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Laulimalide (1; Scheme 1) is a novel cancer-therapy agent
isolated from the marine sponges Hyattella sp. and Caco-
spongia mycofijiensis.[1] Initially, 1 received considerable
attention for its potent microtubulin-stabilizing profile, sim-
ilar to that of taxol with a potency against multidrug-resistant
cells at nanomolar concentrations.[2] Recently 1 received
additional attention because it seems to have a binding site
distinct from that of taxol at the tubulin polymers,[3a–c] which
opens up the possibility of using it together with taxol as an
enhanced treatment. Owing to its restricted natural supply
and unique 18-membered structure, 1 has attracted the
interest of synthetic organic chemists.[4] However, although
several elegant total syntheses have been reported,[5] a more
efficient and flexible synthesis is still required to provide
further derivatives for biological evaluation. In particular, the
3,6-dihydro[2H]pyran unit is important not only in the
synthesis of 1, but also as a principal component in many
biologically important marine natural products. Although
these two 3,6-dihydro[2H]pyran rings of 1 have been ele-
gantly constructed by olefin metathesis,[5a,c,e–h] hetero-Diels–
Alder reaction,[5b,d,f,g] and a few other protocols,[5b,g] we sought
a new and general synthetic method for the ring other than
the previous methods, thus prompting us to investigate the
synthesis of 1.

Herein, we describe the total synthesis of 1 as well as a
new preparation of the 3,6-dihydro[2H]pyran moiety based

on Pd-catalyzed stereospecific ring formation. As illustrated
in Scheme 1, the key reaction steps for our total synthesis of 1
involve the assembly of the two fragments 2 and 3 by Sakurai–
Hosomi coupling and Yamaguchi macrolactonization as well
as the stereospecific synthesis of two dihydropyran ring units
by 6-exo-trig and 6-endo-trig cyclizations.

The C17–C27 framework was readily prepared by
Horner–Wadsworth–Emmons reaction of 4 with 5, and
successive diastereoselective reduction by NaBH4 in the
presence of CeCl3 heptahydrate gave b-alcohol 6 in 56%
yield in two steps (Scheme 2).[6] Mitsunobu reaction of 6 with
benzoic acid gave a mixture of C21 and C23 a-benzoates 7a
and 7a’ in 81% yield as a 1:1 mixture with inversion of the
configuration by SN2 and SN2’ reactions. After cleavage of the
TBDPS group with TBAF (nBu4NF), the mixture of
regioisomers was subjected to Pd0-catalyzed intramolecular
O-allylation with [Pd2(dba)3] in the presence of neocuproine
to furnish the desired (S)-8 in 50% yield along with
unconverted C21 benzoate 7a in 44% yield.[7]

Scheme 1. Retrosynthetic analysis of (�)-laulimalide (1).
TBDMS= tert-butyldimethylsilyl ; PMB= p-methoxybenzyl; Bz =benzoyl.
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The results for the related Pd0- and PdII-catalyzed ring
formation of the C21 carbonates 9 and alcohols 10 are listed in
Table 1. The reaction of 9a and 9b with [Pd2(dba)3] proceeded
stereospecifically to give the syn-SN2’-reaction-type products
(S)-8 and (R)-8 in 59% and 43% yield, respectively, by the
net retention mechanism.[8] The reaction of 10a with [PdCl2-
(CH3CN)2] gave the desired pyran (S)-8 exclusively in 89%
yield.[9] On the other hand, the b-diastereomer 10b gave (R)-8
stereospecifically in 77% yield.

The 1,3 chirality transfer took place with retention of the
configuration by an internal syn-SN2’-type attack of the

oxygen nucleophile in an exo-trig fashion (Scheme 3). When
a Pd p-complex I is formed selectively on the same side of the
double bond as the hydroxy group, the oxygen nucleophile
attacks the olefinic carbon center from the Si face by a syn

addition and successive syn elimination of Pd(OH)Cl from
the resultant Pd s-complex to give (S)-8.[10] In contrast, when
the oxygen nucleophile attacks the olefinic carbon center of I
from the Re face by an anti addition, the diastereomer (R)-8 is
obtained.[11]

After cleavage of the acetonide of (S)-8, oxidation of the
diol with DDQ gave p-methoxybenzylidene acetal 11 in 77%
yield over the two steps (Scheme 4). Subsequently, silylation

of the C20 alcohol followed by reductive opening of the
benzylidene acetal gave the C17 alcohol.[12] Oxidation
of the primary alcohol to an aldehyde followed by a
Wittig reaction gave a,b-unsaturated ester 12 in 66%
yield over four steps. Reduction of the ester with
DIBAL-H and oxidation with Dess–Martin period-
inane afforded the desired aldehyde 2 in 92 % yield
over two steps. The product was identical to the
aldehyde reported by Nelson et al.[5g]

