Efficient and Selective Synthesis of 6,7-Dehydrostipiamide via Zr-Catalyzed Asymmetric Carboalumination and Pd-Catalyzed Cross-Coupling of Organozincs[†]

Xingzhong Zeng, Fanxing Zeng, and Ei-ichi Negishi*

Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084

negishi@purdue.edu

Received June 10, 2004

ORGANIC LETTERS

2004 Vol. 6, No. 19 3245-3248

ABSTRACT

6,7-Dehydrostipiamide has been synthesized in 23% yield in 15 steps in the longest linear sequence through the application of the Zrcatalyzed asymmetric carboalumination and the Pd-catalyzed organozinc cross-coupling in addition to the Brown crotylboration, the Corey– Peterson olefination, and the Corey–Fuchs reaction for carbon–carbon bond formation.

We report herein an efficient and selective synthesis of 6,7dehydrostipiamide¹ (1), a nonnatural multidrug resistance reversal agent of high potency and low toxicity, in 23% yield over 15 steps in the longest linear sequence. Of the eight crucial carbon–carbon bond-forming steps in the synthesis, three employed Pd-catalyzed organozinc cross-coupling reactions,² while two single bonds to the asymmetric carbon

centers, i.e., C12 and C16, were constructed by using recently developed Zr-catalyzed asymmetric carboalumination³ and Brown crotylboration,⁴ respectively. Both of the trisubstituted alkenes at C10 and C14 were constructed through the use of the Corey version of the Peterson olefination (Corey–Peterson olefination hereafter),⁵ while introduction of C8 was

 $^{^{\}dagger}\ensuremath{\,\text{We}}$ wish to dedicate this paper to the memory of Professor S. Masamune.

^{(1) (}a)Andrus, M. B.; Lepore, S. D. J. Am. Chem. Soc. 1997, 119, 2327.
(b) Andrus, M. B.; Lepore, S. D.; Turner, T. M. J. Am. Chem. Soc. 1997, 119, 12159.

^{(2) (}a) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. **1977**, 683. (b) Negishi, E.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. **1978**, 100, 2254. (c) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N.; Luo, F. T. J. Am. Chem. Soc. **1987**, 109, 2393. (d) Negishi, E. Acc. Chem. Res. **1982**, 15, 340. (e) For a comprehensive review, see Negishi, E., Ed., Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley: New York, 2002, Part III, p 215–1119.

^{(3) (}a) Kondakov, D.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 10771.
(b) Kondakov, D.; Negishi, E. J. Am. Chem. Soc. 1996, 118, 1577. (c) Wipf,
P.; Ribe, S. Org. Lett. 2000, 2, 1713. (d) Huo, S.; Negishi, E. Org. Lett.
2001, 3, 3253. (e) Huo, S.; Shi, J.; Negishi, E. Angew. Chem., Int. Ed.
2002, 41, 2141. (f) Negishi, E.; Tan, Z.; Liang, B.; Novak, T. Proc. Natl.
Acad. Sci. U.S.A. 2004, 5782. (g) Magnin-Lachaux, M.; Tan, Z.; Liang,
B.; Negishi, E. Org. Lett. 2004, 6, 1425. (h) Tan, Z.; Negishi, E. Angew.
Chem., Int. Ed. 2004, 43, 2911.

^{(4) (}a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. **1986**, 108, 293, 5919. (b) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. **1988**, 110, 1535.

^{(5) (}a) Corey, E. J.; Enders, D.; Bock, M. G. *Tetrahedron Lett.* 1976, 7.
(b) Schlessinger, R. H.; Poss, M. A.; Richardson, S.; Lin, P. *Tetrahedron Lett.* 1985, 26, 2391. (c) Desmond, R.; Mills, S. G.; Volante, R. P.; Shinkai, I. *Tetrahedron Lett.* 1988, 29, 3895.

