Infrared and Raman Spectra, Vibrational Assignment, Normal Coordinate Analysis, and Barrier to Internal Rotation of \mathbf{N}-Chloro- \mathbf{N}-methylmethanamine

J. R. Durig, ${ }^{*}$ N. E. Lindsay, ${ }^{\dagger}$ and T. J. Hizer
Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208
(Received: November 19, 1986; In Final Form: May 15, 1987)

Abstract

The infrared ($3200-80 \mathrm{~cm}^{-1}$) and Raman ($3200-10 \mathrm{~cm}^{-1}$) spectra have been recorded of gaseous and solid N-chloro- N methylmethanamine (dimethylchloroamine), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$, and the corresponding deuterium molecules, $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values have been obtained. A complete vibrational assignment is proposed, based on the infrared band contours, Raman depolarization values, group frequencies, and isotopic shifts. The assignment is supported by a normal coordinate analysis which was carried out by utilizing a modified valence force field to calculate the frequencies and the potential energy distribution. The A^{\prime} and $\mathrm{A}^{\prime \prime}$ methyl torsional fundamentals were observed in the infrared spectrum in the gas phase of the d_{0} molecule at 281 and $261 \mathrm{~cm}^{-1}$, respectively, from which the threefold barrier to internal rotation is calculated to be $1658 \mathrm{~cm}^{-1}$ ($4.74 \mathrm{kcal} / \mathrm{mol}$). From the number of lattice modes observed in the Raman spectrum of the solid, it is concluded that there are at least two molecules per primitive cell. All of these results are compared to similar quantities of some corresponding molecules.

Introduction

For some time we have been interested in the barriers to internal rotation of molecules that have two $C_{3 v}$ rotors. ${ }^{1-6}$ In several of these studies it has been possible to determine three or more Fourier coefficients of the potential function in two variables and to interpret a great part or all of the features present in the torsional spectra of several two-top molecules. The theoretical background of this method was derived by Groner and Durig ${ }^{7}$ and uses the concept of the isometric symmetry group introduced by Bauder et al. ${ }^{8}$ One of the earliest studies ${ }^{9}$ utilizing this method was the investigation of the torsional spectrum of dimethylamine, where the $\mathrm{A}^{\prime \prime}$ and A^{\prime} fundamentals were observed at 219.4 and $256.3 \mathrm{~cm}^{-1}$, respectively, with four and five "double jumps", respectively, observed for these methyl torsions in the Raman spectrum of the gas. From these data, both the V_{33} (cosine-cosine) and $V_{33}{ }^{\prime}$ (sine-sine) coupling terms were calculated, and the effective barrier to internal rotation was found to be $1054 \mathrm{~cm}^{-1}$ ($3.01 \mathrm{kcal} / \mathrm{mol}$), which is $71 \mathrm{~cm}^{-1}$ lower than the V_{3} calculated from the average of the microwave splittings measured in the first excited state for each torsion. ${ }^{10}$ As a continuation of these studies, we have recorded the infrared and Raman spectra of N -chloroN -methylmethanamine (dimethylchloroamine), $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$, and the d_{3} and d_{6} isotopic species to obtain the frequencies for the methyl torsional modes from which the barriers could be obtained. Additionally, we were interested in comparing the frequencies for the normal modes of these molecules with the corresponding ones for dimethylamine. ${ }^{11}$

There have been very few vibrational studies of molecules that contain nitrogen-chlorine bonds, and there appears to be a large frequency range for the assignment of the $\mathrm{N}-\mathrm{Cl}$ stretching mode. For example, this mode has been assigned ${ }^{12,13}$ at $794 \mathrm{~cm}^{-1}$ in ClNO_{2}, but in ClNO it has been placed ${ }^{14}$ at $328 \mathrm{~cm}^{-1}$, with the bending mode assigned at $592 \mathrm{~cm}^{-1}$. However, in a more recent vibrational study ${ }^{15}$ of this molecule it has been shown that these two modes are extensively mixed but the higher frequency mode may still be as much as 70% of the bend. Therefore, the frequency of the $\mathrm{N}-\mathrm{Cl}$ stretching vibration in dimethylchloroamine should be of interest for comparison with frequencies for this normal mode in other molecules containing the nitrogen-chlorine bond. Therefore, the results of our vibrational study of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$, $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$, and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$ are reported herein.

Experimental Section

Dimethylchloroamine was prepared by the reaction of dimethylamine (Matheson) with a 5.25% sodium hypochlorite

[^0](Clorox) solution saturated with sodium chloride (Baker Chemical), with dibutyl ether added to facilitate removal of the desired product. The dimethylchloroamine was purified by a trap-to-trap distillation using liquid nitrogen and a liquid nitrogen/o-dichlorobenzene slush. Further purification was carried out a low temperature vacuum fractionation column. Dimethyl- $d_{3}-$ and - d_{6}-chloroamine were prepared in the same manner from di-methylamine- d_{3} and $-d_{6}$ (Merck).

Mid-infrared spectra of dimethyl $-d_{0}-,-d_{3^{-}}$, and $-d_{6}$-chloroamine were recorded from 3200 to $400 \mathrm{~cm}^{-1}$ by using a Digilab Model FTS-14C Fourier transform interferometer equipped with a high-intensity Globar source, a $\mathrm{Ge} / \mathrm{KBr}$ beam splitter, and a TGS detector. Atmospheric water was removed by purging the interferometer housing with dry nitrogen. Spectra of the gaseous phase were obtained by using a $12-\mathrm{cm}$ cell fitted with CsI windows and a sample pressure of 235 mmHg . The theoretical resolution used was $0.5 \mathrm{~cm}^{-1}$. Spectra of the solids were recorded by using a low-temperature cell equipped with CsI windows as previously described by Baglin et al. ${ }^{16}$ The samples were deposited on a CsI substrate held at $\sim 77 \mathrm{~K}$ by boiling liquid nitrogen. The samples were annealed until no further changes were observed in the spectra. The theoretical resolution used to obtain the spectra of the solids was $1.0 \mathrm{~cm}^{-1}$.
Far-infrared spectra of the solids were recorded from 600 to $80 \mathrm{~cm}^{-1}$ on a Digilab Model FTS-15B Fourier transform interferometer equipped with a high pressure Hg arc lamp, a $6.25-\mu \mathrm{m}$ Mylar beam splitter, and a TGS detector. The samples were deposited on a wedged silicon substrate encased in a vacuum jacket

[^1]fitted with wedged polyethylene windows. The samples were maintained at $\sim 77 \mathrm{~K}$ with boiling liquid nitrogen and annealed until no further changes were observed in the spectra. The spectral resolution used was $1.0 \mathrm{~cm}^{-1}$.

