P -0.1 27 87 (P = 160 ‘) 

y-Y\ Y-2’ 

EXPERIMENTAL 

General methods. - Melting points are uncorrected. Optical rotations were 
measured with a Perkin-Elmer 241 polarimeter. 1.r. spectra (KBr discs) were re- 
corded with a Perkin-Elmer 299 specbophotometer. ‘H-N.m.r. spectra were re- 
corded with Perkin-Elmer R-32 (90 MHz) and Varian XL-200 (200 MHz, F.t.) 
spectrometers. Assignments were confirmed by double-resonance experiments and 
H/D exchange. 13C-N.m.r. spectra (50.2 MHz) were recorded with a Varian XL-200 
spectrometer. Proton-decoupled APT4 (Attached Proton Test) and proton- 
coupled spectra were obtained to assist in signal assignments. T.1.c. was performed 
on Silica Gel HF,, (Merck), with detection by U.V. light or iodine vapour. 

1,3-Dihydro-3-methyl-l-p-tolyl-(1,2,3-tri-O-acetyl-4-S-acetyl-4-thio-D-ara- 
bino-tetritol-Z-yl)-2H-imiduzole-2-thione (4). - To a solution of 115 (10 g, 30.8 
mmol) in pyridine (25 mL) at -15” was added a cooled solution of p-toluenesul- 
phony1 chloride (11.75 g, 61.6 mmol) in pyridine (25 mL) followed, after 1 h, by 
acetic anhydride (50 mL). The mixture was stored for 12 h at -0” and then poured 
into ice-water, and the product was collected and dried (Pro,) to give 2 (18 g) 
contaminated with 1,3-dihydro-3-methyl-l-p-iolyl-4-(l,2,3,4-tetra-O-acety1-~- 
arubino-tetritol-l-yl)-2H-imidazole-2-thione15 (3) (‘H-n.m.r. data). A solution of 
crude 2 and potassium thiolacetate (4.2 g, 36.7 mmol) in butanone (180 mL) was 
boiled under reflux for 4 h. Insoluble material was collected and washed with 
acetone (20 mL), the combined filtrate and washings were concentrated to dryness, 
and a solution of the residue in dichloromethane (50 mL) was washed with water 
(3 X 50 mL), dried (MgSO,), and concentrated. The residue was crystallised from 
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ethanol (25 mL) to give 4 (11.42 g, 73% from l), m.p. 137-138”, [a]hq -67” (c 1, 
pyridine), RF 0.28 (dichloromethane); Aigu 218 and 262 nm (E,~ 20.7 and 10.0); 
v,, 3120 (HC= heterocycle), 1745,1735 (C=O ester), 1686 (thioester), 1615,1604 
(C=C heterocycle and aromatic), 1575, 1510 (C=C aromatic), 1225, 1215, 1208 
(ester and thioester), 826 and 810 cm-l (aromatic). The ‘H-n.m.r. data are given in 
Table 1. 

Anal. Calc. for (&H,sN,O,S,: C, 54.31; H, 5.54; N, 5.51; S, 12.61. Found: 
C, 54.28; H, 5.54; N, 5.40; S, 12.57. 

4,4’-L)ithiobisf4-f4-deoxy-D-arabino-re~itul-l-yf)-1,3-dihydro-3-~~~yethyl-l-p 
~lyl-2H-imi~zole-Z-thione] (6). - To a suspension of 4 (0.5 g, 0.98 mmol) in 
methanol (2.5 mL) was added a solution of sodium methoxide (3.92 mmol) in 
methanol (2.5 mL). After 24 h at room temperature, the solution was neutralised 
with Amberlite IR-120 (H+) resin and filtered, the resin was washed with methanol 
(10 mL), and the combined filtrate and washings were concentrated to dryness. 
The residue was crystallised from ethanol to give 6 (0.32 g, 97%), m.p. 1~145”, 
[a]$9 -58” (c 1, pyridine), R,0.12 (ether-ethanol, 4&l); Ag$jH 216 and 276 nm 

(GIM 35.6 and 15.4); vmax 3350 (OH), 3140 (HC= heterocycle), 1605 (C=C 
heterocycle and aromatic), 1575,151O (C=C aromatic), and 820 cm-i (aromatic). 
The *H-n.m.r. data are given in Table I. 

