

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 4231-4233

Tetrahedron Letters

An efficient preparation of 1-phenylsulfonylindolyl methyl sulfoxides using KF/m-CPBA

Arasambattu K. Mohanakrishnan* and Neelamegam Ramesh

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India

Received 9 March 2005; revised 7 April 2005; accepted 12 April 2005 Available online 3 May 2005

Abstract—A variety of 1-phenylsulfonylindolylmethyl sulfides are selectively oxidized to the corresponding sulfoxides using a hitherto unexplored KF/m-CPBA system. A major advantage is the absence of over-oxidation. © 2005 Elsevier Ltd. All rights reserved.

In general, sulfoxides are invariably prepared via the oxidation of the corresponding sulfides and several ways of achieving this transformation have been explored.¹ Despite the plethora of reagents that are available for sulfoxidations, most require careful quantitative control of oxidant to avoid the formation of the over-oxidation product, namely sulfones.

In an ongoing project, we required an array of indolylmethyl sulfoxides for annelation studies.² Additionally, the indolylmethyl sulfoxides and sulfones have been explored as potential reverse transcriptase inhibitors.³ Gray et al. reported a novel synthesis of indolylmethyl sulfoxides involving a tandem sigmatropic rearrangement/Michael addition.⁴

We initiated our oxidation study with sulfide **1a**. All our attempts using one equiv of *m*-CPBA led to the formation of sulfoxide **2a** along with the corresponding sulfone in an appreciable amount (15–20%). Slow addition of *m*-CPBA to a solution of substrate in DCM at 0 °C also led to the formation of the sulfone as a minor product. The oxidation of sulfide was also attempted using Oxone⁵ in moist chloroform but without success. The oxidation of **1a** using IBX adopting conditions published by Akamanchi and co-workers⁶ led to recovery of starting sulfide **1a**. Thus, under all the conditions tried, incomplete oxidation of sulfide or the formation of sulfone was observed as a side product.

Next, we turned our attention to hypervalent oxidizing reagents. Very recently, oxidation of sulfide to the corresponding sulfoxide using hypervalent iodine has been comprehensively reviewed.⁷ Sha and coworkers⁸ utilized NaI/m-CPBA for iodination of silvl enol ethers. We wondered if the same system could also be used for sulfoxidation, however, the use of NaI/m-CPBA led to the selective sulfoxidation of 1a but only in low yields. The reaction was slow and the product was always contaminated with starting material despite the use of 2 equiv of NaI/m-CPBA. We noted a recent report which described an easy conversion of azides into nitro compounds using HOF CH₃CN.⁹ The oxygen atom of HOF CH₃CN being electrophilic was also used for the oxidation of sulfides into sulfones,^{10,11} so we therefore decided to explore a KF/m-CPBA system. The interaction of KF and *m*-CPBA in acetonitrile–water followed by the addition of sulfide **1a** led to the isolation of sulfoxide **2a** in 91% yield (Scheme 1).

We tested the KF/m-CPBA methodology with various indolylmethyl sulfides (Table 1). In all cases, we obtained the corresponding sulfoxides in good yields

Scheme 1.

Keywords: Indolylmethyl sulfide; Sulfoxidation; KF/*m*-CPBA; Indolylmethyl sulfoxides.