Spectra of the gaseous phase were recorded from 600 to 300 cm^{-1} by using the room temperature vapor pressure in a $12-\mathrm{cm}$ gas cell fitted with CsI windows with a resolution of $0.5 \mathrm{~cm}^{-1}$. Water was removed from the sample by utilizing dried MgSO_{4} mixed with $1 / 8$-in.-diameter glass beads. The far-infrared spectrum of the vapor phase of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ was also recorded on a Nicolet Model 8000 Fourier transform interferometer equipped with a vacuum bench, a high pressure Hg arc source, and a liquid helium cooled Ge bolometer containing a wedged sapphire filter and polyethylene windows. A $6.25-\mu \mathrm{m}$ Mylar beam splitter was employed to obtain the spectra from 350 to $80 \mathrm{~cm}^{-1}$. The spectrum was collected at a resolution of $0.12 \mathrm{~cm}^{-1}$ by using room temperature vapor pressure in a $20-\mathrm{cm}$ cell fitted with wedged polyethylene windows.

Raman spectra were recorded from 3200 to $50 \mathrm{~cm}^{-1}$ (vapor and liquid phases) and from 3200 to $10 \mathrm{~cm}^{-1}$ (solid phase) on a Cary Model 82 spectrophotometer equipped with either a Spectra Physics Model 171 argon ion laser operating on the $5145-\AA$ line (liquid d_{0} and solid phases) or a Coherent Radiation Model 53 krypton ion laser operating on the 6471- \AA line (liquid d_{3}, liquid d_{6}, and vapor phases). Obvious decomposition was observed with time for the liquid samples. The spectra of the liquids were obtained by using a glass capillary tube filled under vacuum at room temperature. The laser power at the sample was either 0.5 W ($5145-\AA$ line) or $0.4 \mathrm{~W}(6471-\AA$ line) with a spectral bandwidth of $4 \mathrm{~cm}^{-1}$. Depolarization measurements were made by using the standard Cary accessories. The spectra of the solids were obtained by using a glass capillary tube filled under vacuum inserted in a CTI Cryogenics Model Spectrim cryostat maintained at 100 K. The laser power at the sample was 100 mW with a spectral bandwidth of $2 \mathrm{~cm}^{-1}$. The spectra of the gases were obtained by using a standard Cary multipass accessory. The laser power at the sample was 1.0 W with a spectral bandwidth of $4 \mathrm{~cm}^{-1}$. Reported frequencies are expected to be accurate to at least ± 2 cm^{-1} for sharp, resolvable bands.

Vibrational Assignment

N-Chloro- N-methylmethanamine- d_{0} and $-d_{6}$ have C_{s} point group symmetry, and the 24 fundamental vibrations span the irreducible representations of $13 \mathrm{~A}^{\prime}+11 \mathrm{~A}^{\prime \prime}$. All of the fundamentals are active in both the infrared and Raman spectra, with the $\mathrm{A}^{\prime \prime}$ modes giving rise to depolarized Raman lines. Since the plane of symmetry contains the a and c axes, the A^{\prime} modes will give rise to A, C or A / C hybrid infrared bands in the gas phase whereas the $\mathrm{A}^{\prime \prime}$ modes will give rise to B-type bands.

Assignments for the normal modes were made by utilizing the Raman depolarization data, isotopic shift data, infrared gas-phase band contours, and group frequencies. In addition, the vibrationa! assignments (Tables I-III) are supported by normal coordinate calculations.

Carbon-Hydrogen Modes. The CH_{3} antisymmetric stretching modes are assigned at 2993 and $2956 \mathrm{~cm}^{-1}$ with the A^{\prime} and $\mathrm{A}^{\prime \prime}$ motions contributing to each band. The assignment of the two CH_{3} symmetric stretches is not as clear because the overtones and combinations of the CH_{3} deformations fall in the region expected for these fundamentals (Figure 1). We have chosen the $2864-\mathrm{cm}^{-1}$ infrared band as one of these fundamentals because of its intensity, but the $2820-\mathrm{cm}^{-1}$ band could be ν_{3}. The assignment of the out-of-phase CH_{3} symmetric stretch at $2898 \mathrm{~cm}^{-1}$ must be considered tentative since this band could easily be an overtone or combination of the deformations, and also the separation of ν_{3} and ν_{16} seems rather large (Figure 2). For the d_{6} molecule the in-phase and out-of-phase modes have all been assigned as being degenerate where the observed splitting in the Raman spectrum of the solid is believed to be due to factor group splitting (Figures 3 and 4). Since the spectroscopic studies ${ }^{11}$ on dimethylamine were carried out at low resolution in the carbon-hydrogen stretching region, poor gas-phase contours were obtained and only

Figure 1. Mid-infrared spectra of gaseous (A) and solid (B) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$.

Figure 2. Raman spectra of gaseous (A), liquid (B), and solid (C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$.
limited assignments have been given for the fundamentals of this molecule in this spectral region. However, the d_{3} isotopic data (Figures 5 and 6) support the assignments made for the d_{0} and d_{6} compounds in this spectral region. In the CD_{3} stretching region for the d_{6} compound there are several relatively weak bands that are obviously overtone or combination bands in Fermi resonance with the fundamentals, but unique assignment for them is not possible.
The two CH_{3} symmetric deformations are readily assigned at 1417 and $1399 \mathrm{~cm}^{-1}$. The assignment of the four CH_{3} antisymmetric deformations is difficult because there are only two well-defined Raman lines in the expected region, with both being

Figure 3. Mid-infrared spectra of gaseous (A) and solid (B) $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$.

Figure 4. Raman spectra of gaseous (A), liquid (B), and solid (C) $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$.
depolarized, and the gas-phase infrared band contours are rather nondescript and of little value for assignment purposes. Therefore, we relied on the data from the spectrum of the solid and assumed that the four infrared bands at $1466,1452,1438$, and $1430 \mathrm{~cm}^{-1}$ are due to the CH_{3} antisymmetric deformations. Alternatively, the $1430-\mathrm{cm}^{-1}$ band could be due to factor group splitting or arise from an overtone or combination band, in which case any one of the other three bands could be comprised of two fundamentals. Since there is no convenient way of distinguishing between these two possibilities, we have rather arbitrarily chosen the former one. The assignment of the CH_{3} rocking modes was straightforward, based on the infrared band contours from the gas phase. The assignment of the CD_{3} deformations for the d_{6} molecule was rather difficult because of the extensive mixing of several of these modes with the skeletal stretching modes. However, the normal coor-

Figure 5. Mid-infrared spectra of gaseous (A) and solid (B) $\mathrm{CH}_{3}(\mathrm{C}$ $\left.\mathrm{D}_{3}\right) \mathrm{NCl}$.

