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A series of amide derived b3-adrenergic receptor (AR) agonists is described. The discovery and optimiza-
tion of several series of compounds derived from 1, is used to lay the SAR foundation for second gener-
ation b3-AR agonists for the treatment of overactive bladder.
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The b3-adrenergic receptor (b3-AR) was discovered in the early
1980s1 and is expressed in a variety of human tissues including
adipose, bladder detrusor, the heart, and the colon.2 As a result,
the b3-AR has been a drug target for several disease areas including
obesity, diabetes, IBS, and overactive bladder (OAB).3

L-796568 (1), developed in the late 1990s for the treatment of
obesity, is a potent and selective agonist of the b3-AR.4 Consistent
with many compounds of this ethanolamine class, 1 possesses low
oral bioavailability in preclinical species.5 Recently, mirabegron (2)
achieved proof-of-concept in humans for the treatment of overac-
tive bladder (OAB), and is currently in Phase III clinical trials.6

In our efforts to address some of the liabilities associated with
these first generation b3-AR agonists, a series of sulfonamide
replacements for 1 were evaluated. A library of over 500 amides
was synthesized in an effort to optimize human b3-AR agonist po-
tency, selectivity over b1-AR and b2-AR, and rodent pharmacoki-
netics in a short period of time.

A library of anilides was synthesized, according to Scheme 1,
from intermediate 3,7 to explore the SAR of the right side of the
molecule. Several analogs of 4 from this library are highlighted in
Table 1. Compound 17 showed excellent potency and good selec-
tivity, but general concerns for potential mutagenicity of aminoh-
eteroaromatic groups8 led to efforts to avoid the aminothiazole
moiety. Thiazole 16, benzopyrazole 11, and benzotriazole 12
showed good functional activity without this potentially muta-
ll rights reserved.
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genic functionality. Benzimidazole 8 also showed excellent po-
tency, but possessed no oral bioavailability in rodents. Phenyl
pyrimidinones 24 and 26 also demonstrate excellent b3-AR po-
tency, but possess no oral bioavailability. A comparison of the het-
erocyclic acetamides revealed that the pyrazole and thiazole
offered the most promise for further optimization. In addition,
benzamides such as 5 proved to be another potentially interesting
lead class. Each of these series was further optimized.

The acetamide linker displayed the best b3-AR agonist activity
with heterocyclic substitution in the initial screens, consistent
with a recent report from Astellas (Fig. 1).12 An examination of
acetamide SAR using the benzimidazole moiety as the heterocycle
substituent revealed that a methylene linker was optimal (Table 2).
Heterocycles directly linked to the carbonyl group (27) or with ex-
tended tethers (28 and 30) showed decreased b3-AR potency rela-
tive to the methylene linker (8). In addition, carbamate 29 showed
inferior activity relative to the amide linkers of similar tether
length. Based on these results, acetamide linkers were selected
for further analog optimization.

The SAR of pyrazole acetamide analogs of 4 is summarized in Ta-
ble 3. All benzopyrazoles (10, 11), although potent and selective over
b1- and b2-ARs, possess low (<5%) oral bioavailability. Removal of the
fused phenyl ring (33) led to decreased b3-AR agonist potency. The
addition of phenyl groups at the 4 and 5 positions of the pyrazole
ring increased potency (32 and 36). The addition of a methyl group
to the 3 position also improved b3-AR potency (34). Dimethyl analog
35 was both active and selective over b1-AR and b2-AR. This analog
also possesses improved oral bioavailability in rats (43%).
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Scheme 1. Synthesis of analogs 4.

Table 1
Comparison of b3-AR agonist activity and b1-AR and b2-AR binding affinity for anilide analogs of 4 and 19
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Compound b3 Agonist activity EC50
10 nM (% act) b1 Binding affinity IC50

11, lM b2 Binding affinity IC50
11, lM

1 3.6 (94) 2.3 2.3
5 297 (40) >20 >20
6 95 (61) >20 >20
7 225 (34) >10 3.0
8 8.8 (48) 6.0 >10
9 19 (94) >10 9.6

10 48 (97) 15 19
11 14 (67) >10 3.1
12 24 (73) 13 7.6
13 21 (70) 1.1 0.6
14 693 (81) >20 >20
15 22 (111) >20 >20
16 103 (87) >10 >10
17 6.8 (75) 8.7 8.3
18 174 (75) 1.7 1.5
19 74 (92) >10 >10
20 86 (73) 1.7 1.1
21 8.0 (98) >10 >10
22 171 (78) >20 >20
23 64 (77) 6.7 1.4
24 19 (96) >10 3.4
25 19 (103) >10 3.0
26 16 (75) 7.8 3.6
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Substitutions a to the amide carbonyl in the pyrazole series
were next explored. The addition of a methyl group at this position
gave a large boost in potency (37 and 38). Only one diastereomer
showed full b3-AR agonist activity (37) while the other appeared
to be a partial agonist (38).14 The dimethyl analog (39) was signif-
icantly less potent at b3-AR. Methylation a to the carbonyl of the
dimethyl pyrazole analog (40) also afforded a loss in potency, indi-
cating a possible steric interaction between the a-methyl group
and the pyrazole 2-methyl group.

The optimization of thiazole analogs is shown in Table 4. The
addition of an a methyl group to 17 improved b3-AR agonist po-
tency (41) but N-methyl derivatives of 17 lacked b3-AR agonist
activity (42). Replacement of the aminothiazole with a methyl thi-
azole (16) furnished a compound which retained some potency
and increased oral bioavailability for the first time in this series.
Phenyl substitution (18) showed decreased b1/2-AR selectivity
and no improvement in potency. The addition of a second methyl
group to 16 gave a compound with improved potency, selectivity
and rat PK profile (43).

