Table I. Tri- and Tetrasubstituted Olefins from α -Silyl Esters

					-	
entry (cmpd)	\mathbb{R}^1	\mathbb{R}^2	R ³ M	R ⁴ M	olefin	yield,ª %
1 (11)	Me ^b	Н	PhMgBr	PhMgBr	MeCH=CPh ₂	85
2 (12)	Me ^b	Н	$n-C_5H_{11}MgBr$	$n-C_5H_{11}MgBr$	$MeCH = C(n - C_5 H_{11})_2$	54
3 (13)	Me	Н	$n-C_6H_{13}MgBr$	$n-C_6H_{13}MgBr$	$MeCH = C(n - C_6H_{13})_2$	66
4 (14)	Me	Н	PhCH ₂ MgCl	PhCH ₂ MgCl	$MeCH = C(CH_2Ph)_2$	37
5 (15)	\mathbf{Et}	Н	PhMgBr	PhLi	$EtCH = C(Ph)_2$	55
6 (16)	$n - C_8 H_{17}$	Н	PhMgBr	PhLi	$n-C_8H_{17}CH = C(Ph)_2$	20
7 (17)	$n - C_8 H_{17}$	Н	MeMgI	MeMgI	$n-C_8H_{17}CH=C(Me)_2$	39
8 (17)	$n - C_8 H_{17}$	Н	MeMgI	MeLi	$n-C_8H_{17}CH=(Me)_2$	54
9 (18)	$n - C_8 H_{17}$	Н	EtMgI	EtMgI	$n-C_8H_{17}CH=C(Et)_2$	9
10 (19)	$n - C_8 H_{17}$	Н	$n-C_{3}H_{7}MgBr$	$n-C_3H_7MgBr$	$n-C_8H_{17}CH = C(n-C_3H_7)_2$	8
11 (20)	$n - C_8 H_{17}$	Н	C ₃ H ₅ MgBr	C ₃ H ₅ MgBr	$n-C_8H_{17}CH=C(allyl)_2^c$	84
12 (21)	$n - C_8 H_{17}$	Н	$n-C_4H_9MgBr$	$n-C_4H_9Li$	$n-C_8H_{17}CH=C(n-C_4H_9)_2$	19
13 (22)	$n-C_{8}H_{17}$	Н	n-C ₃ H ₇ MgBr	MeLi	$n-C_8H_{17}CH = C(n-C_3H_7)Me^d$	55
14 (23)	$CH_2 = CH(CH_2)_7$	Н	MeMgBr	MeLi	$CH_2 = CH(CH_2)_7 CH = C(Me)_2$	56
15 (24)	Me	Me^{e}	PhMgBr	PhLi	$Me_2C = C(Ph)_2$	70
16 (25)	Me	Me ^e	$n-C_4H_9MgBr$	$n-C_4H_9Li$	$Me_2C = C(n - C_4H_9)_2$	60
17 (26)	Me	Me^e	$n-C_6H_{13}MgBr$	$n-C_6H_{13}MgBr$	$Me_2C = C(n - C_6H_{13})_2$	44
18 (27)	$n-C_8H_{17}$	Me ^f	MeMgI	MeLi	$(n-C_8H_{17})MeC = CMe_2$	12

^a Isolated yields. ^bEthyl (trimethylsilyl)propionate prepared via methylation of ethyl (trimethylsilyl)acetate used in these reactions. ^cThe allyl Grignard has been shown to add twice to other hindered esters. ^dProduct is greater than 99:1 *E:Z* when elimination is carried out with KO-t-Bu. ^ePrepared by methylation of the lithium enolate of 4 (R = Me). ^fPrepared by methylation of 4 ($R = n-C_8H_{17}$).

142.5, 123.3, 32.0, 30.3, 29.6, 29.4, 29.2, 27.6, 23.2, 22.8, 14.1, 13.3, 13.0; MS, 196 (9), 55 (100). The major product was 3-dodecanone (71%).

4-Propyltridec-4-ene (19). The title compound was produced in 8% yield as above: ¹H NMR δ 5.2 (t, 1 H, J = 7.1 Hz), 2.1–1.9 (m, 6 H), 1.3 (bs, 12 H), 0.85 (m, 9 H); ¹³C NMR δ 139.0, 125.3, 39.1, 32.1, 31.9, 30.2, 29.6, 29.4, 29.3, 27.7, 22.7, 21.7, 21.4, 14.2, 14.1, 14.0; MS, 224 (17), 70 (100). The major product was 4tridecanone formed in 78% yield.