Figure 6. Raman spectra of gaseous (A), liquid (B), and solid (C) $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$.
dinate calculations provide guidance for these assignments.
Skeletal Modes. Dimethylchloroamine has two C-N stretching modes, with the symmetric motion being observed at $920 \mathrm{~cm}^{-1}$ in the infrared spectrum of the gas phase. The $\mathrm{C}-\mathrm{N}$ antisymmetric stretch is observed in the "light" compound at $1008 \mathrm{~cm}^{-1}$ and shifts to a higher frequency of $1169 \mathrm{~cm}^{-1}$ for the d_{6} species and 1154 cm^{-1} for the d_{3} species. The corresponding mode in dimethylamine has a similar shift with deuteriation. ${ }^{11}$ The NCl stretch for the d_{0} compound is assigned to the band at $602 \mathrm{~cm}^{-1}\left(596 \mathrm{~cm}^{-1}\right.$ for the ${ }^{37} \mathrm{Cl}$ isotope) on the basis of its intensity and the observation of ${ }^{35} \mathrm{Cl} /{ }^{37} \mathrm{Cl}$ splitting. This mode gives rise to the most intense line in the Raman spectrum with isotopic splitting observed in the spectrum of the solid at 586 and $582 \mathrm{~cm}^{-1}$. The NC_{2} symmetric deformation is observed at $405 \mathrm{~cm}^{-1}$ whereas the two CNCl bending modes are observed at 379 and $360 \mathrm{~cm}^{-1}$ (Figure 7) with the latter one being the $\mathrm{A}^{\prime \prime}$ mode based on the infrared band contour and the depolarized nature of the Raman line.

Torsional Modes. The two CH_{3} torsions for the light compound are extremely weak in the far-infrared spectrum of the gas, but they can be assigned to the bands at $281 \mathrm{~cm}^{-1}$ (A / C band) for the in-phase motion and $261 \mathrm{~cm}^{-1}$ (B type) for the out-of-phase

TABLE I: Observed and Calculated Infrared and Raman Frequencies, Vibrational Assignment, and Potential Energy Distribution for N-Chloro- N-methylmethanamine- $d_{0}{ }^{a}$

infrared				Raman						calcd	assignment and PED ${ }^{\text {b }}$	
				gas	rel int	liquid	rel int, depolzn	solid	rel int			
gas	rel int	solid	rel int								ν_{i}	approx description ${ }^{\text {c }}$
3012 R												
3008 Q, A/C	s					3017	m, p			3005	ν_{1}	CH_{3} antisymmetric stretch (98\%)
$3005 \mathrm{ctr}, \mathrm{B}$	s	2993	s			2998	$\mathrm{m}, \mathrm{sh}, \mathrm{dp}$	2991	vs	3004	ν_{14}	CH_{3} antisymmetric stretch (98\%)
2999 P												
2969 R												
2961 Q, A	s	2956	vs			2954	s, p	2957	s	2961	ν_{2}	CH_{3} antisymmetric stretch (99\%)
2951 P										2958	ν_{15}	CH_{3} antisymmetric stretch (99\%)
2920 max	m	2931	m					2933	mw	2958		$2 \nu_{4}$
2900 min	s	2898	s			2897	m, dp	2901	m	2884	ν_{16}	CH_{3} symmetric stretch (98\%)
2883 max	s											
2878 max	s											
2870 max	s											
2862 Q	s	2864	vs			2862	m, p	2870	m	2885	$\nu 3$	CH_{3} symmetric stretch (98\%)
2829 Q	s	2820	s			2819	m, p	2817	m			$\nu_{6}+\nu_{18}$
2798 R												
2785 Q	s	2785	s									
		2777	s			2776	m, p	2772	m			$2 \nu_{6}$
1482 R												
1473 Q, A	s	1466	vs			1480	w, bd, dp	1464	mw	1456	ν_{4}	CH_{3} antisymmetric deformation (88\%)
1463 P												
$1456 \max$	s	1452	s					1456	w	1453	ν_{5}	CH_{3} antisymmetric deformation (94\%)
								1448	mw			
1444 max	s	1438	vs			1443	w, bd, dp	1438	m	1456	ν_{17}	CH_{3} antisymmetric deformation (89%); CH_{3} symmetric deformation (7\%)
1432 max	s	1430	s							1448	ν_{18}	CH_{3} antisymmetric deformation (98\%)
~ 1420	m	1419 1397	m			~ 1420 ~ 1399	vw	1417 1397	mw	1407 1401	ν_{19}	CH_{3} symmetric deformation (82%); CN antisymmetric stretch (10%); CH_{3} antisymmetric deformation (7%)
1399 Q	w	1397	m			~ 1399	vw	1397	mw	1401	ν_{6}	CH_{3} symmetric deformation (86%); CN symmetric stretch (8\%)
1223 R												
1214 Q	m	1207	s	1215	vw	1209	w, p	1208	m	1220	ν_{7}	$\mathrm{CH}_{3}{ }^{\prime}$ rock (60%); CN symmetric stretch (17%); CH_{3} rock (8\%); NC_{2} symmetric deformation (8\%)
1200 R												
$\begin{aligned} & 1194 \mathrm{ctr}, \mathrm{~B} \\ & 1187 \mathrm{P} \end{aligned}$	m	1183	vs			1184	$v w, d p$	1189	w	1193	ν_{20}	$\mathrm{CH}_{3}{ }^{\prime}$ rock (66\%); CN antisymmetric stretch (23%)
1162 R												
$1152 \mathrm{Q}, \mathrm{A} / \mathrm{C}$	s	1149	vs	1152	w	1148	w, p	1152	m	1162	ν_{8}	$\mathrm{CH}_{3} \text { rock }(77 \%) ; \mathrm{CH}_{3}{ }^{\prime} \text { rock }(13 \%) ; \mathrm{CNCl}$
$1151 \mathrm{Q}$												bend (6%)
1142 P												
1103 R												
$1093 \mathrm{ctr}, \mathrm{B}$	vw	1089	m					1092	w	1091	ν_{21}	CH_{3} rock (85%); CN antisymmetric
1087 P												stretch (13\%)
1013 R												
$1008 \mathrm{ctr}, \mathrm{B}$	m	999	vs					996	vw	1007	ν_{22}	CN antisymmetric stretch (51%); $\mathrm{CH}_{3}{ }^{\prime}$
1002 P												rock (30%); CH_{3} rock (16%)
928 R				930	w							
920 Q, A/C	s	905	vs	918	mw	911	mw, dp	906	s	915	ν_{19}	CN symmetric stretch (67\%); $\mathrm{CH}_{3}{ }^{\prime}$ rock
913 P												(14%); NCl stretch (7%); CH_{3} rock (6\%)
610 R												
602 Q	m	586	vs	602	s	590	s, p	586	vvs	603	ν_{10}	NCl stretch (45\%); CNCl bend (29\%); CN
599 Q								582	s			symmetric stretch (9\%); NC_{2} symmetric
590 P												deformation (9\%)
403 R												
396 Q, A	s	405	vs	396	w	406	mw, p	412	m	401	ν_{11}	NC_{2} symmetric deformation (73%); NCl stretch (13\%)
								381	m			
$\begin{aligned} & 378 \mathrm{Q}, \mathrm{~A} \\ & 369 \mathrm{P} \end{aligned}$	m	379	s	377	s	378	m, p	376	m	378	ν_{12}	CNCl bend (68%); NCl stretch (29\%)
357 min		360	m			360	w, dp	358	mw	362	ν_{23}	CNCl bend (96\%)
353 P												
281 Q	w	302	m	281	w	292	w, ?	291	w		ν_{13}	CH_{3} torsion
261 min	w	294	m								ν_{24}	CH_{3} torsion
								109	w			
								90	mw			lattice modes
								83	w			
								64	m			
								58	m			
								47	m			
								33	vs			
								22	w			
								13	mw			