^{*a*} Reagents and conditions: (a) (i) Me₃Al (2 equiv), 5% (+)-(NMl)₂ZrCl₂, IBAO (1 equiv); (ii) O₂; 85%. (b) (COCl)₂, DMSO. (c) (i) Et₃SiCLiMeCH=NCy, THF, -20 °C; (ii) CF₃CO₂H, 0 °C; 81%. (d) (+)-lpc₂BCH₂CH=CHCH₃-(*E*), THF-ether, -78 °C, 15 h, 80%.

achieved by the Corey–Fuchs reaction.⁶ 6,7-Dehydrostipiamide,¹ as well as structurally related natural products, including stipiamide (phenalamide A_1) (2),^{1,7} phenalamide A_2 (3),⁸ and myxalamide A (4),⁹ have been synthesized since 1997. With the exception of asymmetric crotylboration, however, none of the carbon–carbon bond-forming reactions mentioned above have been employed in previously reported syntheses.

The preparation of a key intermediate 5 corresponding to the C11-C18 moiety was achieved only in four steps from 4-phenyl-1-butene in 55% overall yield, as summarized in Scheme 1.The Zr-catalyzed asymmetric carboalumination³ of 4-phenyl-1-butene with Me₃Al (2 molar equiv), 5 mol % $(+)-(NMI)_2ZrCl_2$ ¹⁰ where NMI is 1-neomenthylindenyl derived from (+)-menthol, and isobutylaluminoxane^{3e} (IBAO), prepared by the reaction of 1 molar equiv each of ⁱBu₃Al and H₂O, in CH₂Cl₂ at 0 °C produced, after oxidation with O₂, (2S)-2-methyl-4-phenyl-1-butanol¹ (6) in 85% yield and 78% ee. Although the Mosher ester analysis¹¹ of **6** indicated an approximately 80% ee for **6**, signal overlappings in ${}^{1}\text{H}$ NMR spectra did not permit an accurate measurement of enantioselectivity for this case. So, 6 was oxidized by Swern oxidation¹² (96% yield) and then converted to the corresponding carboxylic acid with KMnO₄-KH₂PO₄ in aqueous ^tBuOH¹³ (70% yield). The resultant carboxylic acid was treated with both R and S isomers of α -(1-aminoethyl)-


```
(7) For isolation and identification, see: (a) Kim, Y. J.; Furihata, K.;
Yamanaka, S.; Fudo, R.; Seto, H. J. Antibiot. 1991, 44, 553. (b) Trowitzsch-
Kienast, W.; Forsche, E.; Wray, V.; Reichenbach, H.; Jurkiewicz, E.;
Hunsmann, G.; Höfle, G. Liebigs Ann. Chem. 1992, 659.
```


naphthalene, NCPO(OEt)₂, and NEt₃ in DMF;¹⁴ the carboxamide thus obtained in 92% yield was analyzed by GLC and NMR spectroscopy, both of which indicated an enantiomeric excess of 78%. The results presented above have also confirmed that little or no racemization occurs in the Swern oxidation step.

After Swern oxidation of **6**, the crudely obtained aldehyde was subjected to the Corey–Peterson olefination with a reagent generated in situ by treating *N*-cyclohexyl(2-triethylsilylpropylidene)imine with ^sBuLi at -78 °C.⁵ After treatment with CF₃COOH, the desired aldehyde **7** of >99% *E* was obtained in 81% yield. We initially converted **6** into **7** in four steps. Following the Swern oxidation of **6** as stated above, the Corey–Fuchs reaction,⁶ followed by conversion of the 1,1-dibromo-1-alkene thus formed into the corresponding methylalkyne (92% yield based on **6**), and subsequent hydrozirconation and carbonylation with ⁿBuNC¹⁵ (87% yield) provided **7** in 80% combined yield from **6**. Clearly, the route shown in Scheme 1 is more efficient than either that described above or that involving the Horner– Emmons olefination reported previously.¹