4-Allyltrideca-1,4-diene (20). The reaction of 6 mmol of allylmagnesium bromide with 2 mmol of 4 (R = n-C₈H₁₇) at reflux for 21 h gave 84% of the title compound: n_D^{20} 1.4621; IR (neat) 1635 cm⁻¹; ¹H NMR δ 6.15–5.51 (m, 2 H), 5.24 (t, 1 H, J = 6.1 Hz), 5.25–5.05 (m, 2 H), 5.00 (m, 2 H), 2.82–2.67 (bt, 2 H, J = 5.3 Hz), 2.20–1.80 (m, 2 H), 1.26 (bs, 12 H), 0.82 (bt, 3 H); ¹³C NMR δ 137.1, 136.2, 135.0, 127.5, 115.7, 115.1, 41.4, 34.6, 32.0, 30.0, 29.6, 29.4, 27.9, 14.1; MS, 220 (not observed) 41 (100). Anal. Calcd for C₁₆H₂₈; C, 87.27; H, 12.73. Found: C, 87.09; H, 12.85.

General Procedure for Reaction with a Grignard Reagent Followed by an Organolithium Reagent. The α -silyl ester was reacted with 2 equiv of Grignard reagent in THF at reflux, the reaction was cooled to 0 °C, and 3 equiv of lithium reagent in ether were added followed by a 24-h reflux period. The reaction was cooled to room temperature and 9 equiv of KO-t-Bu was added, and the reaction was refluxed for 1 h. Workup as before gave the olefins.

5-Butyltetradec-5-ene (21). Title compound produced in 19% yield: n_D^{20} 1.4495; ¹H NMR δ 5.17 (t, 1 H, J = 7.0 Hz), 2.21–1.70 (m, 6 H), 1.26 (bs, 20 H), 1.05–0.73 (m, 9 H); ¹³C NMR δ 139.5, 124.8, 36.8, 32.0, 30.9, 30.6, 30.3, 29.8, 29.6, 29.4, 27.8, 23.0, 22.8, 22.6, 14.1; MS, 252 (25), 55 (100). 5-Tetradecanone was produced in 78% yield.

(*E*)-4-Methyltridec-4-ene (22). Treatment of 4 (R = n-C₈H₁₇) with *n*-propylmagnesium bromide followed by methyllithium as above gave 55% yield of the title compound: n_D^{20} 1.4420; ¹H NMR δ 5.14 (tq, 1 H, J = 7.0 Hz, 1.22 Hz), 1.97 (t, 4 H), 1.60 (s, 3 H), 1.36 (bs, 14 H), 0.90 (bt, 3 H); ¹³C NMR δ 134.8, 124.8, 41.9, 31.9, 30.0, 29.6, 29.4, 27.9, 22.7, 21.0, 15.8, 14.1, 13.7; MS, 196 (24), 55 (100). Anal. Calcd for C₁₄H₂₈: C, 85.71: H, 14.29. Found, C, 85.63: H, 14.35. GC–MS analysis with a capillary columnm (15 m SE-30) showed the sample to have an *E:Z* ratio of greater than 99:1. This same column separated a 70:30 *E:Z* mixture formed by boron fluoride etherate elimination (see text).

11-Methyldodeca-1,10-diene (23). The title compound was formed in 56% yield: $n_{\rm D}^{20}$ 1.4479; ¹H NMR δ 6.02–5.59 (m, 1 H), 5.21–4.86 (m, 3 H), 2.30–1.75 (m, 4 H), 1.68 (bs, 3 H), 1.59 (bs, 3 H) 1.30 (bs, 10 H); ¹³C NMR δ 139.2, 131.0, 125.0, 114.2, 33.9, 30.0, 29.5, 29.4, 29.3, 29.0, 28.1, 25.7, 17.7; MS, 180 (7), 69 (100). 1,1-Diphenyl-2-methylpropene (24). The title compound

1,1-Diphenyl-2-methylpropene (24). The title compound was formed in 70% yield: n_D^{16} 1.5950; ¹H NMR δ 7.22 (s, 10 H), 1.78 (s, 6 H); ¹³C NMR δ 143.3, 137.2, 135.3, 130.9, 129.8, 128.7, 127.8, 127.1, 126.0, 22.4, MS, 208 (80), 115(100).

2-Methyl-3-butylhept-2-ene (25). The title compound was formed in 60% yield: $n_{\rm D}^{20}$ 1.4415; ¹H NMR δ 2.20–1.89 (m, 4 H), 1.64 (s, 6 H), 1.48–1.07 (m, 8 H), 0.88 (bt, 6 H); ¹³C NMR δ 133.2, 123.9, 32.3, 31.2, 23.0, 20.2, 14.1; MS, 168 (17), 83 (100). Anal. Calcd for C₁₂H₂₄: C, 85.71: H, 14.29. Found: C, 85.61: H, 14.36.

2-Methyl-3-*n***-hexylnon-2-ene (26).** The title compound was formed in 44% yield, purified by preparative GLC (3% SE-30); $n_{\rm D}^{20}$ 1.4540; ¹H NMR δ 2.20–1.7 (m, 4 H), 1.64 (s, 6 H), 1.28 (bs, 16 H), 1.05–0.70 (bt, 6 H); ¹³C NMR δ 133.2, 123.9, 32.6, 31.9, 29.7, 28.9, 22.7, 20.2, 14.1; MS, 224 (41), 8 (100). Anal. Calcd for C₁₆H₃₂: C, 85.71: H, 14.29. Found: C, 85.54; H, 14.32.

