SYNTHESIS OF 4-THIO-C-NUCLEOSIDE ANALOGUES BY DEHYDRA-TION OF 4-THIOPOLYHYDROXYALKYL HETEROCYCLES

JOSÉ FERNANDEZ-BOLAÑOS^{*}, JOSÉ FUENTES MOTA, AND JOSÉ FERNANDEZ-BOLAÑOS GUZMAN Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla and Instituto de la Grasa y sus Derivados, C.S.I.C., Sevilla (Spain)

(Received May 2nd, 1987; accepted for publication, July 20th, 1987)

ABSTRACT

The thio-C-nucleoside analogues 1,3-dihydro-3-methyl-4-(4-thio- α - and $-\beta$ -Derythrofuranosyl)-1-p-tolyl-2H-imidazole-2-thiones (8 and 9) were obtained by acid-catalysed dehydration of 1,3-dihydro-3-methyl-4-(4-thio-D-arabino-tetritol-1yl)-1-p-tolyl-2H-imidazole-2-thione. The thiol group was introduced in position 4' of 1,3-dihydro-3-methyl-4-(D-arabino-tetritol-1-yl)-1-p-tolyl-2H-imidazole-2-thione by selective tosylation, followed by acetylation, displacement of the tosyloxy group with potassium thiolacetate, and deacetylation. The conformation of 8 in the solid state and the preponderant conformer in solution were the same.

INTRODUCTION

Few natural and synthetic 4-thio-*N*-nucleosides¹⁻⁷ with sulphur replacing the ring oxygen are known in spite of their potential as antibiotics⁴⁻⁷. Although the synthesis of *C*-nucleosides⁸ has received considerable attention due to their significant antitumour and antiviral activities⁹, little effort has been devoted to the synthesis of 4-thio-*C*-nucleosides. (4-Thio- β -D-erythrofuranosyl)furan has been described¹⁰, and the corresponding α anomer was detected spectroscopically in a non-resolved mixture.

We now report on the preparation of 4-thio- α - (8) and - β -D-erythrofuranosyl (9) C-nucleoside analogues from the (4-thio-D-*arabino*-tetritol-1-yl)dihydroimidazole derivative 5 based on the acid-catalysed dehydration of (alditol-1-yl)heterocycles¹¹⁻¹⁴.

RESULTS AND DISCUSSION

Treatment of 1,3-dihydro-3-methyl-4-(D-*arabino*-tetritol-1-yl)-1-*p*-tolyl-2*H*imidazole-2-thione¹⁵ 1 with 2 mol. equiv. of tosyl chloride in pyridine followed by acetic anhydride gave the 4'-tosylate 2 contaminated with the tetra-acetate 3^{15} (¹H-

^{*}Author for correspondence.

n.m.r. data). Crude 2 reacted with potassium thiolacetate to give the crystalline 4-thiotetra-acetate 4 (73% from 1), which showed a strong i.r. absorption at 1686 cm⁻¹ for S-C=O. The δ values of H-4' and H-4" (Table I) were in agreement with S substitution. Treatment of 4 briefly with methanolic sodium methoxide gave the (4-thio-D-arabino-tetritol-1-yl)dihydroimidazole derivative 5 together with a small amount of the disulphide 6. When 4 was treated with methanolic sodium methoxide for 24 h, a quantitative yield of 6 was obtained due to the ready autoxidation¹⁶ of the thiol at high pH. The structure of 6 was based on analytical and spectroscopic data (Table I) together with those of the corresponding hexa-acetate 7. The resonances for H-4' and H-4" in 7 were shifted up-field compared with those for 4.

The conformations of the acetylated compounds 3, 4, and 7 in chloroform were different from those of 1 and 6 in methyl sulphoxide, as indicated by the $J_{1',2'}$ values (Table I), namely, 6.7–7.8 Hz for the former and 0–1.2 Hz for the latter. The disulphide 6 adopted mainly the P conformation¹⁷ 15, whereas, for the hexaacetate 7 and the thioacetate 4, there was an equilibrium between the ${}_{1}G^{+}$ (16) and ${}_{1}G^{+}{}_{2}G^{+}$ (17) conformations according to the $J_{2',3'}$ values (4.9–5.2 Hz). The parallel interaction between the heterocycle and the AcO-3' in 16 is avoided in the sickle conformation 17. The 4'-thio derivatives 4, 6, and 7 do not have the chain-end flexibility of the oxygen analogues^{17–19}. The conformational equilibrium of the tetra-acetate 3 comprises mainly the ${}_{1}G^{+}$ form 16, with contributions from the P and ${}_{1}G^{+}{}_{2}G^{+}$ (17) conformations and the forms ${}_{1}G^{+}{}_{3}G^{+}$ and ${}_{3}G^{+}$ (not shown) associated with chain-end flexibility. Complex conformational equilibria have been described for (tetra-O-acetyl-D-arabino-tetritol-1-yl)dihydroimidazole²⁰.