Optimization of the benzamide series is described in Table 5.
Ortho substitutions led to compounds with moderate b3-AR agonist
activity (e.g. 44). Meta (45, 57–59) and para (46, 60) substitution,
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Figure 1. Merck’s L-796568 (1) and Astellas’ mirabegron (2).
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although showing potent EC50s, led to a loss in receptor activation
and a large increase in binding affinity at b1-AR. Several ortho
substituted benzamides were synthesized in an attempt to opti-
mize this series. Similar to the acetamide series, imidazole (49)
Table 3
Comparison of b3-AR agonist activity, b1-AR and b2-AR binding affinity, and rat PK profile
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Compound b3 Agonist activity EC50
10, nM (% act) b1/b2 Bind

31 261 (66) 0.6/16
32 580 (84) >20/>20
33 218 (64) >20/>20
34 241 (88) >20/>20
35 123 (92) >20/>20
36 498 (72) 3.6/>20
37 27 (98) >20/>20
38 10 (49) >20/>20
39 3768 (109) >20/>20
40 1404 (50) >20/>20

a ‘—’ indicates not tested; compounds were dosed as cassette mixtures.13

Table 2
Varying tethers and substitution to the benzimidazole9
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Compound X R b3 Agonist activity EC50
10, nM (% a

27 Bond H 283 (40)
8 –CH2– H 8.8 (48)
28 –(CH2)2– H 2647 (41)
29 –OCH2– H >10 k (11)
30 –(CH2)2– CH3 454 (60)
and benzimidazole (55) substitution improved potency but with
a detrimental effect on oral bioavailability in rats. Although
marked by high plasma clearance, simple extended tether substit-
uents (54, 56) also showed good potency but with bioavailabilities
of 9% and 15%, respectively. Extended tethered heterocycles, such
as pyrrole 53, mitigated the high clearance and improved the po-
tency. Simple heterocyclic substitutions not possessing an NH
functionality all showed good potency and PK profiles (47, 48).
Simple pyrrolidine 47 in particular showed b3-AR agonist activity,
lower clearance and improved bioavailability for this series. When
this pyrrolidine benzamide was additionally substituted at the
meta and para positions with a methyl group, compounds with
comparable potency and selectivity and improved oral bioavaila-
bilities were found (61 and 62).

In summary, the synthesis of a library of amides as sulfonamide
replacements on the right side of the ethanolamine core of 1 led to
the discovery of leads in three different classes.15 Pyrazole 37, thia-
zole 43, and benzamides 61 and 62 showed good potency, selectivity
and much improved pharmacokinetic profiles over previous analogs
from the sulfonamide series (e.g., 1). These compounds are the first
b3-AR agonist anilides in this series reported to possess oral bioava-
ilabilities in rats above 20% while possessing good selectivities over
s for select pyrazole derivatives9
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Table 4
Comparison of b3-AR agonist activity, b1 and b2 binding affinity, and PK profile for select thiazole derivatives9
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Compound R1 R2/R3 b3 Agonist activity EC50
10, nM (% act) b1/b2 Binding affinity IC50

11, lM Rat PK

Clp (mL/min/kg)/t1/2
a (h) Fa (%)

16 H H/Me 103 (87) >10/>10 11/1.4 15
41 Me H/NH2 1.9 (88) >20/>20 10/20 0
42 H H/NHMe 978 (39) 16/0.7 — —
43 H Me/Me 37 (86) >20/>20 51/1.6 32

a ‘—’ indicates not tested; compounds were dosed as cassette mixtures.13

Table 5
Comparison of b3-AR agonist activity, b1 and b2 binding affinity, and PK profile for select benzamide derivatives9
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11, lM Rat PK
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a (h) Fa (%)

44 a H/H 179 (76) >20/13 — —
45 H a/H 184 (52) 0.4/4.9 — —
46 H H/a 187 (32) 0.06/1.9 — —
47 b H/H 67 (86) 5.3/>20 58/1.3 9.6
48 c H/H 76.2 (88) >10/>10 39/1.6 7.5
49 d H/H 21 (115) >10/>10 30/14 0
50 e H/H 36 (94) >20/5.0 143/1.2 4.7
51 f H/H 42 (81) 3.0/6.0 158/1.5 7.5
52 g H/H 86 (86) >20/>20 — —
53 h H/H 24 (74) 6.9/12 75/1.6 6.4
54 i H/H 32 (74) 1.7/2.4 132/1.4 9.2
55 j H/H 35 (67) >10/1.7 106/3.2 0
56 k H/H 47 (66) 4.7/9.8 165/1.7 15
57 H n/H 6.9 (21) 0.6/>10 — —
58 H d/H 10 (21) 0.4/4.1 — —
59 H i/H 37 (21) 0.4/4.0 — —
60 H H/i 105 (30) 0.1/1.9 — —
61 b Me/H 73 (77) 15/12 74/1.8 24
62 b H/Me 76 (97) 16/19 33/2.3 12

R1, R2, and R3 are selected from the groups a–k.
a ’—’ indicates not tested; compounds were dosed as cassette mixtures.13
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b1-AR and b2-AR (up to 1000-fold). These compounds have provided
leads for further optimization of the ethanolamine core and have
established the SAR foundation for application to a second genera-
tion of b3-AR agonists. Further efforts to incorporate the SAR de-
scribed in this report into new structure classes and further
information of the optimal stereochemical configuration at the a-
methyl chiral center will be disclosed in future communications.
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