^{*} Corresponding author. Fax: +91 44 22352494; e-mail: mohan_67@hotmail.com

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.04.067

Table 1. Preparation of indolylmethyl sulfoxides with KF/m-CPBA

Entry	Sulfide ¹³	Sulfoxide ¹⁴	Yield (%)	Entry	Sulfide ¹³	Sulfoxide ¹⁴	Yield (%)
1	CN SPh SO ₂ Ph 1a	CNO S-Ph N SO ₂ Ph 2a	91 (142)	9	SPh N SO ₂ Ph	N SO ₂ Ph	89 (132)
2	CO ₂ Me SPh SO ₂ Ph 1b	CO ₂ Me O N SO ₂ Ph 2b	91 (124–126)	10	PhS COPh 1j	O N S COPh Ph 2j	82 (liquid)
3	N SO ₂ Ph 1c	N SO ₂ Ph 2c	84 (136)	11	SPh SO ₂ Ph 1k	Ö SP h SO ₂ Ph 2k	94 (118)
4	N SO ₂ Ph 1d	Br O SO ₂ Ph 2d	87 (120)	12	OPh SPh SO ₂ Ph 1I	OPh O SO ₂ Ph 21	87 (145)
5	Me SPh SO ₂ Ph 1e	Me O S-Ph SO ₂ Ph 2e	93 (142)	13	N PhO ₂ S 1m	$ \begin{array}{c} & \searrow \\ & N \\ & N \\ & O \\ & PhO_2S \\ & 2m \end{array} $	95 (182–184)
6	COMe SPh SO ₂ Ph 1f	COMe O S-Ph SO ₂ Ph 2f	90 (130)	14	MeO CO ₂ Et SPh SO ₂ Ph 1n	MeO CO ₂ Et O S-Ph SO ₂ Ph 2n	92 (94–96)
7	SPh NCO2Et SO2Ph 1g	N CO ₂ Et SO ₂ Ph 2g	91 (118)	15	$SPh \\ N_3 \\ SO_2Ph \\ 10$	$ \begin{array}{c} O \\ S^{-}Ph \\ N_{3} \\ SO_{2}Ph \\ 20 \end{array} $	88 (120)
8	N N SO ₂ Ph 1h	N Me SO ₂ Ph 2h	88 (182)	16	$\begin{array}{c} & & Br & N - \\ & & N & N & N \\ & & N & N & H \\ & & SO_2 Ph \\ & & 1p \end{array}$	$ \begin{array}{c} & & Br \stackrel{O}{_{H}} N N \\ & & N \\ & & SO_2 Ph \\ & & 2p \end{array} $	92 (94)

without any trace of sulfones. Several of these sulfoxides **2a**, **2b**, **2d**, **2f**, **2g** and **2k** are regarded as potential bidentate synthons and they may be useful for the synthesis of biologically important carbazoles. The sulfoxides of relatively unexplored indolyl-4-methyl and indolyl-7-methyl systems were also prepared (entries 9 and 10).

Pantoprazole, which has promising anti-ulcer activity, has a sulfoxide unit bridging pyridine and benzimidazole heterocycles. Large-scale production¹² of this compound via sulfoxidation of the corresponding sulfide always proceeds to give sulfone as a minor impurity. Using our methodology, sulfoxide **2p** (entry 16) containing in-

dole and benzimidazole skeletons was prepared in 75% yield without any trace of the corresponding sulfone. In contrast to the HOF·CH₃CN system,⁹ using our system an azide survived (entry 15) and only sulfoxidation occurred. Moreover, oxidation stopped at the sulfoxide stage as opposed to the sulfone obtained with HOF·CH₃CN.¹¹

In summary, we have synthesized several indolylmethyl sulfoxides via sulfoxidation using a combination of KF and *m*-CPBA with good selectivity. The unravelling of the synthetic utility of these sulfoxides is currently in progress. Further exploitation of the selective oxidative behaviour of KF/*m*-CPBA will also be explored.

Acknowledgements

A.K.M. thanks the UGC (F.12-140/2001 SR-1), New Delhi, for financial support. Financial support to the Department from DST-FIST is also acknowledged.

References and notes

- (a) Kageyama, T.; Ueno, Y.; Okawara, M. Synthesis 1983, 815–816; (b) Madesclaire, M. Tetrahedron 1986, 42, 5459– 5495; (c) Roh, K. R.; Kim, K. S.; Kim, Y. H. Tetrahedron Lett. 1991, 32, 793–796; (d) Noda, K.; Hosoya, N.; Yanai, K.; Irie, R.; Katsuki, T. Tetrahedron Lett. 1994, 35, 1887– 1890; (e) Khurana, J. M.; Panda, A. K.; Ray, A.; Gogia, A. Org. Prep. Proced. Int. 1996, 28, 234–237; (f) Ochiai, M.; Nakanishi, A.; Ito, T. J. Org. Chem. 1997, 62, 4253– 4259; (g) Procter, D. J. J. Chem. Soc., Perkin Trans. 1 1999, 641–668; (h) Kim, S. S.; Nehru, K.; Kim, S. S.; Kim, D. W.; Jung, H. C. Synthesis 2002, 2484–2486.
- (a) Mohanakrishnan, A. K.; Srinivasan, P. C. *Tetrahedron Lett.* **1993**, *34*, 1343–1346; (b) Hauser, F. M.; Dorsch, W. A. Org. Lett. **2003**, *5*, 3753–3754.
- (a) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee, W. J.; Kauffman, L. R.; O'Brien, J. A.; Sardana, V.; Schleif, W. A.; Theoharides, A. D.; Anderson, P. S. J. Med. Chem. 1993, 36, 1291– 1294; (b) Silvestri, R.; De Martino, G.; La Regina, G.; Artico, M.; Massa, S.; Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; La Colla, P. J. Med. Chem. 2003, 46, 2482– 2493.
- Gray, M.; Parsons, P. J.; Neary, A. P. Synlett 1993, 281– 282.
- 5. Greenhalgh, R. P. Synlett 1992, 235-236.
- Shukla, V. G.; Salgaonkar, P. D.; Akamanchi, K. G. J. Org. Chem. 2003, 68, 5422–5425.
- Kowalski, P.; Mitka, K.; Ossowska, K.; Kolarska, Z. *Tetrahedron* 2005, 61, 1933–1953.
- Sha, C.-K.; Young, J.-J.; Jean, T. S. J. Org. Chem. 1987, 52, 3919–3920.
- 9. Rozen, S.; Carmeli, M. J. Am. Chem. Soc. 2003, 125, 8118-8119.
- 10. Rozen, S.; Bareket, Y. J. Org. Chem. 1997, 62, 1457-1462.
- 11. Rozen, S. Acc. Chem. Res. 1996, 243-248.
- Mathad, V. T.; Govindan, S.; Kolla, N. K.; Maddipatla, M.; Sajja, E.; Sundaram, V. Org. Process Res. Dev. 2004, 8, 266–270.