Dehydration of the (4-thio-D-arabino-tetritol-1-yl)dihydroimidazole derivative 5 with refluxing methanol-water-trifluoroacetic acid gave a 3:2 mixture (¹Hn.m.r. data) of the α - (8) and β -4-thiofuranoid (9) compounds which were isolated by fractional crystallisation in yields of 32% and 15%, respectively. Compounds 8

W.N-H1	.R. DATA (ð	SCALE, J IN	Hz) FOR CON	MPOUNDS 1, 3	, 4, 6, AND 7				:			
Com-	Carbohydı	rate moiety							Heterocycl			
pomod	,I-H	H-2'	Н-З'	H-4'	H-4"	ОН(Ј _{н,он})	OAc	SAc	Н-5	N-Me	Me	Ar
1a,c	4.88d J _{1',2'} ~0			.5m	1	5.21d (7.6) 4.89d (6.7) 4.75d (4.9) 4.65t (5.5)			7.15s	3.62s	2.35s	7.25-7.50m
3 ^{b,d}	6.12d J _{1'2'} 6.7	5.63t J _{2',3'} 6.5	5.20m	4.36dd J _{4',3} . 3.2	4.13dd J _{4"3} 5.7 J _{4"3} 12.3	, ,	2.09s (6 H) 2.05s (6 H)	~~	6.97s	3.78s	2.39s	7.20-7.47m
4 b,d	6.16dd J _{1',2'} 7.6	5.63dd J _{2',3} ' 5.2	5.02m	3.39dd J _{4',3'} 3.2	2.99dd J _{4°,3} 7.8 J _{4° 4} , 14.4		2.12s 2.10s 2.01s	2.325	7.05s	3.81s	2.40s	7.21–7.51m
£arc	4.85dd J _{1',2'} 1.2	3.54m J _{2,3} , 8.1	3.80m	3.23dd J _{4',3'} 2.5	2.80dd J _{41,31} 8.6 J _{41,31} 13.3	5.27d (7.5) 5.05d (7.6) 5.15d (6.6)			7.14d J _{5,1} 1.2	3.59s	2.34s	7.23-7.45m
Jpic	6.07d J _{1',2'} 7.8	5.63dd J _{2',3'} 4.9	5.20m	2.93dd J _{4',3'} 4.4	2.79dd J _{4",3"} 7.8 J _{4",4"} 14.6	· ·	2.09s 2.08s 2.02s		7.04s	3.76s	2.39s	7.18-7.36m

TABLE I

"In (CD₃)₂SO. ⁵In CDCl₃. ^cAt 200 MHz (20°). ⁴At 90 MHz (35°).

and 9 were also formed in the same ratio by treating 5 with anhydrous trifluoroacetic acid.

The steric course of the acid-catalysed dehydration of polyhydroxyalkylfurans and -pyrroles has been explained by a mechanism involving a resonancestabilised C-1' carbocation^{21,22} as has that of (4-thio-D-erythrofuranosyl)furans from [4-S-(*tert*-butyl)-4-thio-D-*arabino*-tetritol-1-yl]furans¹⁰. However, this mechanism does not explain the preponderant formation of the sterically less-stable α -anomer **8**, since the transition state leading to **25** from the C-1' carbocation **21** should be more stable than that leading to **24**. It is possible that the α anomer is formed *via* the 1',2'-epoxide **22** generated by displacement of protonated HO-1' by HO-2'. The formation of the β -anomer **9** by the attack of the thiol group on C-1' in **20** or in the epoxide **23** is also a possibility. Not only can the heterocycle stabilise the C-1' carbocation but it can also stabilise²³ the S_N2 transition state at C-1. Displacement of protonated HO-1' by HO-4' has been proposed for the dehydration of (pentitol-1-yl)uracils²⁴. The S_N2 mechanism can be predominant in the intramolecular dehydration of (ω -thioalditolyl)-heterocycles due to the high nucleophilicity of the sulphur²⁵.

The dehydration of 1 with anhydrous trifluoroacetic acid at room temperature yielded¹³ a 1:1 $\alpha\beta$ -mixture (18 and 19) and the β anomer preponderated when refluxing dilute acid was used, probably because of the reversible ring opening of

TABLE II

¹-H-n.m.r. data (δ scale, J in Hz) for compounds 8-14

Pound -		Carrier and						Heterocyc	le I		
8a,c	<i>H</i> .	H-2'	Н-3'	H-4'	H-4"	OH (J _{H,OH})	CMe ₂	Н-5	N-Me	Me	Ar
	.67dd	← 4.21r		← 2.90	↑ E	5.27d (3.3) 5.21d (5.2)		7.08d	3.58s	2.35s	7.48-7.26m (4 H)
6	.35d .35d	4.16m J _{2',3'} 3.2	4.26m	3.12dd J _{4',3'} 4.4	2.74dd J _{4"3'} 3.2	5.24d (4.3) 5.24d (4.3)		7.23s	3.58s	2.36s	7.50–7.27m (4 H)
10 ^{6,d} 4	.11dd	4.85dd	4.95m	3.05d	3.05d		1.50s	7.04d	3.74s	2.40s	7.50-7.22m (4 H)
11 ^{6,d} 4	.27dd	4.81dd	4.98m	3.05d	- 44.31 2.05 3.05d		1.57s	6.62d	3.71s	2.39s	7.46-7.18m (4 H)
12 ^{b,c} 4	.57dd .57dd	5.26dd 5.26dd J _{2',3} 3.4	5.09m	1/2(74'3' 7 3.18dd J _{4',3'} 8.8	2.99dd 2.99dd J _{4°3'} 6.6		SCC.1	<i>J</i> _{5,1} , 1, 2 6, 92d <i>J</i> _{5,1} , 0, 9	3.55s	2.46s 2.39s	7.73–7.22m (12 H)
13 ^{b,c} 4	59m 1'2' 7.0	4.62m J _{2.3} 2.5	5.19m	3.28dd J _{4'3'} 4.6	J _{4",4} " 10.5 3.20dd J _{4",3} , 4.6			6.66s	3.54s	2.39s 2.47s 2.40s	7.80-7.60m (12 H)
14 6.0 4 J	.48dd 1'.2' 4.6	4.54dd J _{2',3'} 3.1	4.98m	3.24 dd $J_{4^{-3}}$ 8.3	$J_{4',4'}$ 12.4 2.97dd $J_{4',3'}$ 6.4 $J_{4'',4'}$ 10.6			7.05d J _{5.1} , 1.0	3.65s	2.35s 2.46s 2.39s	7.84-7.24m (8 H)

AND
œ
COMPOUNDS
FOR
SHIFTS
CHEMICAL
¹³ C-N.M.R.