The synthesis of the C1–C14 carbon chain com-
menced from allylic alcohol 13 (Scheme 5).[13] The
routine three steps (silylation of the secondary alcohol,
osmylation of the double bond, and cleavage of the
diol) gave an aldehyde, which underwent Ni/Cr-pro-

Scheme 2. Preparation of the C17–C27 unit. Reagents and conditions:
a) K2CO3 THF/H2O (1:1), room temperature, 70%; b) NaBH4,
CeCl3·7H2O, MeOH, �78 8C!RT, 80%; c) DEAD, Ph3P, PhCOOH,
benzene, room temperature, 81%; d) TBAF, THF, room temperature,
86%; e) [Pd2(dba)3] (20 mol%), neocuproine, toluene, room tempera-
ture, 89 % (based on recovered 7a); f) K2CO3, MeOH, room tempera-
ture, 97 %; g) [PdCl2(CH3CN)2] (10 mol%), THF, 0 8C, 89%. DEAD=
diethyl azodicarboxylate; TBAF = tetra-n-butylammonium fluoride;
TBDPS= tert-butyldiphenylsilyl.

Table 1: Pd0- and PdII-catalyzed synthesis of (S)-8 and (R)-8.

Entry Compd. R1 R2 Catalyst 8 (S/R) Yield [%]

1 9a OCOOMe H [Pd2(dba)3]
[a] 100:0 59[b]

2 9b H OCOOMe [Pd2(dba)3]
[a] 0:100 43[b]

3 10a OH H [PdCl2(CH3CN)2]
[c] 100:0 89

4 10b H OH [PdCl2(CH3CN)2]
[c] 0:100 77

[a] Toluene, 80 8C. Neocuproine was used as a ligand. [b] Triene was produced as
a by-product. [c] THF, 0 8C.

Scheme 3. Synthesis of (S)-8 by syn-SN2’ reaction of 10a.

Scheme 4. Synthesis of 2. Reagents and conditions: a) HCl, MeOH,
room temperature, 89%; b) DDQ, molecular sieves (4 �), CH2Cl2, 0 8C,
87%; c) TBDMSCl, imidazole, DMF, room temperature, 90%;
d) DIBAL-H, CH2Cl2, �78 8C, 83%; e) DMP, 96%; f) Ph3PCHCOOMe,
benzene, room temperature, 92%; 12!2 : d) 98%; e) 94 %.
DDQ= 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; DMF= N,N-dime-
thylformamide; DIBAL-H= diisobutylaluminum hydride; DMP=Dess–
Martin periodinane.
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moted addition[14] with (E)-4-benzoyloxy-1-iodo-1-butene to
afford the allylic alcohols 14a and 14b as a mixture of
diastereomers in 73% yield over four steps. Dess–Martin
oxidation and enantioselective reduction of the enone with a
combination of BH3 and an (S)-oxazaborolidine ligand
(CBS)[15] at �40 8C gave 14a in 90% yield with high stereo-
selectivity (> 20:1). After removal of the TBDMS group, the
diol 15a was subjected to PdII-catalyzed ring formation in a 6-
endo-trig fashion to give the desired pyran (R)-16 exclusively
in 60% yield.[16]

As shown in Table 2, pyran (S)-16 was obtained from the
alcohol (S)-15b in 56% yield under the same reaction

conditions.[17] On the other hand, the Pd0-catalyzed
reaction of the corresponding carbonate did not
undergo cyclization and gave mainly a diene.

Interestingly, 6-endo-trig cyclization of 15a occurs
through a syn-SN2’ process to give the desired trans-(R)-
dihydropyran ring; in this case, the hydroxy group
attacks the Re face of the olefinic carbon atom
(Scheme 6).

