ISSN 1070-4280, Russian Journal of Organic Chemistry, 2013, Vol. 49, No. 7, pp. 1083–1086. © Pleiades Publishing, Ltd., 2013. Original Russian Text © A.A. Aghekyan, G.A. Panosyan, E.A. Markaryan, 2013, published in Zhurnal Organicheskoi Khimii, 2013, Vol. 49, No. 7, pp. 1097–1100.

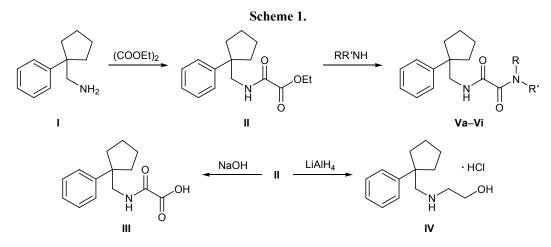
> SHORT COMMUNICATIONS

Synthesis of N'-Substituted N-(1-Phenylcyclopentylmethyl)oxamides

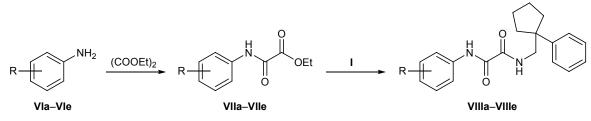
A. A. Aghekyan, G. A. Panosyan, and E. A. Markaryan

Research Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, Mndzhoyan Institute of Fine Organic Chemistry, pr. Azatutyan 26, Yerevan, 0014 Armenia e-mail: aaghekyan@mail.ru

Received August 25, 2012


DOI: 10.1134/S1070428013070221

Some compounds containing a 1-phenylcyclopentylmethylamino group were found to exhibit a broad spectrum of biological activity [1]. In continuation of these studies we have synthesized new derivatives of (1-phenylcyclopentyl)methanamine (I) [2]. The latter reacted with 5 equiv of diethyl oxalate [3] to give amido ester II in 70–75% yield (Scheme 1). Alkaline hydrolysis of II afforded amido acid III, whereas the reduction of II with LiAlH₄ led to the corresponding amino alcohol which was characterized as hydrochloride IV.


We also examined reactions of II with various amines and found that, depending on the amine nature (alkyl-, hydroxyalkyl-, hetaryl-, and hetarylalkylamines), N-(1-phenylcyclopentylmethyl)-substituted oxamides are formed according to different schemes. The reactions of II with amines gave unsymmetrical oxamides Va–Vh in 60–70% yield (Scheme 1). Symmetric oxamide Vi was synthesized according to a similar scheme; it was also formed via condensation of amine I with an equimolar amount of diethyl oxalate. Depending on the amine nature, the condensations were carried out either in alcohol as solvent or by fusion of the initial reactants.

We failed to synthesize *N*,*N*'-disubstituted oxamides by reaction of amido ester **II** with substituted anilines; therefore, the target diamides **VIII** were obtained as shown in Scheme 2. The condensation of anilines **VIa–VIe** with diethyl oxalate gave N-phenyl amido esters **VIIa–VIIe**, and the latter reacted with amine **I** to produce oxamides **VIIIa–VIIIe**. All compounds synthesized in the present work were isolated as colorless crystalline substances. Their structure and purity were confirmed by spectral data and TLC.

Ethyl 2-oxo-2-[(1-phenylcyclopentylmethyl)amino]acetate (II). A solution of 17.5 g (0.1 mol) of

R = H, R' = Bu (a); RR'N = pyrrolidin-1-yl (b), morpholin-4-yl (c); R = H, R' = 1,3,4-thiadiazol-2-yl (d), pyridin-4-yl (e), HOCH₂CH₂ (f), 3-(morpholin-4-yl)propyl (g), furfuryl (h), 1-phenylcyclopentylmethyl (i).

