Tetrahedron Letters 53 (2012) 6694-6696

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A new approach to isoindolinone derivatives by sequential palladium iodide-catalyzed oxidative aminocarbonylation-heterocyclization of 2-ethynylbenzamides

Bartolo Gabriele^{a,*}, Raffaella Mancuso^{b,*}, Ida Ziccarelli^b, Giuseppe Salerno^b

^a Dipartimento di Scienze Farmaceutiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy ^b Dipartimento di Chimica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy

ARTICLE INFO

Article history: Received 30 August 2012 Accepted 24 September 2012 Available online 29 September 2012

Keywords: Carbonylation Cyclization Heterocycles Isoindolinones Palladium

ABSTRACT

A novel approach to functionalized isoindolinone derivatives **3** is presented. It is based on a cascade process, consisting of PdI_2/KI -catalyzed oxidative monoaminocarbonylation of secondary 2-ethynylbenzamides **1** with nucleophilic secondary amines **2**, followed by intramolecular conjugate addition of the arylamido group to the alkynylamido group of the intermediate alkynylamides. Products have been obtained in high to excellent yields starting from different *N*-alkyl 2-ethynylbenzamides and amines, under relatively mild conditions (100 °C under 40 atm of a 4:1 mixture of CO-air), working in a MeCN-amine mixture (2:1, v/v) for 5–15 h.

© 2012 Elsevier Ltd. All rights reserved.

PdI₂/KI-catalyzed oxidative monoaminocarbonylation of 1-alkynes with nucleophilic secondary amines is a powerful method for the direct synthesis of 2-ynamides starting from simple building blocks (Eq. 1).¹ When applied to suitably functionalized substrates, it can allow the direct synthesis of carbonylated heterocycles through a sequential process involving oxidative aminocarbonylation of the terminal triple bond followed by intramolecular conjugate addition (Scheme 1).²

RC=CH + CO + R'₂NH + (1/2) O₂
$$\xrightarrow{\text{Pdl}_2 \text{ cat}}_{-\text{H}_2\text{O}} \xrightarrow{\text{O}}_{-\text{NR'}_2}$$
 (1)

In this Letter, we report a novel application of this kind of reactivity to the direct synthesis of functionalized isoindolinone derivatives,³ that are, 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones **3**, starting from N-substituted 2-ethynylbenzamides **1** (available in four steps from 2-iodobenzoic acid)⁴ and nucleophilic secondary amines **2**, according to Scheme 2. To our knowledge, this is the first example of synthesis of this class of compounds by direct carbonylation of acyclic precursors. A non-carbonylative route to 3-[(carbamoyl)methylene]isoindolin-1-ones and 3-[(alkoxycarbonyl)methylene]isoindolin-1-ones, involving an oxidative Pdcatalyzed reaction between *N*-methoxybenzamides and acrylamides or alkyl acrylate, has been recently developed.⁵ 3-[(Alkoxycarbonyl)methylene]isoindolin-1-one derivatives were also obtained in low to moderate yields (25–55%) by Pd-catalyzed oxidative alkoxycarbonylation of 2-alkynylbenzamides bearing an internal triple bond, through a completely different reaction course (nucleophilic attack by the amido group to the coordinated triple bond followed by alkoxycarbonylation).⁶

$$\begin{array}{c} \overbrace{YH} & \frac{Pdl_2 \text{ cat}}{CO, R_2 NH, O_2} \end{array} \left[\begin{array}{c} \overbrace{YH} & NR_2 \end{array} \right] \longrightarrow \left(\begin{array}{c} \overbrace{YH} & CHCNR_2 \end{array} \right)$$

$$(Y = O, NR')$$

Scheme 1. Formation of carbonylated heterocycles through sequential Pdl₂-catalyzed oxidative monoaminocarbonylation of the triple bond—intramolecular conjugate addition.

Scheme 2. Synthesis of 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones **3** from secondary 2-ethynylbenzamides **1** and nucleophilic secondary amines **2** through sequential PdI₂-catalyzed oxidative monoaminocarbonylation of the triple bond—intramolecular conjugate addition.

^{*} Corresponding authors. Tel.: +39 0984 49 2813; fax: +39 0984 49 2044 (B.G.); tel.: +39 0984 49 2816; fax: +39 0984 49 2044 (R.M.).