2,3-Dimethyl-2-undecene (27). This compound was formed in 12% yield and identified by GC-MS only.

Acknowledgment. We thank the NIH-MBRS Program (RR-8102-10), the UPR, and Pfizer and Squibb Pharmaceuticals for support of our program. We thank the NSF for a grant to purchase the JEOL FX90Q NMR spectrometer. Dr. Osvaldo Rosario is thanked for several GC-MS analyses.

Registry No. 4 (R = Me), 77772-22-6; 4 (R = Et), 89638-15-3; 4 (R = n-C₈H₁₇), 89638-16-4; 4 (R = CH₂ = CH(CH₂)₇), 89968-59-2; 6 (R¹ = R² = Me), 91413-17-1; 6 (R¹ = n-C₈H₁₇, R² = Me), 91586-15-1; 11, 778-66-5; 12, 91586-16-2; 13, 91586-17-3; 14, 40558-71-2; 15, 1726-14-3; 16, 1530-27-4; 17, 56888-88-1; 18, 68066-08-0; 19, 91586-18-4; 20, 91586-19-5; 21, 91586-20-8; (E)-22, 91586-21-9; (Z)-22, 91586-22-0; 23, 18625-77-9; 24, 781-33-9; 25, 91586-23-1; 26, 91586-24-2; 27, 91586-25-3; PhBr, 108-86-1; n-C₅H₁₁Br, 110-53-2; n-C₆H₁₃Br, 111-25-1; PhCH₂Cl, 100-44-7; MeI, 74-88-4; EtI, 75-03-6; n-C₃H₇Br, 106-94-5; C₃H₆Br, 106-95-6; n-C₄H₉Br, 109-65-9; PhLi, 591-51-5; MeLi, 917-54-4; n-C₄H₉Li, 109-72-8; ethyl 2-(trimethylsilyl)propionate, 13950-55-5.

Oxidation of 4-Aryl-Substituted Isoxazolin-5-ones. A New Synthesis of 2,5-Diaryl-1,3-oxazin-6-ones

Egle M. Beccalli

Istituto di Chimica Organica, Facoltà di Farmacia, 20133 Milano, Italy

Concetta La Rosa and Alessandro Marchesini*

Istituto di Chimica Industriale dell'Università, Centro per la Sintesi e la Stereochimica di Speciali Sistemi Organici, 20133 Milano, Italy

Received March 23, 1984

The oxidation of a large number of 3,4-disubstituted isoxazolin-5-ones has been achieved with active manganese dioxide as well as with peroxyformic acid. In the first case . . .