 $R = 3-Br(a), 4-Br(b), 4-F(c), 3-F_3C(d), 2-MeO(e).$

amine I in 100 ml of chloroform was slowly added dropwise to a boiling solution of 73 g (0.5 mol) of diethyl oxalate in 200 ml of chloroform. The mixture was heated for 10 h under reflux and evaporated, and the residue was distilled under reduced pressure. Yield 20 g (73%), bp 195–198°C (1 mm), mp 48–49°C (from hexane), R_f 0.63 (benzene–acetone, 8:1). IR spectrum, v, cm⁻¹: 3317 (NH), 1744 (C=O, ester), 1683 (C=O, amide). Found, %: C 69.62; H 7.58; N 5.21. C₁₆H₂₁NO₃. Calculated, %: C 69.79; H 7.69; N 5.09.

2-Oxo-2-[(1-phenylcyclopentylmethyl)amino]acetic acid (III). A mixture of 2 g (7.2 mmol) of amido ester II and 20 ml of 20% aqueous sodium hydroxide was stirred for 5 h at 35–40°C. The resulting transparent solution was acidified, and the precipitate was filtered off. Yield 1.5 g (83%), mp 98–100°C (from benzene), R_f 0.52 (benzene–acetone, 2:1). ¹H NMR spectrum, δ , ppm: 1.63–2.03 m (8H, CH₂), 3.35 d (2H, NHCH₂, J = 6.5 Hz), 7.17 m (1H) and 7.24–7.31 m (4H (H_{arom}), 7.51 t (1H, NH, J = 6.5 Hz), 12.41 br.s (1H, OH). Found, %: C 68.17; H 6.83; N 5.74. C₁₄H₁₇NO₃. Calculated, %: C 68.00; H 6.93; N 5.66.

2-[(1-Phenylcyclopentyl)methylamino]ethanol hydrochloride (IV). A solution of 2.75 g (10 mmol) of amido ester II in 50 ml of benzene was added to a mixture of 1.5 g (40 mmol) of LiAlH₄ and 50 ml of anhydrous diethyl ether, and the mixture was heated for 12 h under reflux. When the reaction was complete, the mixture was treated with water and filtered, and the filtrate was evaporated. The residue was dissolved in anhydrous diethyl ether, a solution of HCl in diethyl ether was added, and the precipitate was filtered off and dried. Yield 1.5 g (65%), mp 148-150°C (from acetone), $R_{\rm f}$ 0.46 (benzene-acetone, 2:1, ammonia vapor). ¹H NMR spectrum, δ , ppm: 1.62–1.87 m and 1.98-2.19 m [4H each, (CH₂)₄], 2.79 m (2H, NCH₂CH₂), 3.15 s (2H, NCH₂), 3.63 m (2H, OCH₂), 5.07 t (1H, OH, J = 5.9 Hz), 7.15–7.30 m (5H, H_{arom}), 8.52 br.s (2H, NH, HCl). Found, %: C 65.62; H 8.80;

Cl 13.95; N 5.39. $C_{14}H_{21}NO \cdot HCl.$ Calculated, %: C 65.74; H 8.67; Cl 13.86; N 5.48.

Diamides Va–Vc (*general procedure***).** A mixture of 10 mmol of amido ester **II** and 10 mmol of the corresponding amine was heated for 5 h at 35–40°C. The resulting solid material was treated with hexane, and the precipitate was filtered off, washed with water, 10% aqueous HCl, and water again, dried in air, and recrystallized from appropriated solvent.

N-Butyl-*N'*-(1-phenylcyclopentylmethyl)ethanediamide (Va). Yield 70%, mp 108–110°C (from toluene), R_f 0.58 (benzene–acetone, 8:1). ¹H NMR spectrum, δ, ppm: 0.92 t (3H, CH₃, J = 7.2 Hz), 1.32 m (2H, CH₂CH₃), 1.48 m (CH₂CH₂CH₃), 1.66–2.02 m (8H, CH₂), 3.13 t.d (2H, NHCH₂CH₂, J = 6.8, 5.9 Hz), 3.35 d (2H, CH₂NH, J = 6.5 Hz), 7.18 m (1H) and 7.25–7.33 m (4H) (H_{arom}), 7.45 br.t (1H, CH₂NH, J =6.5 Hz), 8.36 br.t (1H, BuNH, J = 6.5 Hz). Found, %: C 71.67; H 8.56; N 9.15. C₁₈H₂₆N₂O₂. Calculated, %: C 71.49; H 8.67; N 9.26.