Anal. Calc. for C~~N~O~S~: C, 53.07; H, 5.64; N, 8.25; S, 18.89. Found: 
C, 52.96; H, 5.66; N, 7.98; S, 19.09. 

4,4’-Dithiob~[l,3-dihydro-3-methyl-l-p-tolyl-4-(1,2,3-tri-O-acetyl-4-deoxy-~- 
arabino-tetritol-I-yI)-2H-imiduzole-2-thione] (7). - Conventional treatment of 6 
(0.35 g, 0.37 mmol) with pyridine (1 mL) and acetic anhydride (1 mL) gave 7 (0.44 
g, 92%), m.p. 102-120” (from eth~ol-Waters, [a]F -79” (c 1, pyridine), R, 0.10 
(~chloromethane~; AEsu 216 and 262 nm (smM 38.4 and 21.1); v,,,, 3120 (HC= 
heterocycle), 1745 (C=O ester), and 1604 (C=C heterocycle and aromatic). The 
‘H-n.m.r. data are given in Table I. 

Anal. Calc. for C~~HsoN,O,,S,: C, 54.17; H, 5.41; N, 6.02; S, 13.77. Found: 
C, 54.32; H, 5.55; N, 5.73; S, 13.36. 

1,3-D~hydro-3-~thyl-4-~4-thio-~- and -B-D-@ruthrofuranosyZ~-l-p-tolyE-2H- 
imidazole-2-thione (8 and 9). - To a suspension of 4 (8 g, ,15.7 mmol) in methanol 
(50 mL) was added sodium methoxide (62.8 mmol) in methanol (30 mL). After 
storage for 5 min at room temperature, the solution was neutralised as for 6. T.1.c. 
(e~er~thanol, 4O:l) of the syrupy product (5.36 g) revealed a main component 
with RF 0.56 ~ont~inated by 6 (RF 0.12). The main compound was identified as 
l,3-dihydro-3-methyl-4-(4-thio-D-atabino-tetritol-l-yl)-l-p-tolyl-2N-imidazole-2- 
thione (5) by the ‘H-n.m.r. spectrum of the mixture in Me,SO (S 2.06, dd, JSH,d, 
9.0, JsH,c 7.0 Hz, SK interchangeable with D,O). 

(a) A solution of the crude mixture (2.68 g) in ~th~o~water 1:l (25 mL) 
cont~~ng ~uoroa~etic acid (0.5 mL, 6.5 mmol) was boiled under retmx for 3 h 
and then neutralised with Amberlite IRA-400 (HO-) resin. The resin was collected 
and washed with methanol (25 mL), and the combined filtrate and washings were 
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concentrated to dryness. T.1.c. (ether-ethanol, 40: 1) of the residue reveaied 8 and 
9 (R, 0.34 and 0.45) in the ratio 3:2 (‘H-n.m.r. data). The mixture was crystallised 

from ethanol (7 mL) to give 8 (0.83 g, 32% from 4), m.p. 194-195” (dec.), [alA 
+2O”(c 1, pyridine); hEzH 217 and 272 nm (E,,,~ 26.2 and 11.2); v,,,,, 3360, 3300 

(OH), 3155 (HC= heterocycle), 1619,160O (C=C heterocycle and aromatic), 1574, 
1510 (C=C aromatic), and 820 cm-’ (aromatic). The ‘H- and r3C-n.m.r. data are 

given in Tables II and III, respectively. 

Anal. Calc. for C,,H,,N,O,S,?: C, 55.87; H, 5.63; N, 8.69; S, 19.89. Found: 
C, 56.21; H, 5.71; N, 8.87; S, 20.23. 