As shown in Scheme 5, (R)-16 was converted into 17
in 64 % yield through the following five-step procedure:
1) deprotection of the terminal benzoate, 2) oxidation to
the aldehyde, 3) homologation of the aldehyde to the
1,1-dibromoalkene, 4) debromination with nBuLi
(2.4 equiv) and reaction of the generated lithioalkyne
with paraformaldehyde, and 5) protection of the resul-
tant alcohol with (tBuO)Ph2SiCl as an orthogonal
protecting group to TBDMS. The C12 PMB (p-methoxy-
benzyl) ether was transformed into a C14 allylsilane unit
in five steps. Deprotection of the PMB ether with DDQ,
oxidation to the aldehyde with Dess–Martin period-
inane, dibromoolefination with carbon tetrabromide

and triphenylphosphane gave 18 in 68% yield. The cross-
coupling of the 1,1-dibromo-1-alkene 18 with Me3SiCH2MgCl
catalyzed by 10 mol % Pd(OAc)2 in the presence of triphe-
nylphosphane gave the corresponding bis(trimethylsilylme-
thyl)alkene in 86% yield[18] which upon treatment with PPTS
as a weak acid underwent protodesilylation to provide exo
allylsilane 3 quantitatively.

Fragments 2 and 3 were assembled by Sakurai–Hosomi
reaction promoted by SnCl4 in 86% yield. Although the
reaction gave a mixture of diastereomeric alcohols, oxidation
of the alcohol to the enone with Dess–Martin periodinane and
enantioselective reduction of the enone with BH3 and (R)-

CBS[15] gave the desired alcohol (S)-19 in 79% yield as a
single diastereomer (Scheme 7). Silylation of the alcohol
and chemoselective cleavage of the (tBuO)Ph2Si ether with
K2CO3 in methanol gave propargyl alcohol in 88 % yield.
The C1 alcohol was converted into the seco acid in three
steps: oxidation of the propargyl alcohol, deprotection of
the PMB ether, and Kraus oxidation.[19] The seco acid 20[5h]

was obtained in 78% yield over the three steps. Yamaguchi
lactonization, deprotection of the two silyl ethers, and
partial reduction of the alkynyl group to the alkene afforded
desoxylaulimalide (21)[5c] in 68% yield over three steps.
Finally, Sharpless epoxidation with (+)-diisopropyl tartrate
gave (�)-laulimalide (1) in 80 % yield. All the physical and
spectroscopic data of 1, including specific rotation ([a]24

D =

�193 (c = 0.18, CHCl3)), are in perfect accord with those of

Scheme 5. Synthesis of 3. Reagents and conditions: a) TBDMSCl, imidazole, DMF,
room temperature, 97%; b) 1. OsO4 (cat.), NMO, THF/H2O (5:1), room temperature;
2. NaIO4, THF/H2O (5:1); 3. (E)-4-benzyloxy-1-iodo-1-butene, NiCl2/CrCl2 (cat.), DMSO,
room temperature, 75%; c) DMP, 91%; d) BH3·THF complex, (S)-CBS, THF, �40 8C,
99% (d.r.>97:3); e) TBAF, THF, room temperature, 85%; f) [PdCl2(CH3CN)2]
(15 mol%), benzoquinone, THF, �5 8C, 60%; g) K2CO3, MeOH, room temperature,
92%; h) DMP, 90%; i) CBr4, PPh3, CH2Cl2, 0 8C, 94%; j) nBuLi, THF, �78 8C; then
(HCHO)n, �78!0 8C, 83%; k) (OtBu)Ph2SiCl, Et3N, CH2Cl2, room temperature, 99%;
l) DDQ, CH2Cl2/buffer (pH 7) (10:1), room temperature, 87%; m) 1. DMP; 2. CBr4,
PPh3, CH2Cl2, 0 8C, 78%; n) Pd(OAc)2 (cat.), PPh3, Me3SiCH2MgCl, THF, 50 8C, 86%;
o) PPTS, THF/CH3CN (9:1), room temperature, 99%. NMO=N-methylmorpholine
N-oxide; DMSO = dimethyl sulfoxide; CBS= Corey–Bakshi–Shibata oxazaborolidine
reagent; PPTS = pyridinium toluene-p-sulfonate.

Table 2: PdII- and Pd0-catalyzed Synthesis of (R)-16 and (S)-16.

Entry Compd. R1 R2 Catalyst[a] 16 (R/S) Yield [%]

1 15a OH H [PdCl2(CH3CN)2] 100:0 60
2 15b H OH [PdCl2(CH3CN)2] 0:100 56
3 carbonate OCOOMe OH [Pd2(dba)3] – –[b]

[a] Pd catalyst (15 mol%) was used in the presence of benzoquinone.
[b] Diene was formed.

Scheme 6. Synthesis of (R)-16 by syn-SN2’ reaction of 15a.
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the natural product as well as those previously reported.[5a–c,h]

In conclusion, we have completed the asymmetric total
synthesis of (�)-laulimalide based on the novel PdII- and Pd0-
catalyzed stereospecific ring formation of a 3,6-dihydro[2H]-
pyran system. We believe that this method should be useful
for the synthesis of not only 1 but also of a variety of other
marine natural products that contain the 3,6-dihydro[2H]-
pyran unit.