9

Compound	Sugar mı	oiety			Heterocy	icle			p-Tolyl				
	C-1'	C-2'	C-3'	C-4'	C-2	C-4	C-S	N-Me	C-I	C-2,C-6	C-3,C-5	C-4	Me
80	38.9	73.3 ^b	70.2	29.9	159.3	125.8	115.2	29.7	133.1	122.9	126.7	134.6	18.0
6	39.2	75.4	70.3	30.7	159.5	127.7	113.0	29.7	132.8	122.9	126.7	135.0	17.9

^aIn (CD₃)₂SO. ^bAssignments may have to be reversed.

the α anomer. However, the stability of the thiofuranoside rings²⁵ is such that dehydration of **5** under strong or mild conditions yielded a 3:2 $\alpha\beta$ -mixture.

The anomeric configuration of 8 and 9 was assigned as follows. The β anomer 9 was strongly levorotatory and the α anomer 8 was dextrorotatory, in agreement with the data reported for the analogues 18 and 19¹³ and other pairs of erythrofuranosyl-C-nucleosides^{13,21,26}. The resonance of H-1' α (Table II) was at lower field than that of H-1' β as in D-*ribo-N* and C-nucleosides^{27,28}. The value of $J_{1',2'}$ was smaller for the α anomer (3.4 Hz) than for the β anomer (7.3 Hz). Similar $J_{1',2'}$ values have been reported for their analogues 18 and 19¹³, suggesting that the preferred conformation of the sugar ring does not change markedly on replacement of the ring oxygen by sulphur.

The resonances of C-1' and C-4' of 8 and 9 (Table III) were at lower field than those for C-2' and C-3', reflecting the presence of the ring sulphur. In the ¹H-coupled-¹³C-n.m.r. spectrum, C-3' of 9 was coupled only with H-3' and with one H-4' in agreement²⁹ with the conformation ${}_{3}^{2}T$ calculated from $J_{\rm H,H}$ values.

Conventional acetonation of 8 and 9 yielded the 2,3-O-isopropylidene derivatives 10 and 11, respectively, the ¹H-n.m.r. spectra (Table II) of which confirmed the assigned anomeric configurations; $J_{1',2'}$ was larger for the α anomer 10 than for the β anomer 11, as described for related compounds³⁰. Also, H-1' α resonated at higher field than H-1' β as reported¹³ for the isopropylidene derivatives of the analogues 18 and 19, but opposite to that described for 2,3-O-isopropylidene-Dribofuranosyl-C-nucleosides²⁷. The $\Delta\delta$ values (0.17 for 10 and 0.23 for 11) for the isopropylidene moiety accord with the Imbach rule³¹.

Tosylation of 8 and 9 by phase-transfer catalysis³² yielded the 2,3-ditosylates 12 and 13, respectively, which are useful as transformation intermediates^{33,34}. Conventional treatment of 8 with 2.2 mol. equiv. of tosyl chloride in pyridine gave a 3:7 mixture of 12 and the 3-tosylate 14; the 2-tosylate was not detected (¹H-n.m.r.). The bulky substituent on C-1' is responsible for the high stereoselectivity of the tosylation on HO-3'. The position of the tosyloxy groups was indicated by the fact that the chemical shift of the H-2' resonance in 14 (4.54 p.p.m.) was at higher field than that of 12 (5.26 p.p.m.) (Table II). The i.r. bands associated with H-5 were at higher frequencies for the α -anomers 8, 10, and 12 (3155, 3125, 3140 cm⁻¹) than for the β -anomers 9, 11, and 13 (3120, 3080, 3115 cm⁻¹). Similar relations have been observed for the analogues with oxygen in the ring¹³.

Numerous communications^{35–39} have dealt with the conformational analysis of the furanosyl ring of nucleosides. The torsion angles ($\Phi_{H,H}$) between the vicinal protons of **9** (Table IV), calculated from the observed ³J values using the equation proposed by Coxon⁴⁰, were very similar to those for the solid state, except that for $\Phi_{3,4trans}$. The $\Phi_{H,H}$ values for the solid state were calculated from the endocyclic torsion angles τ_i , obtained from the X-ray diffraction data of crystalline **9**⁴¹, and a trigonal projection symmetry was assumed (120° symmetry). The use of the empirical correlation between τ_i and $\Phi_{H,H}$ deduced by Altona³⁹ for β -D-ribofuranosyl nucleosides gave values of $\Phi_{1',2'}$ (159.3°) and $\Phi_{2',3'}$ (52.2°) higher than the mean value $\Phi_{H,H}$ deduced from the different non-proton angles ($\Phi_{1',2'}$ 154.2°, $\Phi_{2',3'}$ 48.8°). From the endocyclic torsion angles τ_i , the phase angles of pseudorotation (P 186.6°) and the puckering amplitude (Φ_m 48.4) defined by Altona and Sundaralingam⁴² were calculated. This P value corresponds to a conformation intermediate between twist 2_3T and envelope E_3 . Similar results were obtained⁴⁰ using the ring puckering co-ordinates defined by Cremer and Pople⁴³. From the similarities between $\Phi_{H,H}$ values in the solid state and $\Phi_{H,H}$ values deduced from the ${}^3J_{H,H}$ values (Table IV), it appears that the thio sugar exists in solution preferentially in a conformation close to 2_3T (29) or, at least, that there is a strong preference for S conformers, which occupy the southern part of the pseudorotational circle ($P = 180 \pm 90^\circ$).