Table I. Characterization of New Compounds^a

compd	yield, %	mp/bp (mmHg), °C	$IR.^b cm^{-1}$	¹ H NMR ^c (CDCl ₃)
16		49-51d	3200 1730 1665	12 25 (d 1 13) ° 7 25 (m 5)
10	90	43-31 $44-47^{d}$	3150 1650 1585	12.26 (d, 1, 13), 7.26 (d, 2, 9), 7.25 (d, 1, 13) / 7.18 (d, 2, 9)
14	94	105-110(0.4)	1725 1660 1610	$12.08 (d, 1, 13) \stackrel{e}{,} 7.27 (d, 1, 13) \stackrel{f}{,} 7.18 (d, 2, 9), 6.9 (d, 2, 9), 3.82 (s, 3)$
10	87	undistilled	1730 1655 1610	12.2 (d, 1, 13), $^{\circ}$ 7.3 (m, 5), 2.4 (s, 3)
1f	83	98-101 ^d	3140 1665 1635	$7.8 (d, 1, 12)^{f} 7.3 (m, 4), 5.7 (d, 1, 12)^{e}$
10	92	71-73 ^d	3160 1650 1635	7.73 (d, 1, 14) / 7.2 (m, 4), 6 (d, 1, 14), 2.22 (s, 3)
1 h	88	108-111(0.3)	1700, 1630	8.65 (m, 1), 7.75 (m, 2), 7.2 (m, 2), 4.2 (m, 4), 1.3 (m, 6)
2h	77	$134 - 135^{d}$	3060, 1720, 1700	10 (bs. 1), e 9.17 (s. 1), 7.8 (d. 2, 9), 7.45 (d. 2, 9)
20	80	120-1218	3000 b. 1748, 1705	$10.8 (bs. 1)^e 9.18 (s. 1), 7.76 (d. 2, 9), 7.58 (d. 2, 9)$
2d	85	$112 - 114^{h}$	3200 b. 1740, 1700	9 (s. 1), 7.2 (bs. 1), 7.7 (d. 2, 9), 6.98 (d. 2, 9), 3.8 (s. 3)
2e	70	$124 - 126^{h}$	3000 b, 1735, 1685	10 (bs, 1), 9.07 (s, 1), 7.68 (d, 2, 9), 7.23 (d, 2, 9), 2.34 (s, 3)
2 f	78	101-104 ^h	3000 b, 1670, 1605	11.4 (bs, 1), $e 8.28$ (s, 1), 7.4–7 (m, 4), 2.38 (s, 3)
2g	80	$104 - 106^{d}$	3000 b, 1740, 1700	11.1 (s, 1), e 8 (s, 1), 7.25 (m, 4), 2.38 (s, 3)
$\frac{-b}{2h}$	20	203-204 ⁱ	3250, 1670, 1645	8.75 (s, 1), 8.25 (s, 1), 7.9 (m, 2), 7.1 (m, 1) ¹
3a	57	113	1800, 1778	8.6 (s, 1), 8 (s, 1), 7.4 (m, 10) ^m
3b	91	119	1790, 1778, 1740	insoluble
3c	66	125	1800, 1777	insoluble
3 d	72	111-112	1795, 1775, 1730	8.6 (s, 1), 8 (s, 1), 7.6 (m, 4), 7.2 (m, 4), 4 (s, 6) ^m
3e	90	114	1780, 1745	8.58 (s, 1), 8 (s, 1), 7.3 (m, 8), 2.5 (s, 3), 2.36 (s, 3) ^m
3 f	59	109-111	1780, 1745, 1700	8.57 (s, 1), 8.02 (s, 1), 7.35 (m, 8), 2.5 (s, 3), 2.32 (s, 3) ^m
4a	80	130–133 ^h	3400 b, 2205, 1710	9.4 (bs, 1), e 8.1 (m, 2), 7.9 (s, 1), 7.6 (m, 8)
4b	79	158–159 ^h	3300 b, 2210, 1705	8 (m, 3), 7.48 (m, 6)
4c	75	$178 - 182^{h}$	2700 b, 2220, 1775	8.08 (s, 1), 7.9 (d, 2, 9), 7.75 (d, 2, 9), 7.6 (d, 2, 9), 7.48 (d, 2, 9)
4d	72	151–153 ^h	3000 b, 2220, 1725	8.07 (s, 1), 7.98 (d, 2, 9), 7.6 (d, 2, 9), 7 (m, 4), 3.95 (s, 3), 3.87 (s, 3)
4e	89	136-138 ⁿ	3000 b, 2210, 1783	12.1 (bs, 1) ^e 8 (s, 1), 7.9 (d, 2, 9), 7.35 (m, 6), 2.45 (s, 3), 2.4 (s, 3)
4 f	70	121-122 ^d	3000 b, 2210, 1700	8.15 (s, 1), 7.9 (m, 2), 7.45 (m, 6), 2.5 (s, 3), 2.43 (s, 3)
5a	96	132-135 ^d	2210, 1730, 1600	8.05 (m, 3), 7.58 (m, 8), 4.04 (s, 3)
5b	95	$164 - 166^{n}$	2210, 1710, 1600	7.9 (m, 3), 7.45 (m, 6), 4 (s, 3)
5c	96	179–180 ⁿ	2205, 1708, 1597	7.87 (m, 3), 7.5 (m, 6), 4 (s, 3)
5 d	97	157-159"	2210, 1740, 1600	8 (d, 2, 9), 7.85 (s, 1), 7.53 (d, 2, 9), 7 (d, 2, 9), 6.95 (d, 2, 9), 4.03 (s, 3), 3.94 (s, 3), 3.9
_	~ (105 100h	0000 1500 1500	(8, 3) = 0 (-1)
5e	94	137-139"	2200, 1733, 1593	7.9 (s, 1), 7.9 (d, 2, 9), 7.43 (d, 2, 9), 7.24 (d, 2, 9), 7.2 (d, 2, 9), 4 (s, 3), 2.41 (s, 3), 2.36
- 0	07	110 11 14	000F 1700 1000	(8, 3) $\Box 00 (-1) \Box 00 (-2) \Box 20 (-2) A (-2) D A (-2) D A (-2) D A (-2) (-2)$
51	97	113-114°	2205, 1728, 1600	(1.93 (s, 1), (1.00 (m, 2), (1.30 (m, 0), 4 (s, 3), 2.417 (s, 3), 2.412 (s, 3))
6D	80	100-100"	1750, 1600	8.5 (8, 1), 6.15 (0, 2, 3), 7.6 (0, 2, 3), 7.71 (0, 2, 3), 7.56 (0, 2, 3)
6C	81	103-104°	1750, 1610, 1590	(a, 2, 3), (a, 3, 7), (a, 3, 7), (a, 3, 7)
6 a	82	169 1694	1790, 1010	8.18 (d 2 9) 8 (e 1) 7.62 (d 2 9) 7.32 (d 2 9) 7.28 (d 2 9) 2.5 (s 3) 2.45 (s 3)
6e ce	00 66	102-103- 90-00d	1740 1600 1575	81 (m 2) 8 (s 1) 74 (m 6) 249 (s 3) 246 (s 3)
61 6 <i>a</i>	90	07_08d	1737 1607	8.18 (id, 1, 7, 2), 7.8 (s, 1), 7.3 (m, 7), 2.8 (s, 3), 2.38 (s, 3)
og 7e	90	203-204	3140 1680 1655	$135 (hs 1)^{e} 12 (d 1 10)^{e} 7.9 (m 3), 7.4 (m 8)$
74 7h	96	203 204	3340 1692 1658	13.2 (bs, 1)^{e} $11.8 \text{ (d. 1, 10)}^{e}$ $7.93 \text{ (d. 2, 9)}, 7.72 \text{ (d. 1, 10)}^{f}$ $7.70 \text{ (d. 2, 9)}, 7.44 \text{ (s. 4)}^{l}$
70	95	208-209	3340, 1690, 1655	13.3 (bs. 1), $e^{11.76}$ (d. 1, 11), $e^{7.84}$ (s. 4), 7.7 (d. 1, 11), $f^{7.6}$ (d. 2, 9) 7.37 (d. 2, 9)
74	94	210-211	3330, 1680, 1663	13.2 (bs, 1), ^e 11.73 (d, 1, 10), ^e 7.88 (d, 2, 9), 7.63 (d, 1, 10), ^f 7.33 (d, 2, 9), 7.15 (d, 2, 9),
74	04	210 211	0000, 1000, 1000	6.93 (d. 2, 9), 3.9 (s. 3), 3.8 (s. 3)
7e	96	213-214	3330, 1685, 1660	12 (bs, 1), e 10.75 (d, 1, 11), e 7.8 (d, 2, 9), 7.67 (d, 1, 11), 7.52 (d, 2, 9) 7.25 (m, 4), 2.43
			,,	$(s, 3), 2.34 (s, 3)^{l}$
7 f	97	186-187	3140, 1680, 1655	13.1 (bs, 1), e^{t} 11.8 (d, 1, 11), e^{t} 7.65 (m, 5), 7.2 (m, 4), 2.45 (s, 3), 2.35 (s, 3)^{t}
7g	95	237-238	3310, 1690, 1660	13 (bs, 1), e 11.2 (d, 1, 11), e 7.5 (m, 5), 7.23 (m, 4), 2.53 (s, 3), 2.27 (s, 3)
	• •			