Experimental Section
3,6-Dihydro[2H]pyran formation (representative reaction): A mix-
ture of 10 (1 mmol) and [PdCl2(CH3CN)2] (0.1 mmol) in THF
(10 mL) was stirred for 3 h at 0 8C. After concentration, the residue
was purified by chromatography on silica gel, eluted with EtOAc in
hexane (20%) to give (S)-8 as a colorless oil in 89% yield. Rf = 0.36
(20% EtOAc in hexane); [a]24

D =�61.8 (c = 0.11, MeOH); 1H NMR
(400 MHz, CDCl3): d = 1.40 (3 H, s), 1.40 (3H, s), 1.69 (3H, brs),
1.77–1.95 (3H, m), 1.99–2.08 (1 H, m), 3.51–3.63 (2H, m), 3.80 (3 H, s),
3.83 (1H, td, J = 8.2 and 4.0 Hz), 4.00–4.09 (2H, m), 4.11–4.22 (2 H,
m), 4.43 (2 H, s), 5.41 (1H, brs), 5.70 (1H, ddd, J = 15.6, 7.5, and
1.3 Hz), 5.87 (1H, ddd, J = 15.6, 5.4, and 0.5 Hz), 6.86 (2H, d, J =

8.8 Hz), 7.25 ppm (2H, d, J = 8.8 Hz); 13C NMR (100 MHz, CDCl3):
d = 22.9, 26.9, 27.2, 32.0, 35.6, 55.2, 65.6, 66.7, 72.6, 73.1, 77.8, 81.9,
108.6, 113.7, 119.6, 127.4, 129.2, 130.5, 131.3, 135.4, 159.1 ppm; IR
(neat): ñ = 1613, 1514 cm�1; MS (20 eV): m/z (%): 388 (0.4) [M+], 370
(1), 209 (6), 160 (10), 136 (36), 121 (100); HRMS (20 eV): calcd for
C23H32O5: 388.2250, found: 388.2251. (R)-8 : 77 % yield; its physical
and spectroscopic data is described in the Supporting Information.

Reaction of 15 : A mixture of 15 (3 mmol) and [PdCl2(CH3CN)2]
(0.45 mmol) in THF (60 mL) was stirred for 1 h at �5 8C. After
addition of benzoquinone (0.9 mmol), the mixture was stirred for
2 days at room temperature. The mixture was diluted with hexane
(70 mL), and NaBH4 (1 mmol) was added to decompose the
remaining benzoquinone. The standard workup and purification by
silica-gel column chromatography eluted with EtOAc in hexane
(10%) gave (R)-16 as a colorless oil in 60 % yield. Rf = 0.76 (30%
EtOAc in hexane); [a]24

D =�29.5 (c = 0.74, CHCl3); 1H NMR
(400 MHz, CDCl3): d = 0.97 (3H, d, J = 6.8 Hz), 1.23 (1H, ddd, J =
14.1, 9.5, and 3.5 Hz), 1.71 (1H, ddd, J = 14.1, 9.7, and 4.2 Hz), 1.89–
2.13 (5 H, m), 3.24 (1H, dd, J = 9.1 and 6.5 Hz), 3.33 (1H, dd, J = 9.1
and 6.0 Hz), 3.75–3.82 (1H, m), 3.79 (3H, s), 4.38–4.52 (3H, m), 4.43
(2H, s), 5.68–5.73 (1H, m), 5.82–5.88 (1H, m), 6.86 (2H, d, J =
6.8 Hz), 7.25 (2H, d, J = 8.6 Hz), 7.40–7.45 (2H, m), 7.52–7.57 (1 H,
m), 8.02–8.06 ppm (2H, m); 13C NMR (100 MHz, CDCl3): d = 16.8,
29.7, 31.3, 33.0, 39.4, 55.3, 61.9, 65.2, 69.2, 72.5, 75.9, 113.7, 124.8,
128.3, 129.0, 129.1, 129.6, 130.4, 130.9, 132.9, 159.0, 166.5 ppm; IR
(neat): ñ = 2955, 2930, 1716, 1613, 1513, 1276, 1249, 1112, 1036 cm�1;
MS (20 eV): m/z (%): 424 (2) [M+], 303 (2), 285 (3), 204 (11), 181 (44),
121 (100); HR-MS (20 eV): calcd for C26H32O5: 424.2250; found:
424.2249. (S)-16 : 56% yield; its physical and spectroscopic data is
described in the Supporting Information.
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