Brown's asymmetric crotylboration⁴ of **7** using (+)-(*E*)-(CH₃CH=CHCH₂)BIpc₂ produced the desired **5** in 80% yield. The ¹H NMR spectra of the crude product obtained without isomeric separation revealed only two sets of doublets at 3.70 (d, J = 8.7 Hz) and 3.86 (d, J = 7.2 Hz) for the methine proton at C4 in ratio of \geq 30:1. Evidently, the configuration at C7 exerts little or no effect on the ¹H NMR signals for protons bonded to C3 and C4. The 3*R*,4*R*

⁽⁸⁾ Hoffmann, R. W.; Rohde, T.; Haeberlin, E.; Schäfer, F. Org. Lett. **1999**, *1*, 1713.

^{(9) (}a) For the synthesis of myxalamide A, see: Mapp, A. K.; Heathcock, C. H. *J. Org. Chem.* **1999**, *64*, 23. Isolation and identification: (b) Jansen, R.; Reifenstahl, G.; Gerth, K.; Reichenbach, H.; Höfle, G. *Liebigs Ann. Chem.* **1983**, 1081. (c) Jansen, R.; Sheldrick, W. S.; Höfle, G. *Liebigs Ann. Chem.* **1984**, 78.

⁽¹⁰⁾ Erker, G.; Aulbach, M.; Knickmeier, M.; Wingbermuhle, D.; Kruger, C.; Nolte, M.; Werner, S. J. Am. Chem. Soc. **1993**, *115*, 4590.

^{(11) (}a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. **1969**, *34*, 2543. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. **1973**, *95*, 512.

⁽¹²⁾ Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.

⁽¹³⁾ Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S. *Tetrahedron Lett.* **1986**, *27*, 4537.

⁽¹⁴⁾ Yamada, S.; Kasai, Y.; Shioiri, T. *Tetrahedron Lett.* 1973, 1595.
(15) Negishi, E.; Swanson, D. R.; Miller, S. R. *Tetrahedron Lett.* 1988, 29, 1631.

^{*a*} Reagents and conditions: (a) TBSCl, DMAP, imidazole. (b) AD-mix- α . (c) NalO₄; 90% (over three steps); (d) (i) Et₃SiCLiMe-CH=NCy, THF, -20 °C; (ii) CF₃CO₂H, 0 °C; 80%. (e) CBr₄, PPh₃, Zn. (f) (i) ^{*n*}BuLi; (ii) NH₄Cl; 90%.

configuration may be tentatively, but safely, assigned to the major isomer on the basis of the use of (+)-(E)- $(CH_3CH=CHCH_2)BIpc_2$,⁴ and the diastereomeric ratio of \geq 30:1 mandates that the configuration at both C3 and C4 is \geq 97% *R*.

Although the *S* and *R* configurations at C7 were indistinguishable by ¹H NMR spectroscopy (vide supra), ¹³C NMR spectra of crudely isolated **5** showed two sets of signals separated by at least 0.1 ppm for eight carbon atoms, including C7 (δ 31.79 (*S*) and 31.96 (*R*), *S*:*R* = 9:1). Column chromatography (silica gel, 1/25 ethyl acetate/hexanes) provided **5** (\geq 80:1 dr) in 80% yield from **7**. Thus, the stereoisomeric purity at C7 was improved to \geq 99% *S* by simple chromatography, and the overall enantiomeric purity of **5** may safely be estimated to be \geq 99.9% ee.

Conversion of **5** into another key intermediate **8** was achieved in seven steps in 56% combined yield. Protection of **5** with 'BuMe₂SiCl (TBSCl) proceeded in 96% yield, and the resultant product was converted to aldehyde **9** by two successive oxidations; first with AD-mix- α^{16} (Aldrich), and then with NaIO₄, as reported previously,¹ in 94% combined yield. Conversion of **9** into **10** was achieved by using the Corey–Peterson olefination in 80% yield (>99% *E*). The Corey–Fuchs reaction⁶ of **10** with CBr₄, PPh₃, and Zn (98% yield), treatment of the product with "BuLi followed by acidification to give **11** (92% yield), and its hydrozirconation–iodinolysis (86% yield) provided **8** as a ≥99% isomerically pure compound (Scheme 2).