^aSatisfactory combustion analytical data ($\pm 0.3\%$) for C, H, and N were obtained. ^bNujol mull for solids and liquid film for oils. ^cMultiplicity, signal intensity (H), and coupling constant (hertz) indicated by values in parentheses. Chemical shifts of COOR groups are not reported. ^dFrom CH₂Cl₂-hexane. ^eExchange with D₂O. ^fSinglet after D₂O. ^gWashed with Et₂O. ^hFrom CH₂Cl₂-Et₂O. ⁱFrom CH₂Cl₂-MeOH. ^lMe₂SO. ^mCF₃COOD. ⁿFrom THF-Et₂O.

oxidative coupling products were obtained,¹ while in the second case 3,4,4-trisubstituted 4-hydroxy-2-isoxazolin-5-ones were formed.²

We report here that the title compounds can be oxidized, by manganese dioxide or by peroxyformic acid, giving, in both cases, oxidative coupling derivatives of the C-N type, from which 1,3-oxazin-6-ones can be easily obtained in quantitative yields.

The 4-arylisoxazolin-5-ones 2 were prepared by reaction between the corresponding 2-aryl-2-formyl acetates 1 and hydroxylamine hydrochloride in methanol-water solution (Scheme I). The isoxazolin-5-one 2h was obtained in a similar way from ethyl 3-ethoxy-2-(2-pyridyl)acrylate (1h). While the corresponding alkyl derivatives are unstable,³ the 4-arylisoxazolones 2 are stable compounds which are synthesized in high yields. From ¹H NMR data, all these compounds exist mainly in the NH tautomeric form in chloroform solution. Compounds $2a^3$ and $2i^4$ have been previously reported.

When a formic acid solution of the isoxazolones 2 is treated with 30% hydrogen peroxide, an exothermic reaction takes place and the oxidation product 3 crystallize out from the reaction mixture with good yields and in a pure state. However, we were unable to isolate pure 3g.

The structures 3 follow from analytical and spectroscopic data as well as from the chemical behavior. The compounds 3 are crystalline solids which decompose explosively on heating above the melting point. With organic

⁽¹⁾ Beccalli, E. M.; Marchesini, A.; Gioia, B. J. Heterocycl. Chem. 1980, 17, 763.

⁽²⁾ Baldoli, C.; Beccalli, E. M.; Licandro, E.; Marchesini, A. Gazz. Chim. Ital. 1981, 111, 347.

⁽³⁾ De Sarlo, F.; Dini, G. J. Heterocycl. Chem. 1967, 4, 533.

