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ABSTRACT
e} key step: o\
H tethered aminohydroxylation o O
- - * <= dihydroxylation
) HoN “OH 14 steps
o) ' OH (-)-2  12% yield

commercially available

Stereoselective aminohydroxylation and dihydroxylation using osmium(VIil) oxidants enabled the short and efficient synthesis of the aminocycli

aminohydroxylation

tol

core of hygromycin A. In addition to allowing the selective introduction of the heteroatoms N and O, the use of osmium (via an osmate ester)
as a protecting group for a 1,2-glycol is also reported. This tactic allowed efficient differentiation of otherwise equivalent hydroxyl groups and
allowed us to complete the synthesis in short order (14 steps) and excellent overall yield (12%).

Hygromycin A 1 is an antibiotic first isolated from the
fermentation broth otreptomyces hygroscopicirs 1953
(Figure 1)! It was identified as having a broad spectrum of

A series of semisynthetic modifications fowere made
by a group from Pfizer in the mid-1990s and revealed that
the aminocyclitol was critical for the activity of the com-

activity against both Gram-positive and Gram-negative pound while the furanoside unit was rfot.

bacteria. Its mode of action is peptidyl transferase inhibition,

sharing a binding site on the ribosome with chlorampheriicol.
More recent studies ol have shown that it also has

hemagglutination inactivation activity, plus high antirepone-
mal activity3 This has led to renewed interest in hygromycin

A as a treatment for mucohemorrhagic diseases, the control

of which is of economic importance to farmers.
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Figure 1. Retrosynthesis of the aminocyclitol core of hygromycin
A.
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of intermediate8 was conveniently measured by HPLC).
However, our initial attempts to introduce the amino alcohol
functionality onto C-2/3 using the tethered aminohydroxy-
lation of carbamatd0 failed and returned staring material
{',n each case (protection of the free hydroxyl group did not
Improve the situation). Analysis of a model @&and 10 led

To date, there has been only one total synthesis of
hygromycin A, completed by Ogawa and co-workers in
1989° However, the aminocyclitol unit of the natural product
has also been prepared by Trost (en route to a synthesis o

C-2 epih in Af,and f | syntheti kh ;
epihygromycin A},and some formal synthetic work has us to postulate that the pseudoaxial nature of the carbamate

been published l?y_ Arjona. . L . within 10was responsible for the failure to oxidize the alkene
A short and efficient synthesis of the key inositol subunit unit 10

2 was envisaged that would test some directed oxidation
methodology developed within the group (Figure 1). Our
unigue approach would rely upon two key stereoselective
reactions: (i) the facially selective dihydroxylation of

|ntgrmed|ate8 anq (i) the regio- gnd stereqselectwe tethered imposing greater strain throughout the molecule while pulling
aminohydroxylation (TA) rea.cuon OT allylic carbamade the alcohol closer to a (more desirable) pseudoequatorial
~ Thus, the commercially available diketobeas converted  osition?! If the model predicted above is correct, this may
into masked cyclohexadierein two steps, 84% yield, and permit a TA reaction to occur.

98% ee (of known absolute configuration) following the  compoundd was reacted with NBS, forming bromoether

protocol of Ogasawara (Scheme®1). 11 in 93% vyield; after carbamate formatiod2), it was
Inversion of the alcohol under Mitsunobu conditions and possible to try the key oxidation again. Pleasingly, carbamate

ester hydrolysis furnishelans-diol 9 in good yield (the ee 12 reacted smoothly under modified TA conditiéhfurnish-

ing 13in 67% vyield (with 16% recovered starting material).
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Therefore, the conformation of the TA precursor was
altered by formation of a temporary bridge between the two
carbocyclic rings using an ether oxygen link (Scheme 2).
The ethereal linkage withirll acts as a “drawstring”,
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s The advantages of this reagent are (i) that the complex is

Scheme 3 very reactive; (ii) hydrogen bonding control with OgO
o o TMEDA is well established and so the correct stereoselec-
0sO,, TMEDA y o \/ tivity should ensue; (iii) the initial product of osmylation is
BnN -78°C, CH,Cl, B"ij.no\g /Nj a stable osmate estéthat could conceivably be used as a
Bno” > 100% Bno” "'o’gs\N protected form of the glycol.
16 1O 47 MO A The results in Scheme 3 show that this key dihydroxylation
of 16 worked as planned and furnished osmate ekfeas
(@) . . . . .
NaH, BnBr, DMF, TBAI, Yo the sole product in quantitative yield. Moreover, it was
then MeOH, H” BnN O || . possible to exploit the stability of osmate est@and use it
81% o Jij o0 \N] as a glycol protecting group: compourdd was easily
EBn °o A benzylated to giva.8 (which could be isolated if required),
18 and the reaction was quenched with acidic methanol to
Oﬁ—o release the osmium from the glycol and fot@ This two-
BN JOH  NaH, i DME step procedurele—19) solved all the problems of poor
i e Ji\j reactivity and stereo- and regioselectivity that had previously
BnO”™ Y~ "OH arisen.
19 OBn Finally, all that remained was formation of the methylene
acetal 20° (the stereochemistry of this fully protected
76&,\::9:':320 . aminocyclitol was confirmed by X-ray crystallograpfyand

then one-pot deprotection of the benzyl groups and oxazo-

N o lidinone under conditions reported by Trésthe data {H/
2 8

20 " > 13C NMR and specific rotation) for the final compoune)(2
HO” N "0 was a good match with that reported in the literature.
OH ()2 To conclude, a new synthesis of the key inositol portion

of hygromycin A is reported that proceeds in 14 steps and
12% overall yield; this represents the highest yielding route

Next, the OH and NH groups were benzyl protectbd) reported for this compound. The key reactions in this
the ether bridge removed (Zn, AcOH), and a retro Diels ~ sequence were the tethered aminohydroxylation reaction and
Alder reaction performed oh5to produce alken&6in good ~ directed dihydroxylation, both of which were completely
overall yield. stereoselective. Moreover, the novel idea of using an osmate

To complete the synthesis, a diastereoselective dihydroxy-€Ster as a protecting group for a 1,2-glycol is one that may
lation reaction ofl.6 was required, followed immediately by ~ find further use in organic synthesis.
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