In the previously reported synthesis of stipiamide and 6,7dehydrostipiamide,¹ **10** was directly converted to **8** by the reaction of **10** with CHI₃ and CrCl₂¹⁷ in 70% yield. It reduces the number of steps by two but also reduces the yield by 7%. In our hands, an E/Z ratio of approximately 5 was observed, and a concern about the scalability of the process was also expressed.¹ We also investigated the applicability of a tandem alkynylation—methylation reaction of 1,1dibromo-1-alkenes, recently reported by us.¹⁸ To this end, aldehyde **9** was subjected to the Corey—Fuchs reaction⁶ (98% yield). The product was first alkynylated with BrZnC≡ CSiMe₃ in the presence of 5% Cl₂Pd(DPEphos), where DPEPhos is bis(*o*-diphenylphosphinophenyl) ether, and 10% DIBAL-H in 75% yield; subsequent methylation with Me₂-Zn in the presence of Pd('Bu₃P)₂ in quantitative yield, followed by desilylation with K₂CO₃ and MeOH (98% yield), gave **11** (>98% stereoisomerically pure) in 72% combined yield over three steps from **9**. The combined yield indicated above is the same as that shown in Scheme 2. We judge that the two procedures are of comparable merits.

For a convergent final assembly of the carbon framework of 6,7-dehydrostipiamide, ethyl (2E,4E)-2-methyl-2,4-heptadien-6-ynoate (12) was prepared, as recently reported by us.¹⁹ Thus, (E)-1-bromo-4-trimethylsilyl-1-buten-3-yne,²⁰ obtained in 81% yield by treating commercially available (Aldrich) (E)-ICH=CHBr with Me₃SiC≡CZnBr in the presence of 2% Pd(PPh₃)₄, was successively treated with ^tBuLi (2.0 equiv) in ether, ZnBr₂, THF, and (E)-BrCH= C(Me)COOEt in the presence of 2% Cl₂Pd(PPh₃)₂ and 4% DIBAL-H in THF (95% yield). After desilylation with K2-CO₃ and EtOH, 12 was obtained in 76% combined yield over three steps from (E)-ICH=CHBr, Me₃SiC=CZnBr, and (E)-BrCH=C(Me)CO₂Et. The ¹³C NMR spectrum of 12 indicated it to be >98% E,E. For the critical cross-coupling between 8 and 12, 12 was first converted to its Zn derivative (13) via lithiation with LDA (1 equiv) in THF, followed by treatment with dry ZnBr₂ in THF. Its cross-coupling with 8, in the presence of 5% Cl₂Pd(PPh₃)₂ and 10% DIBAL-H,² proceeded cleanly to give 14 (>99% isomerically pure) in 94% yield. Thus, the synthesis of 14 was achieved in 29% yield over 12 steps in the longest linear sequence (Schemes 1 - 3).

As recently reported by us,¹⁹ 12 can be converted to (E,E,E)-BrCH=CHC=CCH=CHCH=C(Me)COOEt (15) in 82% yield by the Pd-catalyzed reaction of the zinco derivative of **12** with (*E*)-ICH=CHBr. We therefore sought a more convergent and potentially superior route to 14 through the use of 15. To this end, 9 was converted to >99% pure 16 via the Corey–Fuchs reaction in 96% yield over two steps (Scheme 4). To our disappointment, however, hydrozirconation of **16** with HZrCp₂Cl (2 equiv),²¹ followed by successive addition of ZnCl₂ (2 equiv), 15 (1.2 equiv), and a catalyst consisting of 5 mol % Cl₂Pd(PPh₃)₂, 10 mol % tris(o-furyl)phosphine (TFP), and 10 mol % DIBAL-H in THF at 23 °C for 20 h, led to the formation of the desired compound 14 only in 57% yield. Upon iodinolysis of the hydrozirconation mixture derived from 16, the corresponding 2-iodo derivative 17 and its 3-iodo isomer were isolated in 74 and 18% yields, respectively, after chromatographic separation. The formation of the unwanted regioisomer must be partially responsible for the low yield of 14. To probe this issue further, the