The mother liquor was concentrated to dryness and the residue was recrystal- 

lised twice from water to give 9 (0.38 g, 15% from 4), m.p. 180-181” (dec.), [a]g9 

-208” (c 1, pyridine); A!$zH 215, 248, and 272 nm (E,~ 17.1, 9.4, and 8.5); vmax 

3390, 3230 (OH), 3120 (HC= heterocycle), 1608 (C=C heterocycle and aromatic), 
1575, 1508 (C=C aromatic), 812 and 800 cm-r (aromatic). The ‘H- and 13C-n.m.r. 
data are given in Tables II and III, respectively. 

Anal. Found: C, 55.96; H, 5.73; N, 8.79; S, 20.06. 
(b) A solution of the above crude mixture (2.68 g) in trifluoroacetic acid (6.7 

mL, 8.7 mmol) was left for 24 h at room temperature and then co-concentrated with 

ethanol (4 x 5 mL). The residue (2.5 g) contained 8 and 9 in the ratio 3:2 (‘H- 
n.m.r. data). The mixture was crystallised from ethanol (5 mL) to give 8 (0.72 g, 
28% from 4). The mother liquor was concentrated to dryness and column 

chromatography (silica gel, ether) of the residue and crystallisation of the product 
from water gave 9 (0.24 g, 9% from 4). 

A solution of 8 or 9 (0.05 g, 0.15 mmol) in ethanol-water (1: 1,l mL) contain- 

ing trifluoroacetic acid (0.02 mL, 0.26 mmol) was boiled under reflux for 3 h. T.1.c. 
then revealed that no anomerisation had occurred. 

1,3-Dihydro-4-(2,3-O-isopropylidene-4-thio-cY-~-erythrofuranosy~)-3-methyl- 

I-p-tolyl-2H-imidazole-2-thione (10). - A solution of 8 (0.1 g, 0.31 mmol) in 

acetone (15 mL) containing p-toluenesulphonic acid (0.15 g, 0.87 mmol) was left 
for 24 h at room temperature and then poured into saturated aqueous sodium 
hydrogencarbonate (80 mL) at 0’. Chromatographically pure 10 (0.093 g, 82%) 
was precipitated and crystallisation from ethanol gave a sample with m.p. 356157”, 
[o$$~ -55”(c 1, pyridine), R,0.45 (ether); A::” 215, 255, and 270 nm (E,,,~ 19.9, 
11.2, and 10.8); urnax 3125 (HC= heterocycle), 1615 (C=C heterocycle and aroma- 

tic), 1575, 1510 (C=C aromatic), and 820 cm-l (aromatic). The IH-n.m.r. data are 
given in Table II. 

Anal. Calc. for C1sH22N202S2: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found: 
C, 59.80; H, 6.33; N, 8.08; S, 17.87. 

1,3-Dihydro-4-(2,3-O-isopropylidene-4-thio-~-D-erythrofuranosyl)-3-methyl- 
I -p-tolyl-2H-imidazoie-2-thione (11). - Acetonation of 9 (0.25 g, 0.77 mmol) was 

performed as described for 10. Column chromatography (ether) of the crude prod- 
uct (0.21 g, 76%) gave ll(O.185 g, 66%) as a syrup, [cx]&~ - 199” (c 1.1, pyridine), 
R,0.87(ether);hEEH 215 and 262 nm (E,,,~ 20.7 and 11.2); v,,, 3080 (HC= 
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heterocycle), 1600 (C=C heterocycle and aromatic), and 817 cm-l (aromatic). The 
‘H-n.m.r. data are given in Table II. 

Anal. Calc. for C,sHr2N,0,S,: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found: 
C, 59.73; H, 6.44; N, 7.77; S, 17.76. 