It is generally assumed that the furanose ring in solution exists in equilibrium between N and S conformers³⁵⁻³⁹. Using the Karplus equation with the parameters A 10.2 and B -1.2 used in the conformational analysis of C-nucleosides³⁷ and assuming an equilibrium between conformations $\frac{3}{2}T$ (P 0°) (28) and $\frac{2}{3}T$ (P 180°) (29) with the ring puckering found in the solid state (Φ_m 48.4), it was calculated from the values of $J_{1',2'}$ (7.3 Hz) and $J_{3',4''trans}$ (3.2 Hz) that the sugar ring of 9 in solution in methyl sulphoxide existed as the conformers 28 (N) and 29 (S) in the ratio 29:71 (mean deviation, 2%). In the same way, the ditosylate 13 in solution in chloroform showed an equilibrium between conformers N and S in the ratio 38:62 (mean deviation, 8%).

On the other hand, the 4-thiofuranosyl ring of the α -anomers 12 (2,3-ditosylate) and 14 (3-tosylate) exhibited a preference for conformations N, as deduced from the high values (8.3–8.8 Hz) of $J_{3',4'trans}$. Using the method of Tran-Dinh *et al.*³⁷ for the conformational analysis of α -C-nucleosides, the pseudorotational parameters P_N , P_S , and Φ_m were deduced from the values of $J_{1',2'}$ and $J_{2',3'}$ and the N/S ratio was calculated from that of $J_{3',4'trans}$. Thus the conformational behaviour of 12 can be described by $P_N -4^\circ$, $P_S 176^\circ$, $\Phi_m 50$, and N/S 88:12 and that of 14 by $P_N -1^\circ$, $P_S -179^\circ$, $\Phi_m 52$, and N/S 80:20. The calculated values of P indicated the sugar ring to be in equilibrium between conformers close to $\frac{3}{2}T$ (26) and $\frac{2}{3}T$ (27), as assumed for the β anomers. The Φ_m values (50–52) calculated for the α anomers are close to that (48.4) found for 9 in the solid state. The contribution of the $\frac{2}{3}T$

TABLE IV

VICINAL-PROTON TORSION ANGLES (Φ , DEGREES) FOR **9** IN THE SOLID STATE AND DEDUCED FROM THE ¹H-N.M.R. DATA

H,H	J _{H,H}	$\Phi_{H,H}$ (in solution) ^a	$\Phi_{H,H}$ (in solid state) ^b
1',2'	7.3	152.9 (18.9) ^c	152.6
2',3'	3.2	49.4 (126.5)	-48.0
3',4' cis	4.4	41.5 (133.9)	40.2
3',4" trans	3.2	126.5 (49.4)	-79.8

^aCalculated by using the expression proposed by Coxon⁴⁰. ^bDeduced from endocyclic torsion angles⁴¹ $\tau_1 = 32.6, \tau_2 = -48.0, \tau_3 = 40.2$. ^cValues in parentheses are not compatible with the structure. conformer 27 in the equilibrium is low for the α anomers, due to the steric interaction between the heterocycle and the substituent on C-3'. The contribution of the ${}^{3}T$ conformer 28 is not so low for the β anomers, because the interaction is between the heterocycle and H-3'.

EXPERIMENTAL

General methods. — Melting points are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 polarimeter. I.r. spectra (KBr discs) were recorded with a Perkin–Elmer 299 spectrophotometer. ¹H-N.m.r. spectra were recorded with Perkin–Elmer R-32 (90 MHz) and Varian XL-200 (200 MHz, F.t.) spectrometers. Assignments were confirmed by double-resonance experiments and H/D exchange. ¹³C-N.m.r. spectra (50.2 MHz) were recorded with a Varian XL-200 spectrometer. Proton-decoupled APT⁴⁴ (Attached Proton Test) and protoncoupled spectra were obtained to assist in signal assignments. T.l.c. was performed on Silica Gel HF₂₅₄ (Merck), with detection by u.v. light or iodine vapour.

1,3-Dihydro-3-methyl-1-p-tolyl-(1,2,3-tri-O-acetyl-4-S-acetyl-4-thio-D-arabino-tetritol-1-yl)-2H-imidazole-2-thione (4). — To a solution of 1^{15} (10 g, 30.8 mmol) in pyridine (25 mL) at -15° was added a cooled solution of p-toluenesulphonyl chloride (11.75 g, 61.6 mmol) in pyridine (25 mL) followed, after 1 h, by acetic anhydride (50 mL). The mixture was stored for 12 h at ~0° and then poured into ice-water, and the product was collected and dried (P₂O₅) to give **2** (18 g) contaminated with 1,3-dihydro-3-methyl-1-p-tolyl-4-(1,2,3,4-tetra-O-acetyl-Darabino-tetritol-1-yl)-2H-imidazole-2-thione¹⁵ (3) (¹H-n.m.r. data). A solution of crude **2** and potassium thiolacetate (4.2 g, 36.7 mmol) in butanone (180 mL) was boiled under reflux for 4 h. Insoluble material was collected and washed with acetone (20 mL), the combined filtrate and washings were concentrated to dryness, and a solution of the residue in dichloromethane (50 mL) was washed with water (3 × 50 mL), dried (MgSO₄), and concentrated. The residue was crystallised from ethanol (25 mL) to give 4 (11.42 g, 73% from 1), m.p. 137–138°, $[\alpha]_{D}^{29}$ –67° (c 1, pyridine), $R_{\rm F}$ 0.28 (dichloromethane); $\lambda_{\rm max}^{\rm EtOH}$ 218 and 262 nm ($\varepsilon_{\rm mM}$ 20.7 and 10.0); $\nu_{\rm max}$ 3120 (HC= heterocycle), 1745, 1735 (C=O ester), 1686 (thioester), 1615, 1604 (C=C heterocycle and aromatic), 1575, 1510 (C=C aromatic), 1225, 1215, 1208 (ester and thioester), 826 and 810 cm⁻¹ (aromatic). The ¹H-n.m.r. data are given in Table I.