^{(16) (}a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483. (b) Andrus, M. B.; Lepore, S. D.; Sclafani, J. A. *Tetrahedron Lett.* **1997**, *38*, 4043.

⁽¹⁷⁾ Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.

⁽¹⁸⁾ Shi, J.; Zeng, X.; Negishi, E. Org. Lett. 2003, 5, 1825.

⁽¹⁹⁾ Negishi, E.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett. 2003, 5, 1597.

⁽²⁰⁾ Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 719.

⁽²¹⁾ Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4912.

^{*a*} Reagents and conditions: (a) TBAF, THF, 23 °C, 24 h; (b) LiOH, THF–MeOH–H₂O; (c) (*S*)-MeCH(NH₂)CH₂OH, PyBroP, ¹Pr₂NEt, CH₂Cl₂; 78% yield over three steps.

regioisomerically pure 2-iodo isomer 17 was zincated via lithiation and cross-coupled with 15 under various sets of catalytic conditions, but the yields of 14 were mysteriously and uniformly low (\leq 30%); the major side reaction is deiodination of 17 (\sim 60%). Attempts to generate the zinco derivatives of 15 were also disappointing. And yet, both 15 and 17 were shown to be highly satisfactory cross-coupling partners in favorable cases, as shown in Scheme 4.

As summarized in Scheme 3, no difficulty was encountered in converting **14** into the final product **1** in 78% combined yield over three steps. After desilylation with TBAF (85%), ester hydrolysis with LiOH in THF–MeOH– H_2O (96%), followed by amidation with 2 equiv of (*S*)-MeCH(NH₂)CH₂OH (97% ee, Aldrich) using ^{*i*}Pr₂NEt (3 equiv) and bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP, Fluka),^{1,22} provided >99% isomerically pure **1** in 95% yield. This linear three-step final assembly

(22) Coste, J.; Frérot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991, 32, 1967.

^{*a*} Reagents and conditions: (a) CBr₄, PPh₃, Zn; (b) (i) ^{*n*}BuLi (3.3 equiv); (ii) Mel (5 equiv); 96% over two steps. (c) (i) HZrCp₂Cl (2 equiv); (ii) I₂ (1.6 equiv). (d) (i) ^{*n*}BuLi then ZnBr₂; (ii) (*E,E,E*)-BrCH=CHC=CCH=CHCH=C(Me)COOEt (**15**), cat. Pd₂(dba)₃, TFP [tris(2-furyl)phosphine], DMF, THF, 23 °C, 20 h.

of **1** adds a couple of steps in the longest linear sequence relative to a more convergent synthesis involving the use of preamidated intermediates.¹ However, the significantly higher amidation yield of 91% combined yield indicated above, as compared with those reported (54–59%), and an opportunity for readily introducing different amines well justify this strategy. The synthesis of 6,7-dehydrostipiamide (**1**) in 23% overall yield over the 15-step longest linear sequence should prove to be practically attractive as a synthetic route not only to **1** but also to related compounds, including **2–4**.

Acknowledgment. Financial support by the National Science Foundation (CHE-0309613), the National Institutes of Health (GM 36792), and Purdue University is gratefully acknowledged. We thank Professor M. B. Andrus for helpful information.

Supporting Information Available: Experimental procedures and spectroscopic data for compounds 5-17 and 1. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048905V