1,3-Dihydro-3-methyl-4-(4-thio-2,3-di-O-p-tolylsulphonyl-a-~-erythrofurano- 
syl)-1 -p-tolyl-2H-imiduzole-2-thione (12). -To a solution of 8 (0.05 g, 0.15 mmol), 

tetrabutylammonium hydrogensulphate (0.01 g, 0.031 mmol), and p-toluenesul- 
phony1 chloride (0.065 g, 0.34 mmol) in dichloromethane (5 mL) was added 

aqueous 5% sodium hydroxide (0.5 mL, 0.62 mmol). The mixture was shaken for 
2 h at room temperature, and the organic layer was separated, washed with water 
(3 x 5 mL), dried (MgSO,), an d concentrated. Crystallisation of the residue (0.08 

g) from ethanol gave I.2 (0.052 g, 53%), m.p. lOO-lOl”, [a]h9 -1” (c 1, pyridine), 

R, 0.48 (ether-hexane, 5: 1); I\igH 223,259, and 271 nm (Q,., 43.8,12.1, and 11.4); 
IJ,, 3140 (HC= heterocycle), 1590, 1510 (C=C aromatic), 1190, 1175 (SO,), and 

812 cm-* (aromatic and C-O-S). The ‘H-n.m.r. data are given in Table II. 
Anal. Calc. for C$-I~,O,S,: C, 55.21; H, 4.79; N, 4.44; S, 20.33. Found: 

C, 55.18; H, 4.90; N, 4.16; S, 20.11. 
I,3-Dihydro-3-methyl-4-(4-thio-2,3-di-O-p-tolylsulphonyl-P_~-erythrofurano- 

syl)-I-p-tolyl-2H-imidazole-2-thione (W). - Ditosylation of 9 (0.16 g, 0.49 mmol) 

was carried out as described above. Crystallisation of the crude product (0.28 g) 
from ethanol gave 12 (0.23 g, 74%), m.p. 181-182” (dec.), [ali -128” (c 1, 
pyridine), Rr0.73 (ether-hexane, 5: 1); AEsu 223,261, and 271 nm (E,,,~ 43.8,11.9, 
and 11.3); v,,,, 3115 (HC= heterocycle), 1590, 1510 (C=C aromatic), 1190, 1175 

(SO,), 838 and 815 cm-l (aromatic and C-O-S). The ‘H-n.m.r. data are given in 
Table II. 

Anal. Calc. for C,JIWN20,S,: C, 55.21; H, 4.79; N, 4.44; S, 20.33. Found: 
C, 55.19; H, 4.90; N, 4.16; S, 20.11. 

l,3-Dihydro-3-methyl-4-(4-thio-3-O-p-tolylsulphonyl-ar-~-erythrofuranosy1)- 
I-p-tolyl-2H-imidawle-2-thione (14). - To a solution of 8 (0.20 g, 0.62 mmol) in 

pyridine (1 mL) at 0” was added p-toluenesulphonyl chloride (0.26 g, 1.36 mmol). 
The mixture was stored for 24 h at o”, water (1 mL) was added, and the mixture 

was left for 1 h at 0”. Conventional work-up gave a 3:7 mixture (0.35 g) of 12 and 
14 (‘H-n.m.r. data). Column chromatography (dichloromethane) gave 12 (0.096 g, 
24%), m.p. 100-101” (from ethanol), and 14 (0.184 g, 62%) as a syrup. Compound 
14 had [a]&’ +60” (c 1, pyridine), RF 0.39 (ether-hexane); Ak?jH 221, 250, and 271 

nm (E,,,~ 30.0, 11.0, and 10.0); v,,,, 3480, 3280 (OH), 3140 (HC= heterocycle), 

1590, 1510 (C=C aromatic), 1187,117O (SO,), and 815 cm-1 (aromatic and C-O- 
S). The ‘H-n.m.r. data are given in Table II. 

Anal. Calc. for (;,H,N,O,S,: C, 55.43; H, 5.07; N, 5.88; S, 20.18. Found: 
C, 55.40; H, 5.34; N, 5.81; S, 19.91. 
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