[^2]TABLE II; Observed and Calculated Infrared and Raman Frequencies, Vibrational Assignment, and Potential Energy Distribution for \boldsymbol{N}-Chloro- \boldsymbol{N}-methylmethanamine- $\boldsymbol{d}_{6}{ }^{a}$

[^3] rocking modes parallel to the plane.

TABLE III: Observed and Calculated Infrared and Raman Frequencies, Vibrational Assignment, and Potential Energy Distribution for \boldsymbol{N}-Chloro- \boldsymbol{N}-methylmethanamine- $\boldsymbol{d}_{3}{ }^{a}$

infrared				Raman						calcd	assignment and PED ${ }^{b}$										
				gas	rel int	liquid	rel int, depolzn	solid	rel int												
gas	rel int	solid	rel int								ν_{i}	approx description ${ }^{\text {c }}$									
3013 R								2998	sh												
3007 Q, A/C	s	2996	m			2997	vw	2292	m	3004	ν_{1}	CH_{3} antisymmetric stretch (98\%)									
3000 P																					
2969 R																					
2960 Q, A/C	vs	2955	m			2957	vw	2956	ms	2960	ν_{2}	CH_{3} antisymmetric stretch (99\%)									
2952 P																					
2922	s	2927	s			2914	vw	2917	mw			$2 \nu_{7}$									
2883 Q, C	vs	2877	m			2878	vw	2879	mw	2884	ν_{3}	CH_{3} symmetric stretch (98\%)									
2871 P																					
2864	s																				
2849	m	2853	m			2854	vw	2857	mw												
2800 R																					
2794 Q, C	s	2787	m			2786	vw	2786	m												
2788 P																					
		2270	m					2270	w												
2259	m					2258	w														
2254	m																				
2250 max	m	2242	m			2243	w	2244	m	2245	ν_{4}	CD_{3} antisymmetric stretch (97\%)									
2225	m																				
2222 R		2217	m			2216	w	2219	mw												
2207 Q, C	s	2201	m			2200	w	2205	mw	2218	ν_{5}	CD_{3} antisymmetric stretch (97\%)									
2193 Q	m	2180	m					2183	w												
2171 Q	m	2158	w			2164	w	2162	w												
2142 Q	w																				
2132 R																					
2124 Q	m	2114	m	2125	w	2111	m	2112	m			$2 \nu_{14}$									
2107 P																					
2098	m	2087	m	2095	w	2086	m	2091	w, sh												
2073 R																					
2065 Q, C	s	2056	s	2065	w	2060	m	2057	s	2077	ν_{6}	CD_{3} symmetric stretch (97\%)									
2058 P																					
1469 R																					
1461 Q, C	s	1455	m			1454	w	1457	mw	1456	ν_{7}	CH_{3} antisymmetric deformation (90\%) ; CH_{3}									
1456 P												symmetric deformation (6\%)									
1448 R								1444	m, sh												
1442 Q, C	vs	1436	m			1438	w	1438	mw	1450	ν_{8}	CH_{3} antisymmetric deformation (97\%)									
1430 P																					
								1414	w												
1413 Q	m	1409	m			1413	w	1409	mw	1404	ν_{9}	CH_{3} symmetric deformation (84%) CH_{3} antisymmetric deformation (6%)									
1203 R																					
$1198 \mathrm{ctr}, \mathrm{B}$	m	1190	S			1192	vvw	1193	mw	1215	ν_{10}	$\mathrm{CH}_{3}{ }^{\prime}$ rock (47\%); CN antisymmetric stretch									
1192 P												(15%); CN symmetric stretch (15%); CD_{3} symmetric deformation (9%)									
1159 R								1159	w												
1154 Q, C	m	1151	m			1159	vvw	1153	w	1155	ν_{11}	CN antisymmetric stretch (32%); CD_{3}									
1146 Q												symmetric deformation (29\%); CH_{3} rock (18%); $\mathrm{CH}_{3}{ }^{\prime}$ rock (8%)									
1119 R								1106	w, sh												
1113 Q	s	1104	s	1113	w	1103	w	1104	mw	1130	ν_{12}										
$1100 \mathrm{P}$																					
$1085 \mathrm{ctr}, \mathrm{B}$	m	1077	s			1079	vvw	1079	mw	1090	ν_{13}										
1072 P												symmetric stretch (17%); CD_{3} symmetric deformation (16%); $\mathrm{CD}_{3}{ }^{\prime}$ rock (8%); CN antisymmetric stretch (6\%)									
1061 Q	s	1054	m			1048	w	1050	mw	1059	ν_{14}	CD_{3} antisymmetric deformation (96%)									
1048 Q	s	1043	m							1044	ν_{15}	CD_{3} antisymmetric deformation (54%); CN antisymmetric stretch (15%); CN symmetric stretch (12%); $\mathrm{CD}_{3}{ }^{\prime}$ rock (6%)									
928 R																					
916 Q, C	s	912	s			913	w	916	m	911	ν_{16}	CN symmetric stretch (11%); CD_{3} symmetric deformation (20\%); CN antisymmetric stretch (19%); CD_{3} rock (17%); CD_{3}^{\prime} rock (13%); CH_{3} rock (9%)									
887 R																					
879 Q, A	m	874	m			879	m	877	m	854	ν_{17}	CD_{3} rock (54%) ; $\mathrm{CD}_{3}{ }^{\prime}$ rock (17%)									
872 P																					
846 R																					
836 Q, C	s	831	m	836	m	832	m	833	m	800	ν_{18}	$\mathrm{CD}_{3}{ }^{\prime}$ rock (37%); CN symmetric stretch									
829 P												(31%) CD_{3} rock (11%); CD_{3} symmetric deformation (9\%)									