Anal. Calc. for C₂₃H₂₈N₂O₇S₂: C, 54.31; H, 5.54; N, 5.51; S, 12.61. Found: C, 54.28; H, 5.54; N, 5.40; S, 12.57.

4,4'-Dithiobis[4-(4-deoxy-D-arabino-tetritol-1-yl)-1,3-dihydro-3-methyl-1-ptolyl-2H-imidazole-2-thione] (6). — To a suspension of 4 (0.5 g, 0.98 mmol) in methanol (2.5 mL) was added a solution of sodium methoxide (3.92 mmol) in methanol (2.5 mL). After 24 h at room temperature, the solution was neutralised with Amberlite IR-120 (H⁺) resin and filtered, the resin was washed with methanol (10 mL), and the combined filtrate and washings were concentrated to dryness. The residue was crystallised from ethanol to give 6 (0.32 g, 97%), m.p. 144-145°, $[\alpha]_{2^9}^{2^9}$ -58° (c 1, pyridine), R_F 0.12 (ether-ethanol, 40:1); λ_{max}^{EtOH} 216 and 276 nm (ε_{mM} 35.6 and 15.4); ν_{max} 3350 (OH), 3140 (HC= heterocycle), 1605 (C=C heterocycle and aromatic), 1575, 1510 (C=C aromatic), and 820 cm⁻¹ (aromatic). The ¹H-n.m.r. data are given in Table I.

Anal. Calc. for C₃₀H₃₈N₄O₆S₄: C, 53.07; H, 5.64; N, 8.25; S, 18.89. Found: C, 52.96; H, 5.66; N, 7.98; S, 19.09.

4,4'-Dithiobis[1,3-dihydro-3-methyl-1-p-tolyl-4-(1,2,3-tri-O-acetyl-4-deoxy-Darabino-tetritol-1-yl)-2H-imidazole-2-thione] (7). — Conventional treatment of 6 (0.35 g, 0.37 mmol) with pyridine (1 mL) and acetic anhydride (1 mL) gave 7 (0.44 g, 92%), m.p. 102-120° (from ethanol-water), $[\alpha]_D^{29} - 79°$ (c 1, pyridine), $R_F 0.10$ (dichloromethane); λ_{max}^{EtOH} 216 and 262 nm (ε_{mM} 38.4 and 21.1); ν_{max} 3120 (HC= heterocycle), 1745 (C=O ester), and 1604 (C=C heterocycle and aromatic). The ¹H-n.m.r. data are given in Table I.

Anal. Calc. for $C_{42}H_{50}N_4O_{12}S_4$: C, 54.17; H, 5.41; N, 6.02; S, 13.77. Found: C, 54.32; H, 5.55; N, 5.73; S, 13.36.

1,3-Dihydro-3-methyl-4-(4-thio- α - and - β -D-erythrofuranosyl)-1-p-tolyl-2Himidazole-2-thione (8 and 9). — To a suspension of 4 (8 g, 15.7 mmol) in methanol (50 mL) was added sodium methoxide (62.8 mmol) in methanol (30 mL). After storage for 5 min at room temperature, the solution was neutralised as for 6. T.l.c. (ether-ethanol, 40:1) of the syrupy product (5.36 g) revealed a main component with R_F 0.56 contaminated by 6 (R_F 0.12). The main compound was identified as 1,3-dihydro-3-methyl-4-(4-thio-D-arabino-tetritol-1-yl)-1-p-tolyl-2H-imidazole-2thione (5) by the ¹H-n.m.r. spectrum of the mixture in Me₂SO (δ 2.06, dd, $J_{SH,4'}$ 9.0, $J_{SH,4'}$ 7.0 Hz, SH interchangeable with D₂O).

(a) A solution of the crude mixture (2.68 g) in ethanol-water 1:1 (25 mL) containing trifluoroacetic acid (0.5 mL, 6.5 mmol) was boiled under reflux for 3 h and then neutralised with Amberlite IRA-400 (HO⁻) resin. The resin was collected and washed with methanol (25 mL), and the combined filtrate and washings were

concentrated to dryness. T.1.c. (ether-ethanol, 40:1) of the residue revealed **8** and **9** ($R_{\rm F}$ 0.34 and 0.45) in the ratio 3:2 (¹H-n.m.r. data). The mixture was crystallised from ethanol (7 mL) to give **8** (0.83 g, 32% from 4), m.p. 194–195° (dec.), $[\alpha]_D^{29}$ +20° (c 1, pyridine); $\lambda_{\rm max}^{\rm E10H}$ 217 and 272 nm ($\varepsilon_{\rm mM}$ 26.2 and 11.2); $\nu_{\rm max}$ 3360, 3300 (OH), 3155 (HC= heterocycle), 1619, 1600 (C=C heterocycle and aromatic), 1574, 1510 (C=C aromatic), and 820 cm⁻¹ (aromatic). The ¹H- and ¹³C-n.m.r. data are given in Tables II and III, respectively.