E-mail addresses: b.gabriele@unical.it (B. Gabriele), raffaella.mancuso@unical.it (R. Mancuso).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.09.109

Table 1

Synthesis of 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones **3** by PdI₂/KI-catalyzed oxidative carbonylation of secondary 2-ethynylbenzamides **1** with nucleophilic secondary amines **2**^a

		NHR + CO + F	R' ₂ NH + (1/2) O ₂ — 2	$\begin{array}{c} O \\ CHCNR'_2 \\ CHCNR'_2 \\ H_2O \\ 3 \end{array}$		
Entry	1	2	Time (h)	3	Yield of 3^{b} (%)	Z/E ratio
1	NHBu O 1a	ONH 2a	15	CHC-NO N-Bu 3aa	83	2.0
2	NHBn O 1b	2a	5	CHC-NO N-Bn 3ba	83	2.2
3	NH ¹ Bu O 1c	2a	15	O O N- ^t Bu 3ca	94	Only E
4	NHPh O 1d	2a	8	CHC-NO N-Ph 3da	35	9.7
5	1a	Bu ₂ NH 2b	15	O CHC-NBu ₂ N-Bu 3ab	81	1.0
6	1a	∭NH 2c	5	CHC-N N-Bu 3ac	80	1.0
7	1a	∕_NH 2d	15	CHC-N N-Bu 3ad	91	1.0

^a All reactions were carried out in a 2:1 MeCN-amine mixture as the solvent (substrate concentration = 0.05 mmol of **1** per mL of solvent, 0.7 mmol scale based on **1**) at 100 °C under 40 atm (at 25 °C) of a 4:1 mixture of CO-air, in the presence of PdI₂ (2 mol %) in conjunction with KI (KI/PdI₂ molar ratio = 10). Substrate conversion was quantitative in all cases.

^b Isolated yield based on starting **1**.

The first substrate we tested was *N*-butyl-2-ethynylbenzamide **1a**, which was allowed to react with morpholine **2a**, CO, and O₂ using a 2:1 MeCN–morpholine mixture as the solvent under 40 atm of a 4:1 mixture of CO–air,⁷ in the presence of PdI₂ (2 mol%) in conjunction with KI (KI:PdI₂ molar ratio = 10). Under these conditions, after 15 h a 2.0 *Z*/*E* mixture of 2-butyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one **3aa** was obtained, with a total isolated yield of 83% (Table 1, entry 1).

The aminocarbonylation reaction was then extended to other differently substituted substrates **1b–d** with morpholine **2a** as the nucleophile. Thus, under the same conditions reported above, *N*-benzyl-2-ethynylbenzamide **1b** led to the formation of the cor-

responding 2-benzyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one **3ba** in 83% yield after 5 h reaction time (Z/E ratio = 2.2, entry 2). Interestingly, only the *E* isomer of 2-*tert*-butyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one **3ca** was obtained in excellent yield (94%) starting from *N*-*tert*-butyl-2-ethynylbenzamide **1c**, bearing a bulky substituent on the triple bond (Table 1, entry 3). This high stereoselectivity is probably due to the steric effect exerted by the *tert*-butyl group, which directs the dialkylaminocarbamoyl group on the opposite site with respect to the *tert*-butyl substituent. As expected in view of the significantly lower nucleophilicity of a phenyl-substituted amido group, the reaction led to less satisfactory results in the case of *N*-phenyl-2-ethynylbenzamide **1d**, which was converted into 2-phenyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one **3da** in only 35% yield (*Z*/*E* ratio = 9.7, Table 1, entry 4). On the other hand, the use of **1a** with other nucleophilic secondary amines, such as dibutylamine **2b**, pyrrolidine **2c**, and piperidine **2d**, led to high to excellent yields (80–91%) of the corresponding 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones **3ab**, **3ac**, and **3ad**, as shown in Table 1, entries 5–7.^{8–11}

In conclusion, we have reported a convenient and direct approach to the synthesis of 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones **3** by a novel cascade process, involving PdI₂-catalyzed oxidative monoaminocarbonylation of the triple bond of *N*-alkyl-2-ethynylbenzamides **1** followed by 5-*endo-dig* intramolecular conjugate addition. Our method represents an interesting example of direct synthesis of functionalized heterocyclic derivatives through the sequential multicomponent assembling of simple building blocks.