⁽⁴⁾ Claisen, L. Leibigs Ann. Chem. 1897, 297, 75.

solvents they lose carbon dioxide, often in an high exothermic reaction, as in Me₂SO with formation of deep yellow to red solutions. By refluxing 3 in THF solution, the 2-aza-1-cyano-1,3-diene-4-carboxylic acids 4 were obtained in 70–87% yields. The corresponding methyl esters 5 were obtained by reaction of 4 with an ethereal solution of diazomethane. The stereochemistry of the C–C double bond follows from the structure of the cyclic precursor 3. Although the stereochemistry of the C–N double bond is unknown, the ¹H NMR spectra of compounds 4 and 5 suggest they are pure stereoisomers.

In the presence of a base, the acids 4 gave, in 66-86% yields, the corresponding 1,3-oxazin-6-ones 6 with cyanide elimination. The 1,3-oxazin-6-one 6a has been previously reported.⁵ Analytical and spectroscopic data agree with the reported structures 6. On acidic hydrolysis the oxazinones 6 gave the corresponding enamido acids 7. The oxazinones 6 may be obtained directly, in 82-86% yields, by heating a THF slurry of compounds 3 in the presence of triethylamine.

In a simpler way, they may be obtained by active manganese dioxide oxidation of the isoxazolones 2 in dichloromethane solution, followed by treatment with triethylamine. In this case the dimeric intermediates 3 cannot be isolated: in the presence of the MnO_2 excess they decompose giving the acids 4. Pure 3 behave in the same way in similar conditions as well as in the presence of silica gel.

The isoxazolones **2h** and **2i** failed to give any oxidation product: this would be ascribed to the presence of an electron-withdrawing group.

Our work provides an easy entry to new 1,3-oxazin-6ones, and to 2-azabutadienes bearing electron-withdrawing groups. The synthetic potential of such a class of compounds is well documented.⁶

Experimental Section

All melting and boiling points are uncorrected. IR spectra were determined with a Perkin-Elmer 377 instrument. ¹H NMR spectra were recorded on a Varian EM-390 or on a Bruker WP80SY spectrometer with tetramethylsilane as an internal standard. Column chromatography was performed on Merck Kieselgel 60, 0.063–0.200 mm. Magnesium sulfate was used as drying agent. Evaporation was carried out in vacuo (rotary evaporation).

Preparation of Ethyl 2-Aryl-2-formylacetates 1a-g. General Procedure. A NaH 80% suspension (0.2 mol) was added, over a period of 30 min at room temperature with stirring and under a dry nitrogen stream, to a solution of the ethyl arylacetate (0.05 mol, commercial source) in ethyl formate (80 mL). During the addition the temperature in some case rises 35-40 °C. The reaction mixture was stirred at room temperature (compounds 1a-d, 1h, 1e,f 2.5 h; 1g, 6 h) and then added to dilute HCl (4.5%, 230 mL). Extraction with Et₂O (2 × 150 mL), drying, and evaporation of solvents afforded the crude products, purified by distillation or crystallization. Compound 1a has been previously reported.⁷

Preparation of Ethyl 3-Ethoxy-2-(2-pyridyl)acrylate (1h). A mixture of ethyl (2-pyridyl)acetate (6.8 g, commercial source), ZnCl₂ (200 mg), acetic anhydride (40 mL), and ethyl orthoformate (40 mL) was heated under reflux for 8 h. After evaporation to dryness, Et₂O (150 mL) was added, and the organic solution was washed with aqueous NaHCO₃ and H₂O and then dried. Removal of the solvent followed by distillation of the residue gave pure 1h.

Preparation of 4-Arylisoxazolin-5-ones 2a-h. General **Procedure.** A solution of NH_2OH ·HCl (0.15 mol) in water (15 mL) was added to a solution of the ester 1 (0.1 mol) in MeOH (100 mL), and the mixture was heated to reflux for 1 h. The residue from the solvent evaporation was taken up in water (80 mL), and, after cooling in ice, the isoxazolone 2 was filtered off and recrystallized or washed with the reported solvent. In the case of the ester 1h, pyridine (0.2 mol) was added to the reaction mixture.

Preparation of 4-Aryl-4-[1-(4-aryl-5-oxo-2-isoxazolinyl)]-2-isoxazolin-5-ones 3a-f. General Procedure. The isoxazolone 2 (2 g) was dissolved in HCOOH (20 mL) at 40 °C, and then 30% H_2O_2 (4 mL) was added with stirring. The temperature was maintained at 35-40 °C with external cooling and then allowed to raise to ambient temperature. A solid separated from the reaction mixture and, after cooling at 0 °C for 30 min, this was suction filtered, washed with HCOOH (5 mL) and a 3:1 mixture of hexane-Et₂O (80 mL), and air-dried to yield the dimeric derivative 3. No TLC analysis was possible: on silica gel, decomposition to compounds 4 was immediate.