2-Oxo-2-(pyrrolidin-1-yl)-*N*-(1-phenylcyclopentylmethyl)acetamide (Vb). Yield 60%, mp 106– 108°C (from hexane), R_f 0.61 (benzene–acetone, 2:1). ¹H NMR spectrum, δ , ppm: 1.63–2.01 m (12H, CH₂), 3.33 d (2H, NHCH₂, J = 6.4 Hz), 3.38 t and 3.69 t (2H each, NCH₂, J = 6.7 Hz), 7.17 m (1H) and 7.24– 7.32 m (4H) (H_{arom}), 7.53 br.t (1H, NH, J = 6.4 Hz). Found, %: C 71.69; H 8.17; N 9.45. C₁₈H₂₄N₂O₂. Calculated, %: C 71.97; H 8.05; N 9.33.

2-(Morpholin-4-yl)-2-oxo-*N*-(1-phenylcyclopentylmethyl)acetamide (Vc). Yield 62%, mp 101– 102°C (from heptane), R_f 0.53 (benzene–acetone, 2:1). ¹H NMR spectrum, δ , ppm: 1.62–2.02 m (8H, CH₂); 3.22 m (2H), 3.45 m (4H), and 3.57 m (2H) (NCH₂CH₂O), 3.38 d (2H, NHCH₂, J = 6.3 Hz), 7.13 m (1H) and 7.21–7.31 m (4H, H_{arom}), 7.91 t (1H, NH, J = 6.3 Hz). Found, %: C 68.55; H 7.48; N 8.73. C₁₈H₂₄N₂O₃. Calculated, %: C 68.33; H 7.65; N 8.85.

Diamides Vd and Ve were synthesized in a similar way from 10 mmol of II and 10 mmol of 1,3,4-thiadi-

azol-2-amine or pyridin-4-amine by heating the reactant mixture for 10 h at 65–70°C.

N-(1-Phenylcyclopentylmethyl)-*N*'-(1,3,4-thiadiazol-2-yl)ethanediamide (Vd). Yield 67%, white crystals, mp 190–191°C (from toluene), $R_{\rm f}$ 0.45 (benzene– acetone, 4:1). ¹H NMR spectrum, δ, ppm: 1.63–2.07 m (8H, CH₂), 3.44 d (2H, NCH₂, *J* = 6.5 Hz), 7.14– 7.32 m (5H, H_{arom}), 7.97 t (1H, NHCH₂, *J* = 6.5 Hz), 9.05 s (1H, 5'-H), 12.72 br.s (1H, NH). Found, %: C 58.40; H 5.38; N 16.85; S 9.58. C₁₆H₁₈N₄O₂S. Calculated, %: C 58.16; H 5.49; N 16.96; S 9.70.

N-(1-Phenylcyclopentylmethyl)-*N*'-(pyridin-4yl)ethanediamide (Ve). Yield 61%, mp 163–165°C (from ethanol), R_f 0.41 (benzene–acetone, 2:1). ¹H NMR spectrum, δ, ppm: 1.65–2.07 m (8H, CH₂), 3.42 d (2H, NCH₂, J = 6.5 Hz), 7.15–7.31 m (5H, H_{arom}), 7.79 m (2H) and 8.37 m (2H) (pyridine), 7.82 t (1H, NHCH₂, J = 6.5 Hz), 10.83 s (1H, NH). Found, %: C 70.71; H 6.40; N 12.74. C₁₉H₂₁N₃O₂. Calculated, %: C 70.57; H 6.55; N 12.99.

Diamides Vf–Vi (general procedure). A mixture of 10 mmol of amido ester II and 10 mmol of 2-aminoethanol, 2-(morpholin-4-yl)ethanamine, (2-furyl)methanamine, or (1-phenylcyclopentyl)methanamine in 30 ml of ethanol was heated for 8 h under reflux. After cooling, the precipitate was filtered off.