TABLE III (Continued)

infrared				Raman						calcd	assignment and PED^{b}	
				gas	rel int	liquid	rel int, depolzn	solid	rel int			
gas	rel int	solid	rel int								ν_{i}	approx description ${ }^{\text {c }}$
$\begin{aligned} & 584 \mathrm{Q} \\ & 572 \mathrm{P} \end{aligned}$	s	570	m	585	s	574	s	569	vvs	562	ν_{19}	NCl stretch (46%); CNCl bend (22%); $\mathrm{CD}_{3}{ }^{\prime}$ rock (9\%); CN symmetric stretch (9\%); NC_{2} symmetric deformation (6%)
		380	m			400	m	$\begin{aligned} & 386 \\ & 383 \end{aligned}$	mw, sh mw	378	ν_{20}	NC_{2} symmetric deformation (48%); NCl stretch (24%); CNCl bend (7%)
		375	m	369	m	367	s	366	m	368	ν_{21}	CNCl bend (51%); NC_{2} symmetric deformation (27%); CNCl bend (12\%)
		330	w	329	m	328	m	329	mw	337	ν_{22}	CNCl bend (76%); CNCl bend (13%)
		290	w					282	vw		ν_{23}	CH_{3} torsion
						208	vw	204	vw		ν_{24}	$C D_{3}$ torsion
								87	w			.
								67	m			
								60	m			
								58	m, sh	.		lattice modes
								46	m			
								34	s			
								14	w			

${ }^{a}$ For abbreviations used, see Table I. Obvious impurity bands are not listed. ${ }^{b}$ Contributions of less than 6% are not included. ${ }^{c}$ The notation ${ }^{\prime}$ indicates rocking modes parallel to the plane.

Figure 7. Far-infrared spectra of gaseous $d_{0}(\mathrm{~A})$, solid $d_{0}(\mathrm{~B})$, solid d_{6} (C), and solid $d_{3}(\mathrm{D})\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$.
vibration. In the d_{6} compound, the CD_{3} torsions were too weak to be observed in the gas phase, so the far-infrared spectrum of the d_{3} molecule in the gas phase was not attempted. However, in the spectra of the solids both torsions were observed for both
the d_{3} and d_{6} molecules. The in-phase and out-of-phase torsions for the d_{3} compound are observed at ~ 290 and $204 \mathrm{~cm}^{-1}$ in the Raman spectrum of the solid, respectively. In the d_{6} compound the torsions are observed at 218 and $188 \mathrm{~cm}^{-1}$, with the higher frequency band assigned to the in-phase mode.

Normal Coordinate Analysis

A normal coordinate analysis was carried out to determine the degree of mixing and to obtain a better description of the normal modes of dimethylchloroamine and its deuteriated analogues. The analysis was carried out according to the Wilson GF matrix method ${ }^{17}$ with the perturbation programs developed by Schachtschneider. ${ }^{18}$ The G matrix was calculated by using structural parameters obtained from a microwave study of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}{ }^{19}$ The symmetry coordinates for the d_{0} and d_{6} compounds were constructed from 24 internal coordinates and are similar to those previously defined by Durig et al. ${ }^{20}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PH}$. The initial force constants were taken from $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{11}$ and $\mathrm{ONCl} .{ }^{15}$ The modified internal force constants listed in Table IV are for the d_{0} compound, and they fit the observed frequencies to $7.1 \mathrm{~cm}^{-1}$ (0.5\%).

The G matrix for the d_{3} analogue was modified to account for the point group symmetry change from C_{s} to C_{1}. By use of the force field based on the d_{0} internal force constants to predict the frequencies expected for the d_{6} and d_{3} analogues, fits of $19.8 \mathrm{~cm}^{-1}$ (2.3%) and $9.5 \mathrm{~cm}^{-1}(1.0 \%)$, respectively, were obtained. The calculated frequencies and normalized potential energy distribution among the symmetry coordinates are listed for the d_{0}, d_{6}, and d_{3} isotopic species in Tables I, II, and III, respectively.

The CH and CD stretches exhibit virtually no mixing, and for the light compound the CH_{3} deformations are relatively pure. However, there is extensive mixing of the CH_{3} rocks with both the $\mathrm{C}-\mathrm{N}$ antisymmetric and symmetric stretches. This mixing becomes even more extensive in the d_{3} molecule, where there is now some mixing with the CD_{3} deformations. Of course, in the d_{6} molecule the mixing is quite extensive for the CD_{3} bending modes where the deformations and rocks mix with the $C-N$ stretches. However, the extent of the mixing for the d_{6} molecule is not significantly different from that found for the similar modes in the corresponding deuteriated amine.

[^4]TABLE IV: Internal Force Constants ${ }^{a}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$

force const	description ${ }^{\text {b }}$	$\begin{gathered} \text { value, }{ }^{c} \\ \text { mdyn } / \AA \end{gathered}$
K_{a}	$\mathrm{N}-\mathrm{Cl}$ stretch	2.31
K_{b}	$\mathrm{C}-\mathrm{N}$ stretch	4.67
K_{c}	C-H stretch	4.74
H_{α}	HCH bend	0.588
H_{3}	NCH bend	0.811
H_{γ}	CNCl bend	1.40
H_{θ}	CNC bend	1.31
$F_{\text {ajo }}$	NCl stretch/ CNCl bend	0.278
$F_{b \alpha}$	CN stretch/ HCH bend	-0.354
$F_{b \beta}$	CN stretch/ NCH bend (nonunique)	-0.199
$F_{b \gamma}$	CN stretch/ CNCl bend	0.287
$F_{b t}$	CN stretch/ CNC bend	0.571
$F_{b b}$	CN stretch/CN stretch	0.344
$F_{c c}$	CH stretch/ CH stretch	0.107
$F_{\alpha \alpha}$	HCH bend/ HCH bend	0.038
$F_{\alpha \beta}$	HCH bend (nonunique)/NCH bend (unique)	0.096
$F_{\alpha \beta}$	HCH bend (nonunique)/ NCH bend (unique)	0.066
$F_{\beta \beta^{\prime}}$	NCH bend (nonunique)/NCH bend (nonunique)	-0.035
$F_{\beta \beta^{\prime}}$	NCH bend (nonunique)/ NCH bend (unique and nonunique)	0.019
$F_{\beta \beta^{\prime}}$	NCH bend (unique)/ NCH bend (nonunique)	0.072
$F_{\gamma \gamma}$	CNCl bend/ CNCl bend	0.242
$F_{\gamma \theta}$	CNCl bend/ CNC bend	-0.038