Preparation of 1,4-Diaryl-1-cyano-2-azabuta-1,3-diene-4carboxylic Acids 4a-f and of Corresponding Methyl Esters 5a-f. General Procedure. The dimeric derivative 3 (1 g) was dissolved in THF (50 mL) and the mixture slowly heated to reflux. Evolution of CO_2 was observed and the color changed to deep yellow or red. After 30 min, solvent evaporation gave pure 4 which was crystallized from reported solvent. A sample of acid 4 was dissolved in THF and then treated with an ethereal solution of diazomethane. Usual workup gave pure methyl ester 5. These compounds melt with decomposition, affording the corresponding oxazinones 6.

Preparation of 2,5-Diaryl-1,3-oxazin-6-ones 6a-f from the Dimers 3. General Procedure. The dimeric compound 3 (1 g) was dissolved in THF (50 mL) and the mixture was slowly heated to reflux. After 15 min, triethylamine (3 mL) was added and the solution heated to reflux for 15 min. The color changed from deep yellow or red to pale yellow. Solvent evaporation and silica gel chromatography of the residue (eluant CH_2Cl_2 -hexane, 1:1, v/v) gave pure oxazinones 6.

Preparation of 2,5-Diaryl-1,3-oxazin-6-ones 6a-g from Isoxazolin-5-ones 2. General Procedure. The isoxazolin-5-one 2 (1 g) was dissolved in CH₂Cl₂ (80 mL) and then active MnO₂ (4 g) was added. After being stirred at room temperature for 15 min, the mixture was filtered on Celite 535. Triethylamine was added to the filtrate and the solution heated to reflux for 15 min. Workup as previously described afforded the oxazinones 6a-g. The oxazinones 6a-f were obtained in 80-85% yields. The oxazinone 6g was obtained only by this method.

Ring Opening of Oxazinones 6. Preparation of 2-Aryl-3-aminoprop-2-enoic Acids 7a-g. The 1,3-oxazin-6-one 6 (0.5

⁽⁵⁾ Eiden, F.; Nagar, B. S. Naturwissenschaften 1963, 50, 403.
(6) Boger, D. L. Tetrahedron 1983, 39, 2869.

⁽⁷⁾ Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121.

g) was dissolved in dioxane (15 mL) and then diluted HCl (4.5%, 5 mL) was added. The solution was heated to reflux for 5 min. The solvent was evaporated and water added (25 mL). Filtration, after cooling in ice for 10 min, gave pure acid 7 with quantitative yields.

Registry No. 1a, 17838-69-6; 1b, 33691-09-7; 1c, 91632-23-4; 1d, 29969-62-8; 1e, 62833-11-8; 1f, 91632-24-5; 1g, 91632-25-6; 1h, 91632-26-7; 2a, 17147-69-2; 2b, 91632-27-8; 2c, 91670-46-1; 2d, 91632-28-9; 2e, 91632-29-0; 2f, 91632-30-3; 2g, 91632-31-4; 2h, 91632-32-5; 3a, 91632-33-6; 3b, 91632-34-7; 3c, 91632-35-8; 3d, 91632-36-9; 3e, 91632-37-0; 3f, 91632-38-1; 4a, 91632-52-9; 4b, 91632-53-0; 4c, 91632-54-1; 4d, 91669-97-5; 4e, 91632-55-2; 4f, 91632-56-3; 5a, 91632-57-4; 5b, 91632-58-5; 5c, 91632-59-6; 5d, 91632-60-9; 5e, 91632-61-0; 5f, 91632-62-1; 6a, 91632-39-2; 6b, 91632-40-5; 6c, 91632-41-6; 6d, 91632-42-7; 6e, 91632-43-8; 6f, 91632-44-9; 6g, 91632-45-0; 7a, 91632-46-1; 7b, 91632-47-2; 7c, 91632-48-3; 7d, 91632-49-4; 7e, 91632-50-7; 7f, 91632-51-8; 7g, 91670-47-2; PhCH₂COOEt, 101-97-3; ClC₆H₄-4-CH₂COOEt, 14062-24-9; BrC₆H₄-4-CH₂COOEt, 14062-25-0; MeOC₆H₄-4-CH₂COOEt, 14062-18-1; MeC₆H₄-4-CH₂COOEt, 14062-19-2; MeC₆H₄-3-CH₂COOEt, 40061-55-0; MeC₆H₄-2-CH₂COOEt, 40291-39-2; HCOOEt, 109-94-4; HC(OEt)₃, 122-51-0; NH₂OH, 7803-49-8; H₂O₂, 7722-84-1; MnO₂, 1313-13-9; ethyl 2-pyridylacetate, 2739-98-2.