Acknowledgments

Thanks are due to the European Commission, FSE (Fondo Sociale Europeo) and Calabria Region for a fellowship grant to R.M.

References and notes

- Gabriele, B.; Salerno, G.; Veltri, L.; Costa, M. J. Organomet. Chem. 2011, 622, 84– 88.
- (a) Gabriele, B.; Salerno, G.; Plastina, P.; Costa, M.; Crispini, A. Adv. Synth. Catal. 2004, 346, 351–358; (b) Gabriele, B.; Salerno, G.; Plastina, P. Lett. Org. Chem. 2004, 1, 134–136; (c) Gabriele, B.; Plastina, P.; Salerno, G.; Costa, M. Synlett 2005, 935–938; (d) Gabriele, B.; Salerno, G.; Veltri, L.; Mancuso, R.; Li, Z.; Crispini, A.; Bellusci, A. J. Org. Chem. 2006, 71, 7895–7898; (e) Gabriele, B.; Plastina, P.; Salerno, G.; Mancuso, R. Synthesis 2006, 4247–4251; (f) Gabriele, B.; Plastina, P.; Salerno, G.; Mancuso, R.; Costa, M. Org. Lett. 2007, 9, 3319– 3322; (g) Plastina, P.; Gabriele, B.; Salerno, G. Synthesis 2007, 3083–3087.
- 3-Methyleneisoindolin-1-one derivatives are an important class of heterocycles. In fact, several molecules incorporating the 3methyleneisoindolin-1-one core have shown interesting pharmacological activities; for recent examples, see: (a) Abdou, W. M.; Khidre, R. E.; Barghash, R. F. Synth. Commun. 2012, 42, 1967–1978; (b) Del Olmo, E.; Barboza, B.; Lopez-Perez, J. L.; San Feliciano, A.; Chiaradia, L. D.; Moreno, A.; Benito, A.; Carrero-Lerida, J.; Gonzalez-Pacanowska, D.; Ruiz-Perez, L. M.; Munoz, V.; Gimenez, A.; Martinez, A. R. Eur, J. Med. Chem. 2011, 46, 5379–5386; (c) Zhu, X.; Greig, N. H.; Yu, Q.-s.; Utsuki, T.; Holloway, H. W.; Lahiri, D. K.; Brossi, A. Heterocycles 2004, 64, 93–100; (d) Del Olmo, E.; Armas, M. G.; Lopez-Perez, J. L.; Munoz, V.; Deharo, E.; San Feliciano, A. Bioorg. Med. Chem. Lett. 2001, 11, 2123–2126; (e) Cid, H. M. B.; Traenkle, C.; Baumann, K.; Pick, R.; Mies-Klomfass, E.; Kostenis, E.; Mohr, K.; Holzgrabe, U. J. Med. Chem. 2000, 43, 2155–2164.
- 4. N-substituted 2-ethynylbenzamides 1 were easily prepared from commercially available 2-iodobenzoic acid through conversion into the corresponding acyl chloride followed by amidation with the suitable amine, Sonogashira coupling with trimethylsilylacetylene and deprotection, as reported in the literature: Varela-Fernández, A.; Varela, J. A.; Saá, C. Adv. Synth. Catal. 2011, 353, 1933–1937.
- (a) Li, D.-D.; Yuan, T.-T.; Wang, G.-W. *Chem. Commun.* 2011, 47, 12789–12791;
 (b) Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. *Org. Lett.* 2011, *13*, 5326–5329.
- Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50, 11803–11812.
- 7. These conditions (32 atm of CO together with 9 total atm of air, considering that the autoclave was loaded under 1 atm of air) corresponded to 78.0% of CO in air and were outside the explosion limits for CO in air (ca. 16–70% at 18–20 °C and atmospheric pressure, 14.8–71.4% at 100 °C and atmospheric pressure. At higher total pressure, the range of flammability decreases: for example, at 20 atm and 20 °C the limits are ca. 19 and 60%. See: Bartish, C. M.;

Drissel, G. M. In *Kirk-Othmer Encyclopedia of Chemical Technology*; Grayson, M., Eckroth, D., Bushey, G. J., Campbell, L., Klingsberg, A., van Nes, L., Eds.; Wiley-Interscience: New York, 1978; Vol. 4, p 775. 3rd ed.