${ }^{a}$ Valence force constants. ${ }^{b}$ "Unique" refers to the hydrogen atoms that are trans to the lone pair on the nitrogen atom and essentially bisect the opposing CNCl angles whereas "nonunique" refers to the other four hydrogen atoms ${ }^{b}$ All bending coordinates are weighted by 1 \AA.

In the skeletal bending region the CNCl in-plane bend is extensively mixed with the NCl stretch and, in fact, the band at 602 cm^{-1} is only $45 \% \mathrm{NCl}$ stretch with a 29% contribution from the CNCl bend in the d_{0} molecule. For the corresponding band at $569 \mathrm{~cm}^{-1}$ in the d_{6} molecule the mixing with the CNCl bend is decreased but there is now mixing with the CD_{3} rock. Additionally, the NC_{2} deformation at $344 \mathrm{~cm}^{-1}$ is now more extensively mixed with the NCl stretch. Similar mixing is observed for the d_{3} molecule, but for all three isotopic species it is clear that the band near $600 \mathrm{~cm}^{-1}$ is predominately the NCl stretch with significantly less contribution from this motion to the next two lower frequency bands.

Internal Rotation Barrier

The internal Hamiltonian for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ may be set up according to a $C_{3 v}(\mathrm{~T})-C_{s}(\mathrm{~F})-C_{3 v}(\mathrm{~T})$ semirigid model $(\mathrm{T}=$ top, F $=$ frame). This Hamiltonian, based on the internal isometric group, as derived by Groner and Durig ${ }^{7}$ is

$$
H_{\mathrm{I}}=1 / 2\left(g^{44} p_{0}{ }^{2}+2 g^{45} p_{0} p_{1}+g^{55} p_{1}^{2}\right)+V\left(\tau_{0}, \tau_{1}\right)
$$

with $V\left(\tau_{0}, \tau_{1}\right)$ in the standard form as

$$
\begin{array}{r}
V\left(\tau_{0}, \tau_{1}\right)=1 / 2\left[V_{30}\left(1-\cos 3 \tau_{0}\right)+V_{60}\left(1-\cos 6 \tau_{0}\right)+V_{03}(1-\right. \\
\left.\cos 3 \tau_{1}\right)+V_{06}\left(1-\cos 6 \tau_{1}\right)+V_{33}\left(\cos 3 \tau_{0} \cos 3 \tau_{1}-1\right)+ \\
\left.V_{33}^{\prime}\left(\sin 3 \tau_{0} \sin 3 \tau_{1}\right)\right]
\end{array}
$$

The restrictions imposed on this formula for the $C_{s}(\mathrm{e})$ model are

$$
g^{44}=g^{55}, \quad V_{30}=V_{03}, \quad V_{60}=V_{06}
$$

The assignment of the $261 \cdot \mathrm{~cm}^{-1}$ band to the $1,0 \leftarrow 0,0$ out-of-phase methyl torsional transition is based on the B-type contour of this band in the far-infrared spectrum of the gas (Figure 8). The Q branch observed at $281 \mathrm{~cm}^{-1}$ in the far-infrared spectrum of the gas is accordingly assigned to the $0,1 \leftarrow 0,0 \mathrm{in}$-phase methyl torsional transition. A weak band at $281 \mathrm{~cm}^{-1}$ in the Raman spectrum of the gas was also observed for this in-phase transition which provides conclusive evidence for the assignment to the A^{\prime} mode. The $0,2 \leftarrow 0,1$ and $0,3 \leftarrow 0,2$ transitions for the in-phase methyl torsion are assigned at 276 and $269 \mathrm{~cm}^{-1}$ in the far-infrared

Figure 8. Far-infrared spectrum of gaseous $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ where the upper trace is the spectrum of water vapor. The arrows indicate the assignments of the methyl torsional transitions.

TABLE V: Observed Methyl Torsional Data, Assignment, and Torsional Potential Constants (cm^{-1}) for \boldsymbol{N}-Chloro- \boldsymbol{N}-methylmethanamine

far-infrared, cm^{-1}	assign $\left(v^{\prime} v^{\prime} \leftarrow v v\right)$	obsd - calcd ${ }^{a}$
281	$0,1 \leftarrow 0,0$	-0.2
267	$1,1 \leftarrow 1,0$	0.2
276	$0,2 \leftarrow 0,1$	-0.2
269	$0,3 \leftarrow 0,2$	0.2
261	$1,0 \leftarrow 0,0$	0.0
parameter	value	dispersion
V_{30}	1783	10
V_{03}	1783	10
V_{33}	125	12
V_{33}	-129	2
$\left[\left(V_{30}+V_{03}\right) / 2\right]-V_{33}$	1658	

${ }^{a}$ Calculated using $g^{44}=g^{55}=10.7321, g^{45}=-0.0439 \mathrm{~cm}^{-1}$, and the above potential constants.
spectrum of the gas, respectively, on the basis of their observed and calculated relative intensities.