Anal. Calc. for $C_{15}H_{18}N_2O_2S_2$: C, 55.87; H, 5.63; N, 8.69; S, 19.89. Found: C, 56.21; H, 5.71; N, 8.87; S, 20.23.

The mother liquor was concentrated to dryness and the residue was recrystallised twice from water to give 9 (0.38 g, 15% from 4), m.p. 180–181° (dec.), $[\alpha]_D^{29}$ -208° (c 1, pyridine); λ_{max}^{EtOH} 215, 248, and 272 nm (ε_{mM} 17.1, 9.4, and 8.5); ν_{max} 3390, 3230 (OH), 3120 (HC= heterocycle), 1608 (C=C heterocycle and aromatic), 1575, 1508 (C=C aromatic), 812 and 800 cm⁻¹ (aromatic). The ¹H- and ¹³C-n.m.r. data are given in Tables II and III, respectively.

Anal. Found: C, 55.96; H, 5.73; N, 8.79; S, 20.06.

(b) A solution of the above crude mixture (2.68 g) in trifluoroacetic acid (6.7 mL, 8.7 mmol) was left for 24 h at room temperature and then co-concentrated with ethanol (4 × 5 mL). The residue (2.5 g) contained 8 and 9 in the ratio 3:2 (¹H-n.m.r. data). The mixture was crystallised from ethanol (5 mL) to give 8 (0.72 g, 28% from 4). The mother liquor was concentrated to dryness and column chromatography (silica gel, ether) of the residue and crystallisation of the product from water gave 9 (0.24 g, 9% from 4).

A solution of 8 or 9 (0.05 g, 0.15 mmol) in ethanol-water (1:1, 1 mL) containing trifluoroacetic acid (0.02 mL, 0.26 mmol) was boiled under reflux for 3 h. T.l.c. then revealed that no anomerisation had occurred.

1,3-Dihydro-4-(2,3-O-isopropylidene-4-thio- α -D-erythrofuranosyl)-3-methyl-1-p-tolyl-2H-imidazole-2-thione (10). — A solution of 8 (0.1 g, 0.31 mmol) in acetone (15 mL) containing p-toluenesulphonic acid (0.15 g, 0.87 mmol) was left for 24 h at room temperature and then poured into saturated aqueous sodium hydrogencarbonate (80 mL) at 0°. Chromatographically pure 10 (0.093 g, 82%) was precipitated and crystallisation from ethanol gave a sample with m.p. 156–157°, $[\alpha]_{2^9}^{2^9} -55^{\circ}(c 1, pyridine), R_F 0.45$ (ether); λ_{max}^{ErOH} 215, 255, and 270 nm (ε_{mM} 19.9, 11.2, and 10.8); ν_{max} 3125 (HC= heterocycle), 1615 (C=C heterocycle and aromatic), 1575, 1510 (C=C aromatic), and 820 cm⁻¹ (aromatic). The ¹H-n.m.r. data are given in Table II.

Anal. Calc. for $C_{18}H_{22}N_2O_2S_2$: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found: C, 59.80; H, 6.33; N, 8.08; S, 17.87.

1,3-Dihydro-4-(2,3-O-isopropylidene-4-thio-β-D-erythrofuranosyl)-3-methyl-1-p-tolyl-2H-imidazole-2-thione (11). — Acetonation of 9 (0.25 g, 0.77 mmol) was performed as described for 10. Column chromatography (ether) of the crude product (0.21 g, 76%) gave 11 (0.185 g, 66%) as a syrup, $[\alpha]_D^{29}$ –199° (c 1.1, pyridine), $R_F 0.87$ (ether); λ_{max}^{EtOH} 215 and 262 nm (ε_{mM} 20.7 and 11.2); ν_{max} 3080 (HC= heterocycle), 1600 (C=C heterocycle and aromatic), and 817 cm⁻¹ (aromatic). The ¹H-n.m.r. data are given in Table II.

Anal. Calc. for C₁₈H₂₂N₂O₂S₂: C, 59.64; H, 6.12; N, 7.73; S, 17.69. Found: C, 59.73; H, 6.44; N, 7.77; S, 17.76.

1,3-Dihydro-3-methyl-4-(4-thio-2,3-di-O-p-tolylsulphonyl- α -D-erythrofuranosyl)-1-p-tolyl-2H-imidazole-2-thione (12). — To a solution of 8 (0.05 g, 0.15 mmol), tetrabutylammonium hydrogensulphate (0.01 g, 0.031 mmol), and p-toluenesulphonyl chloride (0.065 g, 0.34 mmol) in dichloromethane (5 mL) was added aqueous 5% sodium hydroxide (0.5 mL, 0.62 mmol). The mixture was shaken for 2 h at room temperature, and the organic layer was separated, washed with water (3 × 5 mL), dried (MgSO₄), and concentrated. Crystallisation of the residue (0.08 g) from ethanol gave 12 (0.052 g, 53%), m.p. 100–101°, $[\alpha]_D^{29} - 1°$ (c 1, pyridine), $R_F 0.48$ (ether-hexane, 5:1); λ_{max}^{EtOH} 223, 259, and 271 nm (ε_{mM} 43.8, 12.1, and 11.4); ν_{max} 3140 (HC= heterocycle), 1590, 1510 (C=C aromatic), 1190, 1175 (SO₂), and 812 cm⁻¹ (aromatic and C-O-S). The ¹H-n.m.r. data are given in Table II.