Optically Active Nitrogen Ligands. 1. Synthesis of Two Optically Active Monoalkyl-Substituted 2-(2'-Pyridyl)pyridines

C. Botteghi,* G. Caccia, G. Chelucci, and F. Soccolini

Istituto di Chimica Applicata, Università di Sassari, 07100 Sassari, Italy

Received April 21, 1983

Rhodium(I) and iridium(I) complexes with 2,2'-bipyridines are reported to display a remarkable catalytic activity toward the reduction of olefins and ketones both by molecular hydrogen and by H-transfer at room temperature and atmospheric pressure.¹⁻³

With the aim of making a new class of chiral complexes available and of investigating their effectiveness in asymmetric homogeneous catalysis, we undertook a study on a generalizable procedure to obtain optically active 2-(2'-pyridyl)pyridines (2,2'-bipyridines) with high optical purity. To our knowledge, no optically active title compounds have been reported in the literature so far; even monoalkyl-substituted 2,2'-bipyridines are very seldom described.4-6

In this paper the results obtained in the synthesis of (+)-(S)-2-(2'-pyridyl)-6-(1) and (+)-(S)-2-(2'-pyridyl)-4sec-butylpyridine (2) are presented.

The reaction sequence leading to 1 is shown in Scheme I. Starting with the readily accessible (+)-(S)-2-sec-butylpyridine⁷ (3) we obtained the key intermediate nitrile 5 by treatment of the N-oxide with dimethyl sulfate fol-

^a $[Co^{I}] = (\pi$ -Cyclopentadienyl)cobalt 1,5-cyclooctadiene.

lowed by reaction of the pyridinium compound 4 with potassium cyanide⁸ (Scheme I). The overall yield was 60%; as expected,⁸ the isomeric 2-sec-butyl-4-cyanopyridine (6) (Scheme I) was formed too: the ratio of the two isomers 5 and 6 was 70/30 (determined by GLC). Isomerically pure 5 was easily obtained by column chromatography on silica gel using benzene as the eluant.⁹ The yield of pure 5 was about 30% based on starting 3 (Scheme I).

The cyclization reaction with acetylene was carried out by using $(\pi$ -cyclopentadienyl)cobalt 1,5-cyclooctadiene as the catalytic precursor and toluene as the solvent following the procedure described by Bönneman and Brinkmann¹⁰ and produced the expected bipyridine 1 in about 80% yield free from other heterocyclic byproducts.

(+)-(S)-2-(2'-Pyridyl)-6-sec-butylpyridine (1) was isolated in about 25% overall yield based on starting 3 as a 99% pure oil, and its identity was confirmed by NMR and MS analysis (see Experimental Section).

For the preparation of the 2,2'-bipyridine 2, the crucial intermediate 1,5-dialdehyde (9) was easily provided by rhodium-catalyzed hydroformylation of (+)-(S)-1.1-diethoxy-3-sec-butyl-3-butene (8), prepared in turn with about 95% optical purity from (+)-(S)-sec-butylallylmagnesium chloride.¹¹ Compound 9 was converted into compound 10 by reaction with 2-lithiopyridine at -70 °C,^{12,13} followed by oxidation of the resulting pyridinecarbinol with activated MnO_2 at room temperature¹⁴ (Scheme II).

⁽¹⁾ Zassinovich, G.; Camus, A.; Mestroni, G. Inorg. Nucl. Chem. Lett. 1976. 12. 865.

⁽²⁾ Mestroni, G.; Zassinovich, G.; Camus, A. J. Organomet. Chem. 1977, 140, 63.

⁽³⁾ Zassinovich, G.; Mestroni, G.; Camus, A. J. Organomet. Chem. 1979, 168, 137.

⁽⁴⁾ Micetich, R. G. Abramovich, R. A. "Pyridine and its Derivatives"; Interscience: New York, 1974; Suppl. Part 2, p 373.

⁽⁵⁾ Schmalzl, K. J.; Summers, L. A. Austr. J. Chem. 1977, 30, 657.
(6) Newkome, G. R.; Puckett, W. E.; Kiefer, G. E.; Gupta, V. K.; Xia, Y.; Coreil, M.; Hackney, M. A. J. Org. Chem. 1982, 47, 4116.

⁽⁷⁾ Tatone, D.; Cong Dich, T.; Nacco, R.; Botteghi, C. J. Org. Chem. 1975. 40. 2987.

⁽⁸⁾ Feely, W. E.; Beavers, E. M. J. Am. Chem. Soc. 1959, 81, 4004. (9) An alternative experimental procedure can be followed for getting isomerically pure 1. Cyclization of the 70/30 mixture of cyanopyridines 5 and 6 under the usual conditions gives a mixture of bipyridines 1 and 7 (Scheme I) in 82% yield with practically identical composition. Column chromatography under the same conditions on the bipyridine mixture affords quite pure 1 in 22% yield based on starting 3. (10) Bönneman, H.; Brinkmann, R. Synthesis 1975, 600.

⁽¹¹⁾ Caccia, G.; Chelucci, G.; Botteghi, C. Synth. Commun. 1981, 11, 71

⁽¹²⁾ Wibaut, J. P.; Jonge, A. P.; van der Voort, H. C. P.; Otto, P. P. H. L. Recl. Trav. Chim. Pays-Bas 1951, 70, 1054.

⁽¹³⁾ Sperber, N.; Papa, D.; Schwenk, E.; Sherlock, N. J. Am. Chem. Soc. 1951, 73, 3856.