N-(2-Hydroxyethyl)-*N*'-(1-phenylcyclopentylmethyl)ethanediamide (Vf). Yield 62%, mp 132– 133°C (from ethanol), R_f 0.58 (benzene–acetone, 1:1). ¹H NMR spectrum, δ, ppm: 1.63–2.02 m (8H, CH₂), 3.23 q (2H, NHCH₂CH₂, J = 5.7 Hz), 3.36 d (2H, NHCH₂, J = 6.5 Hz), 3.48 q (2H, OCH₂, J = 5.7 Hz), 4.43 t (1H, OH, J = 5.7 Hz), 7.18 m (1H) and 7.25– 7.33 m (4H) (H_{arom}), 7.49 t (1H, NHCH₂, J = 6.5 Hz), 8.30 t (1H, NHCH₂CH₂, J = 5.7 Hz). Found, %: C 66.35; H 7.51; N 9.72. C₁₆H₂₂N₂O₃. Calculated, %: C 66.18; H 7.64; N 9.65.

N-[2-(Morpholin-4-yl)ethyl]-*N*'-(1-phenylcyclopentylmethyl)ethanediamide (Vg). Yield 60%, mp 121–122°C (from ethanol), R_f 0.58 (benzene-acetone, 3:1). ¹H NMR spectrum, δ , ppm: 1.63–2.05 m (8H, CH₂), 2.38–2.47 m (6H, NCH₂CH₂), 3.26 q (2H, NHCH₂CH₂), *J* = 6.3 Hz), 3.31 d (2H, NHCH₂, *J* = 6.5 Hz), 3.58 m (4H, OCH₂), 7.15 m (1H) and 7.23–7.31 m (4H) (H_{arom}), 7.48 t (1H, NHCH₂, *J* = 6.5 Hz), 8.33 t (1H, NHCH₂CH₂, *J* = 6.3 Hz). Found, %: C 66.55; H 8.26; N 11.81. C₂₀H₂₉N₃O₃. Calculated, %: C 66.83; H 8.13; N 11.69.

N-(Furan-2-ylmethyl)-*N*'-(1-phenylcyclopentylmethyl)ethanediamide (Vh). Yield 71%, mp 118– 119°C (from toluene), R_f 0.58 (benzene–acetone, 4:1). ¹H NMR spectrum, δ, ppm: 1.63–1.98 m (8H, CH₂), 3.31 d (2H, NHC**H**₂, J = 6.5 Hz), 4.31 d (2H, NHC**H**₂Fu, J = 6.2 Hz), 6.17 d (1H, 3'-H, J = 3.2 Hz), 6.28 d.d (1H, 4'-H, J = 3.2, 2.8 Hz), 7.14 m (1H) and 7.21–7.31 m (4H) (H_{arom}), 7.36 d (1H, 5'-H, J =1.8 Hz), 7.51 d (1H, N**H**CH₂, J = 6.5 Hz), 8.34 t (1H, N**H**CH₂Fu, J = 6.2 Hz). Found, %: C 69.70; H 6.90; N 8.70. C₁₉H₂₂N₂O₃. Calculated, %: C 69.92; H 6.79; N 8.58.

N,*N*'-Bis(1-phenylcyclopentylmethyl)ethanediamide (Vi). Yield 71%, mp 160–161°C (from ethanol), R_f 0.66 (benzene–diethyl ether, 4:1). ¹H NMR spectrum, δ, ppm: 1.62–2.00 m (16H, CH₂), 3.31 d (4H, NHCH₂, *J* = 6.6 Hz), 7.14–7.31 m (10H, H_{arom}), 7.44 t (2H, NH, *J* = 6.6 Hz). Found, %: C 77.35; H 7.84; N 6.81. C₂₆H₃₂N₂O₂. Calculated, %: C 77.19; H 7.97; N 6.92.

Substituted anilides **VIIa–VIId** were synthesized as described above for amido ester **II**.

Ethyl 2-(3-bromophenylamino)-2-oxoacetate (VIIa). Yield 70%, mp 117–119°C (from ethanol), R_f 0.52 (benzene–diethyl ether, 3:1). IR spectrum, v, cm⁻¹: 3328 (NH), 1725 (C=O, ester), 1708 (C=O, amide). Found, %: C 44.28; H 3.55; Br 29.20; N 5.29. C₁₀H₁₀BrNO₃. Calculated, %: C 44.14; H 3.70; Br 29.37; N 5.15.