- Typical procedure for the oxidative carbonylative annulation of N-substituted 2-ethynylbenzamides 1 to 3-(dialkylcarbamoylmethylene)isoindolin-1-ones 3: A 250 mL stainless steel autoclave was charged in the presence of air with PdI₂ (5.0 mg, 1.39×10^{-2} mmol), KI (23.0 mg, 1.39×10^{-1} mmol), and a solution of 1 (0.70 mmol) in a mixture MeCN-amine (MeCN: 9.6 mL; amine 2: 4.8 mL). The autoclave was sealed and, while the mixture was stirred, the autoclave was pressurized with CO (32 atm) and air (up to 40 atm). After being stirred at 100 °C for the required time (see Table 1), the autoclave was cooled, degassed, and opened. When necessary, the mixture was filtered (to remove the solid oxamide by-product deriving from double carbonylation of 2) and the solid washed with cold Et₂O. The solvent was evaporated, and the products were purified by column chromatography on silica gel (eluent: chloroform for 3aa; 7:3 hexane-AcOEt for 3ca and 3da) or neutral alumina (eluent: 8:2 hexane-AcOEt for **3ba**; 7:3 hexane-AcOEt for **3ab** and **3ad**; 9:1 hexane-AcOEt for **3ac**) to give pure isoindolinones 3, which were fully characterized by spectroscopic techniques and elemental analysis.⁷ The molecular structure of (Z)-2-tertbutyl-3-(2-morpholino-2-oxoethylidene)isoindolin-1-one was confirmed by Xray diffraction analysis, which will be reported in due course.
- Characterization data for selected products: For 3aa (mixture of diastereomers Z/E, Z/E ratio ca. 2.0, determined by ¹H NMR): Pale yellow oil. IR (film): v = 2960(m), 2928 (m), 1712 (s), 1684 (vs), 1435 (m), 1400 (w), 1231 (m), 1115 (m), 1040 (w), 769 (m), 699 (w) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): *δ* = 8.12–8.01 [*Z* (m, 1 H, aromatic)], 7.88-7.76 [Z (m, 1 H, aromatic) + E (m, 1 H, aromatic)], 7.70-7.46 [Z (m, 2 H, aromatic) + E (m, 3 H, aromatic)], 6.01 [E (s, 1 H, = CH)], 5.81 [Z (s, 1 H, = CH)], 4.02 [E (t, J = 7.5, 2 H, NCH₂)], 3.88-3.55 [Z (m, 2 H, NCH₂) + Z (m, 8 H, morpholine ring) + E (m, 8 H, morpholine ring)], 1.73-1.58 [Z (m, 2 H, NCH₂CH₂)], 1.58-1.23 [E (m, 2 H, NCH₂CH₂) + Z (m, 2 H, CH₂CH₃) + E (m, 2 H, CH_2CH_3], 1.01-0.88 [Z (m, 3 H, Me) + E (m, 3 H, Me)]; ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 168.1, 166.7, 165.3, 164.8, 142.2, 139.9, 137.2, 134.0, 132.5, 132.2,$ 130.4, 130.14, 130.07, 128.4, 124.7, 123.4, 123.1, 119.5, 99.5, 96.4, 66.8, 66.7, 66.6, 47.2, 47.1, 42.1, 41.9, 40.7, 39.2, 30.7, 30.3, 20.2, 20.0, 13.9, 13.8; GC-MS (EI, 70 eV): *m/z* = 314 (M⁺, 12), 271 (5), 228 (100), 210 (11), 200 (48), 186 (11), 172 (32), 159 (12), 158 (12), 146 (6), 130 (34), 114 (4), 102 (8), 89 (7); anal. calcd for C18H22N2O3 (314.38): C. 68.77; H. 7.05; N, 8.91; found C, 