The threefold barrier to internal rotation was calculated in a series of three steps. The initial calculation utilized the two transitions at 261 and $281 \mathrm{~cm}^{-1}$ with only a V_{30} term, which gave an initial barrier of $1666 \mathrm{~cm}^{-1}(4.77 \mathrm{kcal} / \mathrm{mol})$ with the transitions poorly fit to $\pm 9 \mathrm{~cm}^{-1}$. The next calculation included the transitions at $281,276,269$, and $261 \mathrm{~cm}^{-1}$ with the terms $V_{30}=2159$ and $V_{33}=540 \mathrm{~cm}^{-1}$. The barrier was calculated to be $1619 \mathrm{~cm}^{-1}$ (4.63 $\mathrm{kcal} / \mathrm{mol}$) with a fit of $\pm 9 \mathrm{~cm}^{-1}$ for the $0,1 \leftarrow 0,0$ and $1,0 \leftarrow 0,0$ transitions and a fit of $2 \mathrm{~cm}^{-1}$ for the $0,2 \leftarrow 0,1$ and $0,3 \leftarrow 0,2$ transitions. The infrared band at $267 \mathrm{~cm}^{-1}$ did not fit the highfrequency series in terms of relative intensity or frequency difference, so it was assigned to the $1,1 \leftarrow 1,0$ transition. The final calculation included the four previously indicated transitions in addition to this $1,1 \leftarrow 1,0$ cross term and included V_{30}, V_{33} and $V_{33}{ }^{\prime}$ terms for an overall fit of $\pm 0.2 \mathrm{~cm}^{-1}$ and a threefold barrier to internal rotation of $1658 \mathrm{~cm}^{-1}(4.74 \mathrm{kcal} / \mathrm{mol})$. The torsional potential constants and the fit to the five observed transitions used in the barrier calculation are summarized in Table V.

Discussion

In order to check the consistency of the proposed vibrational assignment, its agreement with the Teller-Redlich product rule was evaluated. Generally, an agreement of $3-5 \%$ between the calculated and observed ratios is sufficient for supporting the validity of the assignment. The calculated ratios for the A^{\prime} and $\mathrm{A}^{\prime \prime}$ symmetry blocks for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$ molecules are 19.65 and 17.48 , respectively. The observed ratios are 18.89 and 16.68 , respectively, which are 3.9% and 4.6% lower, but it should be noted that the shift factors for the two methyl torsions are not well determined and the frequencies for the normal modes of the $\mathrm{A}^{\prime \prime}$ symmetry species have errors associated with the determination of the minima for the B-type bands. For the A^{\prime} methyl
torsion the Raman line at $206 \mathrm{~cm}^{-1}$ for the d_{6} molecule has been used in the calculation but the Raman frequency is not known to better than two wavenumbers. Additionally, we used the shift factor of 1.364 for the analogous mode in the $\mathrm{A}^{\prime \prime}$ symmetry block since this methyl torsion was not observed in the spectrum of the d_{6} molecule in the gas phase. Thus, taking these factors into consideration, the agreement between the theoretical and observed ratios appears to be very satisfactory. For the shift ratio for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ and $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$ molecules, the normal modes are all in the A symmetry block, so that the calculated value is 18.41 and the experimental value is 17.79 , which gives an error of 3.4% which again is quite satisfactory. Therefore, the Teller-Redlich product rule supports the proposed vibrational assignment. The assignment of the NCl stretching mode is consistent with the recent work of McDonald et al. ${ }^{15}$ on ClNO. As expected, this stretching mode is far from a pure mode where mixing occurs with the CNCl bend, $\mathrm{C}-\mathrm{N}$ symmetric stretch and NC_{2} symmetric deformation. Remarkable consistency was found among the frequencies for the, normal vibrations associated with the methyl groups of dimethylamine and those of the corresponding modes of N -chloro- N-methylmethanamine. It is rather surprising that the heavy chlorine atom with its large electronegativity did not significantly affect the carbon-hydrogen motions of the methyl groups. However, it should be noted that the structural parameters for the common atoms in the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ molecules are very similar, including the nitrogen-carbon distances. ${ }^{19,21}$

In $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ the barrier to internal rotation has been determined 9 to be $1054 \mathrm{~cm}^{-1}$ ($3.01 \mathrm{kcal} / \mathrm{mol}$); substitution of a chlorine atom for the hydrogen atom increases the barrier to $1658 \mathrm{~cm}^{-1}$ $(4.74 \mathrm{kcal} / \mathrm{mol})$. This increase of $1.73 \mathrm{kcal} / \mathrm{mol}$ is in agreement with the observed increase in the torsional barrier from $679 \mathrm{~cm}^{-1}$ $(1.94 \mathrm{kcal} / \mathrm{mol})$ in $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{22}$ to $1323 \mathrm{~cm}^{-1}(3.78 \mathrm{kcal} / \mathrm{mol})$ in $\mathrm{CH}_{3} \mathrm{NHCl}^{23}$ One might expect this additivity to the barriers with substitution to continue with the addition of a second chlorine atom for a hydrogen atom in methylamine. Therefore, one would predict the barrier in $\mathrm{CH}_{3} \mathrm{NCl}_{2}$ to be around $5.5 \mathrm{kcal} / \mathrm{mol}$. Such substituent additivity has been found for the barriers in the corresponding halocarbons. ${ }^{24}$

The sample of $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$ contained an impurity, which could not be removed, that exhibited interfering vibrations in the Raman spectrum of the liquid. Analysis of the mass spectrum
(21) Wollrab, J. E.; Laurie, V. W. J. Chem. Phys. 1968, 48, 5058.
(22) Takagi, K.; Kohma, T. J. Phys. Soc. Jpn. 1971, 30, 1145.
(23) Caminati, W.; Cervellati, R.; Mirri, A. M. J. Mol. Spectrosc. 1974, 51, 288.
(24) Durig, J. R.; Guirgis, G. A. Chem. Phys. 1979, 44, 309.
of the $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$ sample indicates that the impurity may be $\mathrm{CD}_{3} \mathrm{NCl}_{2}$. Many of the observed vibrational bands due to the impurity correlate with the expected vibrational frequencies of $\mathrm{CH}_{3} \mathrm{NCl}_{2}{ }^{25}$ upon deuteriation, although it is likely there is an additional impurity that cannot be identified.

There have been few reported ${ }^{26}$ force constants for the $\mathrm{N}-\mathrm{Cl}$ bond. For the CINO molecule this force constant has been reported ${ }^{15}$ to have a value of $1.243 \mathrm{mdyn} / \AA$, which is only about half the value of $2.31 \mathrm{mdyn} / \AA$ that we found for this force constant for the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ molecule. However, the $\mathrm{N}-\mathrm{Cl}$ bond distance ${ }^{27}$ in ClNO is $1.973 \AA$ whereas the $\mathrm{N}-\mathrm{Cl}$ distance ${ }^{19}$ in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ is $1.749 \AA$. The molecule ClNO_{2} is reported ${ }^{28}$ to have an $\mathrm{N}-\mathrm{Cl}$ bond distance of $1.83 \AA$ with a force constant of $1.840 \mathrm{mdyn} / \AA$. Thus, it appears that the short and presumably stronger $\mathrm{N}-\mathrm{Cl}$ bond in $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ is reflected by the larger force constant, and as the $\mathrm{N}-\mathrm{Cl}$ bond becomes longer, the force constant value decreases. The force constants for the remaining portion of the molecule appear reasonable compared to those reported ${ }^{29}$ from ab initio calculations for methylamine. In the vibrational studies of dimethylamine, the Urey-Bradley force field was utilized, so it is not possible to compare those force constants with the ones obtained in this study. Nevertheless, it appears that a reasonable set of force constants has been obtained for N -chloro- N methylmethanamine.
In the Raman spectrum of solid $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}$ there are at least nine observed lattice modes. Unfortunately, they were not nearly as pronounced in the Raman spectrum of either $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}$ or $\mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}$. Therefore, it is not possible to assign the individual transitions to translational or librational modes on the basis of the observed shifts with deuteriation. Nevertheless, the number of lattice modes indicates that there are at least two molecules per primitive cell.