Ethyl 2-(4-bromophenylamino)-2-oxoacetate (VIIb). Yield 74%, mp 155–156°C (from ethanol), $R_f 0.50$ (benzene–diethyl ether, 3:1). IR spectrum, v, cm⁻¹: 3333 (NH), 1731 (C=O, ester), 1707 (C=O, amide). Found, %: C 44.28; H 3.55; Br 29.20; N 5.29. C₁₀H₁₀BrNO₃. Calculated, %: C 44.14; H 3.70; Br 29.37; N 5.15.

Ethyl 2-(4-fluorophenylamino)-2-oxoacetate (VIIc). Yield 71%, mp 110–112°C (from ethanol), $R_{\rm f}$ 0.51 (benzene–diethyl ether, 3:1). IR spectrum, v, cm⁻¹: 3319 (NH), 1734 (C=O, ester), 1688 (C=O, amide). Found, %: C 56.75; H 4.89; F 8.91; N 6.75. C₁₀H₁₀FNO₃. Calculated, %: C 56.87; H 4.77; F 9.00; N 6.63.

Ethyl 2-oxo-2-(3-trifluoromethylphenylamino)acetate (VIId). Yield 69%, mp 118–120°C (from ethanol), R_f 0.49 (benzene–diethyl ether, 3:1). IR spectrum, v, cm⁻¹: 3337 (NH), 1710 (C=O, ester), 1699 (C=O, amide). Found, %: C 50.39; H 3.71; F 21.63; N 5.58. C₁₁H₁₀F₃NO₃. Calculated, %: C 50.58; H 3.86; F 21.82; N 5.36.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 49 No. 7 2013

Ethyl 2-(2-methoxyphenylamino)-2-oxoacetate (VIIe) was synthesized according to the procedure described in [4].

Diamides **VIIIa–VIIIe** were synthesized as described above for amides **V** by heating a mixture of 10 mmol of amine **I** and amido ester **VIIa–VIIe** at 65–70°C; the products were recrystallized from ethanol.

N-(**3-Bromophenyl**)-*N*'-(**1-phenylcyclopentylmethyl**)**ethanediamide (VIIIa).** Yield 60%, mp 146– 148°C, R_f 0.70 (benzene–acetone, 8:1). ¹H NMR spectrum, δ , ppm: 1.65–2.07 m (8H, CH₂), 3.43 d (NHCH₂, J = 6.5 Hz), 7.19 m (1H) and 7.27–7.31 m (4H) (H_{arom}); 7.33 m (1H), 7.44 t (1H, J = 8.0 Hz), 8.04 m (1H), and 8.28 t (1H, J = 2.0 Hz) (C₆H₄); 7.74 t (1H, NHCH₂, J = 6.5 Hz), 10.81 s (1H, NHAr). Found, %: C 59.69; H 5.42; Br 19.79; N 7.12. C₂₀H₂₁BrN₂O₂. Calculated, %: C 59.86; H 5.27; Br 19.91; N 6.98.

N-(4-Bromophenyl)-*N'*-(1-phenylcyclopentylmethyl)ethanediamide (VIIIb). Yield 59%, mp 159– 160°C, R_f 0.70 (benzene–acetone, 8:1). ¹H NMR spectrum, δ , ppm: 1.65–2.06 m (8H, CH₂), 3.42 d (2H, NHCH₂, J = 6.5 Hz), 7.18 m (1H) and 7.26–7.33 m (4H) (H_{arom}), 7.37 m and 7.78 m (2H each, C₆H₄), 7.71 t (1H, NHCH₂, J = 6.5 Hz), 10.55 s (1H, NHAr). Found, %: C 59.71; H 5.40; Br 19.75; N 7.10. C₂₀H₂₁BrN₂O₂. Calculated, %: C 59.86; H 5.27; Br 19.91; N 6.98.

N-(4-Fluorophenyl)-*N*'-(1-phenylcyclopentylmethyl)ethanediamide (VIIIc). Yield 57%, mp 140– 142°C, R_f 0.70 (benzene–acetone, 8:1). ¹H NMR spectrum, δ , ppm: 1.65–2.02 m (8H, CH₂), 3.40 d (2H, NHCH₂, J = 6.5 Hz), 7.18 m (1H) and 7.27–7.32 m (4H) (H_{arom}), 7.37 m and 7.77 m (2H each, C₆H₄), 7.70 t (1H, NHCH₂, J = 6.5 Hz), 10.54 s (1H, NHAr). Found, %: C 70.45; H 6.14; F 5.69; N 8.14. C₂₀H₂₁FN₂O₂. Calculated, %: C 70.57; H 6.22; F 5.58; N 8.23.