Anal. Calc. for C₂₉H₃₀N₂O₆S₄: C, 55.21; H, 4.79; N, 4.44; S, 20.33. Found: C, 55.18; H, 4.90; N, 4.16; S, 20.11.

1,3-Dihydro-3-methyl-4-(4-thio-2,3-di-O-p-tolylsulphonyl-β-D-erythrofuranosyl)-1-p-tolyl-2H-imidazole-2-thione (13). — Ditosylation of 9 (0.16 g, 0.49 mmol) was carried out as described above. Crystallisation of the crude product (0.28 g) from ethanol gave 12 (0.23 g, 74%), m.p. 181–182° (dec.), $[\alpha]_D^{29}$ –128° (c 1, pyridine), $R_F 0.73$ (ether-hexane, 5:1); $\lambda_{max}^{\text{EtOH}}$ 223, 261, and 271 nm (ε_{mM} 43.8, 11.9, and 11.3); ν_{max} 3115 (HC= heterocycle), 1590, 1510 (C=C aromatic), 1190, 1175 (SO₂), 838 and 815 cm⁻¹ (aromatic and C-O-S). The ¹H-n.m.r. data are given in Table II.

Anal. Calc. for C₂₉H₃₀N₂O₆S₄: C, 55.21; H, 4.79; N, 4.44; S, 20.33. Found: C, 55.19; H, 4.90; N, 4.16; S, 20.11.

1,3-Dihydro-3-methyl-4-(4-thio-3-O-p-tolylsulphonyl- α -D-erythrofuranosyl)-1-p-tolyl-2H-imidazole-2-thione (14). — To a solution of 8 (0.20 g, 0.62 mmol) in pyridine (1 mL) at 0° was added p-toluenesulphonyl chloride (0.26 g, 1.36 mmol). The mixture was stored for 24 h at 0°, water (1 mL) was added, and the mixture was left for 1 h at 0°. Conventional work-up gave a 3:7 mixture (0.35 g) of 12 and 14 (¹H-n.m.r. data). Column chromatography (dichloromethane) gave 12 (0.096 g, 24%), m.p. 100–101° (from ethanol), and 14 (0.184 g, 62%) as a syrup. Compound 14 had $[\alpha]_{D}^{29}$ +60° (c 1, pyridine), $R_{\rm F}$ 0.39 (ether-hexane); $\lambda_{\rm max}^{\rm EtOH}$ 221, 250, and 271 nm ($\varepsilon_{\rm mM}$ 30.0, 11.0, and 10.0); $\nu_{\rm max}$ 3480, 3280 (OH), 3140 (HC= heterocycle), 1590, 1510 (C=C aromatic), 1187, 1170 (SO₂), and 815 cm⁻¹ (aromatic and C-O-S). The ¹H-n.m.r. data are given in Table II.

Anal. Calc. for C₂₂H₂₄N₂O₄S₃: C, 55.43; H, 5.07; N, 5.88; S, 20.18. Found: C, 55.40; H, 5.34; N, 5.81; S, 19.91.

30 J. FERNANDEZ-BOLAÑOS, J. FUENTES MOTA, J. FERNANDEZ-BOLAÑOS GUZMAN

ACKNOWLEDGMENTS

We thank Dr. E. Moreno for some of the X-ray diffraction data, the Comisión Asesora de Investigación Científica y Técnica of Spain for financial support (grant 85/354), the Departamento de Análisis y Técnicas Instrumentales del Instituto de Química Orgánica General del C.S.I.C. (Madrid) for the microanalyses, and the Ministry of Education and Science of Spain for a grant (to J.F.-B.G.).