68.84; H, 7.04; N, 8.89. For 3ca (E isomer): Colorless solid. Mp = 145-146 °C IR (KBr): v = 2979 (w), 2954 (w), 2855 (w), 1708 (s), 1637 (vs), 1433 (m), 1374 (w), 1301 (w), 1232 (m), 1115 (m), 1020 (w), 772 (m), 699 (w) cm⁻¹; ¹H NMR (300 MHz, (m, 152 (m, 152 (m, 115 (m, 162 (m, 152 (m, 15 (75 MHz, CDCl₃): δ = 166.1, 160.9, 141.0, 134.4, 132.3, 130.0, 128.1, 122.99, 122.97, 104.5, 67.3, 66.5, 57.8, 42.1, 40.7, 30.3; GC-MS (EI, 70 eV): m/z = 314 (M⁺, 6), 258 (3), 228 (2), 200 (41), 172 (100), 145 (13), 130 (28), 114 (8), 102 (6), 86 (22); anal. calcd for C₁₈H₂₂N₂O₃ (314.38): C. 68.77; H. 7.05; N, 8.91; found C, 68.82; H, 7.03; N, 8.90. For **3ad** (mixture of diastereomers Z/E, Z/E ratio ca. 1.0, determined by ¹H NMR): Pale yellow oil. IR (film): v = 2934 (m), 2956 (m), 1713 (s), 1652 (vs), 1470 (m), 1252 (m), 1023 (m), 953 (w), 770 (m), 698 (w) cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ = 8.03-7.96 [Z (m, 1 H, aromatic)], 7.86-7.77 [Z (m, 1 H, aromatic) + E (m, 1 H, aromatic)], 7.69-7.62 [E (m, 1 H, aromatic)], 7.61-7.46 [Z (m, 2 H, aromatic) + E (m, 2 H, aromatic)], 6.04 [E (s, 1 H, = CH)], 5.83 [Z (s, 1 H, = CH)], 3.99 [E (t, J = 7.6, 2 H, NCH₂CH₂)], 3.83-3.49 [Z (m, 2 H, NCH_2CH_2 + Z (m, 4 H, CH₂NCH₂) + E (m, 4 H, CH₂NCH₂)], 1.75-1.24 [E (m, 10 H, CH₂CH₂CH₃ + CH₂CH₂NCH₂CH₂CH₂) + Z (m, 10 H, CH₂CH₂CH₃ + CH₂CH₂NCH₂- $(H_2(H_2)_1, 0.96 [Z \text{ or } (t, J = 7.3, 3) \text{ H}, \text{ Me})], 0.92 [E \text{ or } Z (t, J = 7.3, 3 \text{ H}, \text{ Me})]; ^{13}\text{C}$ NMR (75 MHz, CDCl₃): δ = 168.1, 166.8, 165.0, 164.5, 140.9, 138.7, 137.4, 134.3, 132.3, 132.0, 130.1, 129.9, 124.5, 123.3, 123.1, 119.4, 111.7, 109.4, 101.0, 97.9, 48.0, 47.9, 42.8, 42.5, 40.7, 39.2, 30.7, 30.4, 26.7, 26.4, 25.8, 25.5, 24.58, 24.53, 400, 47.5, 42.6, 42.3, 40.7, 55.2, 50.7, 50.4, 20.7, 20.4, 23.6, 23.6, 24.3, 20.2, 20.1, 13.82, 13.78; GC-MS (EI, 70 eV): m/z = 312 (M⁺, 35), 283 (3), 269 (13), 239 (8), 228 (100), 210 (17), 201 (59), 200 (69), 186 (30), 172 (56), 159 (67), 146 (13), 130 (69), 112 (11), 102 (18), 84 (72); anal. calcd for C₁₉H₂₄N₂O₂ (312.41): C, 73.05; H, 7.74; N, 8.97; found C, 73.12; H, 7.72; N, 8.99.
- 10. The reaction worked to only a very little extent with non-nucleophilic secondary amines, such as hindered amines like diisopropylamine, while primary amines could not be used owing to their transformation into ureas according to a known reactivity.¹¹
- (a) Gabriele, B.; Mancuso, R.; Salerno, G.; Costa, M. *Chem. Commun.* 2003, 486–487; (b) Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. *J. Org. Chem.* 2004, 69, 4741–4750; (c) Della Ca', N.; Bottarelli, P.; Dibenedetto, A.; Aresta, M.; Gabriele, B.; Salerno, G.; Costa, M. *J. Catal.* 2011, 282, 120–127.