N-(1-Phenylcyclopentylmethyl)-*N'*-(3-trifluoromethylphenyl)ethanediamide (VIIId). Yield 61%, mp 134–136°C, R_f 0.67 (benzene–acetone, 8:1). ¹H NMR spectrum, δ , ppm: 1.65–2.07 m (8H, CH₂), 3.43 d (2H, NHCH₂, J = 6.5 Hz), 7.19 m (1H) and 7.28–7.32 m (4H) (H_{arom}); 7.33 m (1H), 7.44 t (1H, J = 8.0 Hz), 8.04 m (1H), and 8.28 t (1H, J = 2.0 Hz) (C₆H₄); 7.74 t (1H, NHCH₂, J = 6.5 Hz), 10.81 s (1H, NHAr). Found, %: C 64.75; H 5.36; F 14.78; N 7.05. C₂₁H₂₁F₃N₂O₂. Calculated, %: C 64.61; H 5.42; F 14.60; N 7.18.

N-(2-Methoxyphenyl)-*N*'-(1-phenylcyclopentylmethyl)ethanediamide (VIIIe). Yield 65%, mp 116– 118°C, R_f 0.64 (benzene–acetone, 8:1). ¹H NMR spectrum, δ, ppm: 1.64–2.06 m (8H, CH₂), 3.42 d (2H, NHCH₂, *J* = 6.5 Hz), 3.95 s (3H, OCH₃); 6.90 m (1H), 6.96 d.d (1H, *J* = 8.3, 1.6 Hz), 7.06 m (1H), and 8.24 d.d (1H, *J* = 8.0, 1.8 Hz) (C₆H₄); 7.19 m (1H) and 7.27–7.33 m (4H) (H_{arom}), 7.76 t (1H, NHCH₂, *J* = 6.5 Hz), 9.66 s (1H, NHAr). Found, %: C 71.79; H 6.75; N 7.87. C₂₁H₂₄N₂O₃. Calculated, %: C 71.57; H 6.86; N 7.95.

The IR spectra were recorded on a Nicolet Avatar 330 FT-IR spectrometer from samples dispersed in mineral oil. The ¹H NMR spectra were measured on a Varian Mercury-300 spectrometer from solutions in DMSO- d_6 using tetramethylsilane as internal reference. The melting points were determined using a Boetius micro-hot stage. TLC analyses were carried out on Silufol UV-254 plates; spots were visualized by treatment with iodine vapor.

REFERENCES

- Agekyan, A.A., Solomina, L.P, Pirdzhanov, L.Sh., and Markaryan, E.A., Arm. Khim. Zh., 1995, vol. 48, nos. 1– 3, p. 88; Agekyan, A.A., Mkryan, G.G., Gukasyan, T.G., Tsatinyan, A.S., Shirinyan, E.A., Asatryan, T.O., Markaryan, K.Zh., Grigoryan, A.V., and Markaryan, E.A., *Khim. Zh. Arm.*, 2011, vol. 63, p. 398; Agekyan, A.A., Mkryan, G.G., Tsatinyan, A.S., Noravyan, O.S., Gukasyan, T.G., Shirinyan, E.A., and Markaryan, E.A., *Khim. Zh. Arm.*, 2011, vol. 64, p. 531.
- 2. Mndzhoyan, A.L. and Tatevosyan, G.T., *Izv. Akad. Nauk* Arm. SSR, Ser. Khim. Nauk, 1958, vol. 17, no. 2, p. 93.
- 3. Lambert, J.B., Huseland, D.E., and Gen-Tai Wang, *Synthesis*, 1986, p. 657.
- Vartanyan, S.O., Avakyan, A.S., Sarkisyan, A.B., Markaryan, E.A., Arutyunyan, S.A, Shirinyan, E.A., and Khachatryan, A.G., *Vestn. MANEB*, 2005, vol. 10, no. 6, p. 198.