13. All the required sulfides **1a**-**p** were prepared using the twostep procedure as described below:

14. All the sulfoxides 2a-p gave satisfactory spectroscopic and analytical data.Typical experimental procedure for 2a: To a solution of KF (0.63 g, 10.84 mmol) in acetonitrile-water (40 mL, 8 mL), 70% *m*-CPBA (1.87 g, 10.84 mmol) was added and the mixture stirred at 0 °C for 30 min. To this, 1-phenylsulfonyl-2-phenylthiomethyl-3-cyanoindole 1a (2.21 g, 5.46 mmol) was added and stirring was continued for an additional 30 min. The reaction mixture was then poured into saturated aq NaHCO₃ solution, extracted with ethyl acetate (2 × 40 mL) and the extracts dried (Na₂SO₄). Removal of solvent followed by crystallization from MeOH afforded 2a as pale yellow crystals (2.1 g, 91%).

Spectroscopic data for selected sulfoxides: For **2a**: mp 142 °C; IR (KBr) v_{max} : 2221, 1380, 1181, 1083 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.71 (s, 2 H), 7.26 (d, J = 7.9 Hz, 1H), 7.51 (m, 8H), 7.65 (d, J = 8.4 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 8.07 (d, J = 8.0 Hz, 1H). MS(EI) m/z (%): 404 (M-16, 9%), 231 (35), 154 (39), 141 (28). Elemental anal. calcd for C₂₂H₁₆N₂O₃S₂: C, 62.84; H, 3.84; N, 6.66, S, 15.25%. Found: C, 62.83; H, 3.98; N, 6.51; S, 15.17%.

- For **2k**: mp 118 °C; IR (KBr) ν_{max} : 1690, 1360, 1160, 1040 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 1.35 (t, J = 7.4 Hz, 3H), 4.25 (q, J = 7.4 Hz, 2H), 4.45 (d, J = 14.0 Hz, 1H), 4.65 (d, J = 14.0 Hz, 1H), 6.45 (d, J =16.0 Hz, 1H-vinylic α-H), 7.75 (m, 15H). MS(EI) m/z (%): 477 (M-16, 16%), 361 (38). Elemental anal. calcd for C₂₆H₂₃NO₅S₂: C, 63.27; H, 4.70; N, 2.84, S, 12.99%. Found: C, 63.19; H, 4.85; N, 2.73; S, 12.87%.
- For **2p**: mp 94 °C; IR (KBr) v_{max} : 3165, 1370, 1160, 1060 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 5.15 (d, J = 13.6 Hz, 1H), 5.29 (d, J = 13.6 Hz, 1H), 7.55 (m, 11H), 7.78 (d, J = 7.6 Hz, 2H), 8.07 (d, J = 8.4 Hz, 1H). MS(EI) m/z (%): 496 (M-16, 12%), 367 (7), 285 (15), 144 (22). Elemental anal. calcd for C₂₂H₁₆BrN₃O₃S₂: C, 51.37; H, 3.14; N, 8.17; S, 12.47%. Found: C, 51.31; H, 3.21; N, 8.06; S, 12.48%.