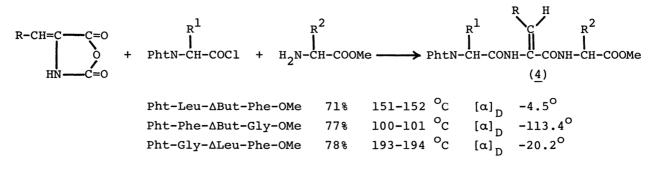
NEW METHOD FOR THE SYNTHESIS OF DEHYDROTRIPEPTIDES, USING N-CARBOXY α -DEHYDROAMINO ACID ANHYDRIDE AS SYNTHON

Yasuchika YONEZAWA, Toyofumi YAMADA, and Chung-gi SHIN* Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

Various dehydrotripeptides, containing one or two a-dehydroamino acid residues, were readily synthesized by using N-carboxy a-dehydroamino acid anhydride as synthon of dehydropeptide unit.

Recently, much attention has been focused on the synthesis of dehydropeptide (DHP), containing one or more α -dehydroamino acid (DHA) residues, and the correlation between the structure and the bioactivity of DHP.¹⁻⁵⁾

So far, we have developed a few synthetic methods for DHP by the stepwise elongation of DHA with α -amino acid or another DHA⁶⁾ and by the β -elimination of peptide having a leaving group.⁷⁾ In the preceding paper, $^{8)}$ we reported briefly the synthesis of N-carboxy α -dehydroamino acid anhydride (Δ NCA)⁹ from N-benzyloxycarbonyl-DHA and the application of ANCA to the dehydrooligopeptide synthesis without using any coupling reagent. Here, we will report the very useful synthetic method for a variety of DHP by using N-acyl ANCA as synthon of DHA or DHP unit.


A solution of N-acetyl (Z)- Δ NCA (1), prepared by the acetylation of (Z)geometric ANCA (0.3 mol) with acetyl chloride (0.4 mol) in THF (40 ml) by the usual way, $^{8)}$ was treated with (L,L)-dipeptide methyl ester (0.3 mol) in THF (20 ml) at 0-10 $^{\rm O}$ C for 1 hr. The resulting solution was made basic to pH 8-9 with triethylamine. After removal of solvent, the residue was dissolved in ethyl acetate (100 ml) and washed successively with 3% HCl, saturated NaHCO, aqueous solution, water, and then dried over anhydrous Na2SO4. The evaporation of ethyl acetate gave a crude solid residue, which was purified on a silica gel column using a mixture of benzene-acetone (10 : 1 v/v) as the eluent to give (Z,L,L)-dehydrotripeptide (2) as colorless needles.

R-CH=CC=O	+ $H_2^{R^1}$ R^2 + $H_2^{N-CH-CONH-CH-COO}$	ОМе	$\rightarrow \text{Ac-NH-C-CON}^{R}$	R ¹ R ² H-CH-CONH-CH-COOMe
Ac-NC=0				(<u>2</u>)
	Ac-∆Phe-Leu-Val-OMe	82% 193-	194 ^O C [a] _D	+16.2 ⁰ -38.3 ⁰
	Ac-∆But-Phe-Val-OMe	95% 135 -	136 ^O C [a]	-38.3 ⁰
	Ac-∆Phe-Phe-Val-OMe	95% 158 -	159 °C [a]	-64.2 ⁰
	Ac-∆Leu-Ala-Val-OMe	80% 180-	181 °C [a] _D	-22.2 ⁰

Treatment of <u>1</u> with (L,Z)-dehydrodipeptide ethyl ester⁶ followed by similar

 $\begin{array}{cccc} R-CH=C & \begin{array}{c} & R & R \\ & & R \\ & & & \\ AC-N & C=0 \end{array} \end{array} + \begin{array}{c} & R \\ & & & \\ H_2N-CH-CONH-C-COOEt \end{array} & \begin{array}{c} & & & \\ & & & \\ H_2N-CH-CONH-C-COOEt \end{array} & \begin{array}{c} & & & \\ & & & \\ AC-ALeu-Phe-ALeu-OEt \end{array} & \begin{array}{c} 60\% & 109-110 & ^{O}C & [\alpha]_{D} & -45.9 \\ & & & \\ & & & \\ Ac-ALeu-Ala-ABut-OEt \end{array} & \begin{array}{c} 71\% & syrup & [\alpha]_{D} & -11.5 \\ & & & \\ Ac-APhe-Leu-AVal-OEt \end{array} & \begin{array}{c} 66\% & 198-200 & ^{O}C & [\alpha]_{D} & +28.3 \\ \end{array}$

On the other hand, to synthesize the tripeptide containing a DHA residue at center, Δ NCA was acylated with an equimolar phthalyl-(L)-amino acid chloride (0.3 mol) in the presence of triethylamine in THF (40 ml) at 5-10 $^{\circ}$ C for 1 hr, followed by the coupling with (L)-amino acid methyl ester at room temperature for 1.5 hr. After removal of solvent, the residue obtained was submitted to similar work-up to give (L,Z,L)-dehydrotripeptide (<u>4</u>) as colorless needles.

In conclusion, it was found that the ΔNCA method developed newly by us was very versatile and applicable to the various dehydropeptide synthesses by combination of α -amino acid and DHA. Further works including the analogous study are now in progress.

References

Specific rotation was measured in methanol (c 1.0) at 25 $^{\circ}$ C.

- 1) T. Kitagawa, T. Tamura, and H. Taniyama, J. Biochem., 81, 1757 (1977).
- "Bioactive Peptides produced by Microorganisms," ed by H. Umezawa, T. Takita, and T. Shiba, Kodansha, Tokyo (1978).
- 3) Y. Shimohigashi and N. Izumiya, Yuki Gosei Kyokaishi, <u>36</u>, 1023 (1978).
- 4) B. Anderson, D. C. Hodgkin, and M. A. Viswamutra, Nature, 225, 233 (1970).
- 5) For example, E. Gross, H. H. Kiltz, and E. Nebelin, Hoppe-Seyler's Z. Physiol. Chem., 354, 810 (1973).
- Y. Yonezawa, C. Shin, Y. Ono, and J. Yoshimura, Bull. Chem. Soc. Jpn., 53, 2905 (1980).
- 7) C. Shin, Y. Yonezawa, M. Takahashi, and J. Yoshimura, Bull. Chem. Soc. Jpn., 54, 1132 (1981).
- 8) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1981, 1635.
- 9) In this paper, the symbol Δ indicates a double bond of DHA residue.

work-up gave (Z,L,Z)-dehydrotripeptide (3) as colorless needles.