Acknowledgment. We gratefully acknowledge the financial support of this study by the National Science Foundation through Grant CHE-83-11279.
Registry No. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCl}, 1585-74-6 ; \mathrm{CH}_{3}\left(\mathrm{CD}_{3}\right) \mathrm{NCl}, 109801-36-7$; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{NCl}, 109838-65-5$.

[^5]
An Analysis of the Electronic States of Acephenanthrylene

B. F. Plummer

Department of Chemistry, Trinity University, San Antonio, Texas 78284 (Received: January 7, 1987; In Final Form: April 24, 1987)

Abstract

The absorption and emission spectrum of acephenanthrylene is examined experimentally and theoretically by the use of simple perturbational molecular orbital theory and by use of a semiempirical PPP SCF CI calculation. The long-wavelength transition near 440 nm is assigned to a new state called a K -transition that is not present in the precursor analogue phenanthrene. The excited states are found to contain extensive configuration interaction. A weak fluorescence near 540 nm with a quantum yield of 0.0035 is identified as a normal Stokes shifted emission.

Benzo-fused derivatives of acenaphthylene (A) continue to attract study because of their potential carcenogenicity ${ }^{1,2}$ and their
possible occurrence in the environment. ${ }^{3}$ We are interested in learning more about these substances because of their anticipated

[^0]: ${ }^{\dagger}$ Taken in part from the thesis of N.E.L., which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.

[^1]: (1) Guirgis, G. A.; Durig, J. R.; Li, Y. S. J. Chem. Phys. 1985, 83, 1507.
 (2) Durig, J. R.; Compton, D. A. C.; Rizzolo, J. J.; Jalilian, M. R.; Zozulin, A. J.; Odom, J. D. J. Mol. Struct. 1981, 77, 195.
 (3) Durig, J. R.; Jalilian, M. R.; Sullivan, J. F.; Compton, D. A. C. J. Chem. Phys, 1981, 75, 4833.
 (4) Durig, J. R.; Gerson, D. J. J. Phys. Chem. 1981, 85, 426.
 (5) Durig, J. R.; Gerson, D. J.; Compton, D. A. C. J. Phys. Chem. 1980, 84, 3554.
 (6) Durig, J. R.; Guirgis, G. A.; Compton, D. A. C. J. Phys. Chem. 1980, 84, 3547.
 (7) Groner, P.; Durig, J. R. J. Chem. Phys. 1977, 66, 1856.
 (8) Bauder, A.; Meyer, R.; Gunthard, H. H. Mol. Phys. 1974, 28, 1305; Mol. Phys. 1976, 31, 647.
 (9) Durig, J. R.; Griffin, M. G.; Groner, P. J. Phys. Chem. 1977, 81, 554.
 (10) Wollrab, J. E.; Laurie, V. W. J. Chem. Phys. 1971, 54, 532.
 (11) Dellepiane, G.; Zerbi, G. J. Chem. Phys. 1968,.48, 3575.
 (12) Ryason, R.; Wilson, M. K. J. Chem. Phys. 1954, 22, 2000.
 (13) Hariharan, T. A. Proc. Indian Acad. Sci., Sect. A 1958, 48 A, 49.
 (14) Jones, L. H.; Ryan, R. R.; Asprey, L. B. J. Chem. Phys. 1968, 49, 581.
 (15) McDonald, J. K.; Merritt, J. A.; Kalasinsky, V. F.; Heusel, H. L; Durig, J. R. J. Mol. Spectrosc. 1986, 117, 69.
 (16) Baglin, F. G.; Bush, S. F.; Durig, J. R. J. Chem. Phys. 1967, 47, 2104.

[^2]: ${ }^{a}$ Abbreviations: s, strong; m, medium; w, weak; v, very; ctr, center; sh, shoulder; bd, broad; max, maximum; min, minimum, \mathbf{P}, Q, and R refer to the rotational-vibrational branches. Obvious impurity bands are not listed. ${ }^{b}$ Contributions of less than 6% are not included. ${ }^{c}$ The notation 'indicates rocking modes parallel to the plane.

[^3]: ${ }^{a}$ For abbreviations used, see Table I. Obvious impurity bands are not listed. ${ }^{b}$ Contributions of less than 6% are not included. ${ }^{c}$ The notation 'indicates

[^4]: (17) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill: New York, 1955 (republished by Dover: New York, 1980).
 (18) Schachtschneider, J. H. "Vibrational Analysis of Polyatomic Molecules", Parts V and VII, Technical Reports No. 231 and 57; Shell Development Co.: Emeryville, CA, 1964 and 1965.
 (19) Durig, J. R.; Chatterjee, K.; Lindsay, N. E.; Groner, P. J. Am. Chem. Soc. 1986, $108,6903$.
 (20) Durig, J. R.; Hudson, S. D.; Jalilian, M. R.; Li, Y. S. J. Chem. Phys. 1981, 74, 772.

[^5]: (25) Haag, W. R. J. Inorg. Nucl. Chem. 1980, 42, 1123.
 (26) Höhne, V. K.; Jander, J.; Knuth, K.; Schlegel, D. Z. Anorg. Allg. Chem. 1971, 386, 316.
 (27) Cazzoli, G.; Degli Esposti, C.; Palmissi, P.; Simeone, S. J. Mol. Spectrosc. 1983, 97, 165.
 (28) Bernitt, D. L.; Miller, R. H.; Hisatsune, I. C. Spectrochim. Acta, Part A 1967, $23 A, 237$.
 (29) Hamada, Y.; Tanaka, N.; Sugawara, Y.; Hirakawa, A. Y.; Tsuboi, M.; Kato, S.; Morokuma, K. J. Mol. Spectrosc. 1982, 96, 313.