REFERENCES

- 1 H. PAULSEN AND K. TODT, Adv. Carbohydr. Chem., 23 (1968) 115-232.
- 2 J. E. MCCORMICK AND R. S. MCELHINNEG, J. Chem. Soc., Perkin Trans. 1, (1978) 64-70.
- 3 J. E. MCCORMICK AND R. S. MCELHINNEG, J. Chem. Soc., Perkin Trans. 1, (1978) 500-505.
- 4 M. BOBEK, A. BLOCK, R. PARTHASARATHY, AND R. L. WHISTLER, J. Med. Chem., 18 (1975) 784-787.
- 5 H. S. EL KHADEM AND E. H. EL ASHRY, Carbohydr. Res., 29 (1973) 525-527.
- 6 G. BENZ, Justus Liebigs Ann. Chem., (1984) 1399-1407.
- 7 G. BENZ, L. BORN, M. BRIEDEN, R. GROSSER, J. KURZ, H. PAULSEN, V. SINNWELL, AND B. WEBER, Justus Liebigs Ann. Chem., (1984) 1408-1423.
- 8 E. R. JAMES, J. Carbohydr., Nucleosides, Nucleotides, 6 (1979) 417-465.
- 9 R. J. SUHADOLNIK, Nucleosides as Biological Probes, Wiley-Interscience, New York, 1979.
- 10 F. J. LOPEZ APARACIO, F. ZORRILLA BENITEZ, F. SANTOYO GONZALEZ, AND J. L. ASENSIO ROSELL, Carbohydr. Res., 155 (1986) 151–159.
- 11 F. GARCIA GONZALEZ, J. FERNANDEZ-BOLAÑOS. AND F. J. LOPEZ APARACIO, ACS Symp. Ser., 39 (1976) 207-226.
- 12 M. A. E. SALLAM, Carbohydr. Res., 87 (1980) 87-97.
- 13 J. FERNANDEZ-BOLAÑOS, J. FUENTES MOTA, AND J. FERNANDEZ-BOLAÑOS GUZMAN, An. Quím., Ser. C, 79 (1983) 345-349.
- 14 J. A. GALBIS PEREZ, R. BABIANO CABALLERO, AND A. CERT VENTULA, Carbohydr. Res., 143 (1985) 129–141.
- 15 F. GARCIA GONZALEZ, J. FERNANDEZ-BOLAÑOS, J. FUENTES MOTA, AND M. A. PRADERA DE FUENTES, Carbohydr. Res., 26 (1973) 427-430.
- 16 P. C. JOCELYN, Biochemistry of the SH Group, Academic Press, New York, 1972, pp. 94-115.
- 17 M. BLANC-MUESSER, J. DEFAYE, AND D. HORTON, Carbohydr. Res., 87 (1980) 71-86.
- 18 J. A. GALBIS PEREZ, P. ARECES BRAVO, F. REBOLLEDO VICENTE, J. I. FERNANDEZ GARCIA-HIERRO, AND J. FUENTES MOTA, *Carbohydr. Res.*, 126 (1984) 91-100.
- 19 J. FERNANDEZ-BOLAÑOS, M. TRUJILLO PEREZ-LANZAC, J. FUENTES MOTA, AND A. CERT VENTULA, Carbohydr. Res., 143 (1985) 260–265.
- 20 J. FERNANDEZ-BOLAÑOS, M. TRUJILLO PEREZ-LANZAC, J. FUENTES MOTA, J. F. VIGUERA RUBIO, AND A. CERT VENTULA, An. Quím., Ser. C, 81 (1985) 147-152.
- 21 A. GOMEZ SANCHEZ AND A. RODRIGUEZ ROLDAN, Carbohydr. Res., 22 (1972) 53-62.
- 22 J. A. GALBIS PEREZ, E. ROMAN GALAN, J. L. JIMENEZ REQUEJO, AND F. POLO CORRALES, Carbohydr. Res., 102 (1982) 111-119.
- 23 F. A. CAREY AND R. J. SUNDBERG, Advanced Organic Chemistry, Vol. A, Plenum Press, New York, 1978, pp. 215-219.
- 24 U. LERCH, M. G. BURDON, AND J. G. MOFFAT, J. Org. Chem., 36 (1971) 1507-1513.
- 25 R. L. WHISTLER AND A. K. M. ANISUZZAMAN, ACS Symp. Ser., 39 (1976) 133-154.
- 26 J. FERNADEZ-BOLAÑOS, J. FUENTES MOTA, AND I. ROBINA RAMIREZ, An. Quím., Ser. C, 80 (1984) 123-128.
- 27 C. K. CHU, F. M. EL-KABBANI, AND B. B. THOMPSON, Nucleosides and Nucleotides, 3 (1984) 1-31.
- 28 L. B. TOWNSEND, in W. W. ZORBACH AND R. S. TIPSON (Eds.), Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2, Wiley-Interscience, New York, 1973, pp. 267–398.
- 29 N. CYR AND A. S. PERLIN, Can. J. Chem., 54 (1979) 2504-2511.
- 30 F. J. LOPEZ HERRERA AND C. URAGA BAELO, Carbohydr. Res., 143 (1985) 161-174.

- 31 B. RAYNER, C. TAPIERO, AND J. L. IMBACH, Carbohydr. Res., 47 (1976) 195-202.
- 32 P. J. GAREGG, T. IVERSON, AND S. OSCARSON, Carbohydr. Res., 53 (1977) C1-C7.
- 33 J. FERNANDEZ-BOLAÑOS, J. FERNANDEZ-BOLAÑOS GUZMAN, AND J. FUENTES MOTA, Carbohydr. Res., 145 (1985) 152-155.
- 34 J. FERNANDEZ-BOLANOS, J. FERNANDEZ-BOLANOS GUZMAN, AND J. FUENTES MOTA, An. Quim., Ser. C, 81 (1985) 18-22.
- 35 C, ALTONA AND M. SUNDARALINGAM, J. Am. Chem. Soc., 95 (1973) 2333-2344.
- 36 D. B. DAVIES AND S. S. DANYLUK, Biochemistry, 13 (1974) 4417-4434.
- 37 S. TRAN-DINH, J.-M. NEUMANN, J.-M. THIERY, T. HUYNH-DINH, J. IGOLEN, AND W. GUSCHLBAUER, J. Am. Chem. Soc., 99 (1977) 3267-3273.
- 38 S. S. DANYLUK, in R. T. WALKER, E. D. CLERQ, AND F. ECKSTEIN (Eds.), Nucleoside Analogs Chemistry, Biology and Medical Applications, NATO Advanced Study Institutes Series, Vol. A 26, Plenum Press (1979) pp. 15-34.
- 39 G. A. G. HAASNOOT, F. A. A. M. DE LEEUW, H. P. M. DE LEEUW, AND C. ALTONA, Org. Magn. Reson., 15 (1981) 43-52.
- 40 B. COXON, Methods Carbohydr. Chem., 6 (1972) 513-519.
- 41 E. MORENO, S. PEREZ, A. LOPEZ-CASTRO, AND R. MARQUEZ, Acta Crystallogr., Sect. C, 41 (1985) 1465-1467.
- 42 C. ALTONA AND M. SUNDARALINGAM, J. Am. Chem. Soc., 94 (1972) 8205-8211.
- 43 D. CREMER AND J. A. POPLE, J. Am. Chem. Soc., 97 (1975) 1354-1358.
- 44 S. L. PATT AND J. M. SHOOLERY, J. Magn. Reson., 46 (1982) 536-539.