C–H Insertion by Alkylidene Carbenes To Form 1,2,3-Triazines and Anionic [3 + 2] Dipolar Cycloadditions To Form Tetrazoles: Crucial **Roles of Stereoelectronic and Steric Effects**

Fa-Jie Chen,[‡] Yongjia Lin,[†] Man Xu,[†] Yuanzhi Xia,^{*,†} Donald J. Wink,[‡] and Daesung Lee^{*,‡}

[†]College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China [‡]Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States

Supporting Information

ABSTRACT: The synthesis of 1,2,3-triazines and bicyclic tetrazoles from α -azido ketones is described. The common intermediate generated from lithiated trimethylsilyldiazomethane and α -azido ketones diverges depending on the steric bulk of the substituents. The formation of 1,2,3-triazines via a C-H insertion of alkylidene carbene to form 3-azidocyclopropene, followed by its rearrangement, is supported by density functional theory calculations. Tetrazole formation proceeds via a facile anionic [3 + 2] dipolar cycloaddition between a lithiated diazo moiety and an azido group facilitated by the chelation of a lithium ion.

Organic

Anionic [3 + 2] dipolar cycloaddition Me₃SiO Me₃SiO Me₃SiO R R = bulky quaternary substituent activated Alkylidene carbene C-H insertion

he reactivity of alkylidene carbenes has been exploited in various synthetic transformations (Scheme 1).¹ Most prototypic transformations of alkylidene carbenes are insertion reactions into C-H, N-H, O-H, and O-Si bonds to form five-membered carbo- and heterocycles (eq 1).² Alkylidene carbenes also undergo a 1,2-shift of a hydride or a π -functional group (alkene, arene, alkyne) to generate alkynes³ or participate in an addition reaction with alkenes to generate alkylidene cyclopropanes (eq 2).⁴ Also, the site-selective insertion into a bridgehead C-H bond relying on the conformation-dependent electronic effect of oxygen was exploited for the synthesis of the platensimycin skeleton (eq 3).^{2q} In the context of expanding the scope of alkylidenecarbene-mediated transformations,5 we have demonstrated that acyclic and cyclic ketones containing a heteroatom functional group at the α -position react with lithiated trimethylsilyldiazomethane (LTMSD) to generate the corresponding alkylidene carbenes, which showed unusual reactivity profiles depending on the nature of the α -substituent (eq 4).

In light of the crucial role of the α -substituent in steering the reactivity of the nearby alkylidene carbene moiety, we turned our attention to the alkylidene carbene containing an α -azido substituent. On the basis of the electron-donating nature of an azide functionality, the $n \rightarrow \sigma^*$ (C–H) hyperconjugation would activate the corresponding C-H bond toward α insertion by alkylidene carbene to generate cyclopropene A, which, because of its high ring strain, would spontaneously rearrange to form 1,2,3-triazine **B** (eq 5).⁷ On the contrary, the polar azido group can directly interact with the empty p orbital of the alkylidene carbene to form a six-membered ring zwitterion C, which ultimately generates 1,2,3-triazine B via the formation of the intermediate **D** and its 1,3-H shift (eq 6). In addition, we surmised that the steric bulk of the R substituent would further gear the carbenic carbon closer to the C–H bond via the bond angle (\angle) compression.⁸ To test these hypotheses, we systematically investigated the reactions of α -azido ketones, and herein we describe the formation of novel bicyclic tetrazoles and α -insertion to form azido cyclopropenes that rearrange to generate 1,2,3-triazines.

We commenced our exploration by comparing the reactivity of a pair of ketones with significantly different steric factors at the α -carbon. The initial reaction was carried out with α -azido ketone 1a (R = Ph)⁹ and LTMSD (THF, -78 °C to rt), which afforded 3a (22%) and 3a' (32%), whereas under identical conditions, ketone 1b (R = t-Bu) provided only bicyclic tetrazole 2b in 71% yield (Scheme 2). These results indicate that depending on the steric bulk of the R substituent, IN1 can directly cyclize to generate 2b, it survives until the reaction is quenched by a proton to generate 3a,⁶ or it undergoes the elimination of LiOSiMe3 to generate IN2, which then rearranges to propargyl azide 3a'.¹⁰

At this juncture, we reasoned that the steric bulk of the R substituent might promote the formation of 1,2,3-triazine 4 from IN2 by exerting the exo-Thorpe-Ingold effect.¹¹ Also, the increased steric bulk will facilitate the elimination of LiOSiMe₃ to generate alkylidene carbene IN2 more efficiently over cyclization product 2. With these hypotheses in mind, we

Received: December 18, 2019

Scheme 1. Representative Transformations of Alkylidene Carbenes

Scheme 2. Reactivity Dependency on a Steric Factor

explored various ketones 1 containing a quaternary carbon at the α' -position of α -azido ketones. It was found that intermediate **IN1** could remain in the reaction mixture, even at room temperature, but in most cases, it can cyclize to tetrazole¹² compound 2. With a narrow range of the structural space of the quaternary carbon-containing R substituent, eventually 1,2,3-triazine¹³ 4 could be generated.

Upon recognition of the crucial role of the steric effect in controlling the reaction pathways we decided to examine the steric effect of the alkyl substituent with α -azido ketones, with a systematic variation of the steric factors (Table 1). gem-Dimethyl-containing α -azido ketones 1b and 1c reacted with LTMSD smoothly and afforded tetrazoles 2b and 2c in 71 and 88% yield, respectively (entries 1 and 2). The structure of tetrazole 2c was confirmed by an X-ray crystallographic analysis. With 1d as the substrate, tetrazole 2d and homologated ketone 3d were obtained in 35 and 13% yield (entry 3) by running the reaction for 0.5 h, but only tetrazole 2d was obtained in 74% yield when the reaction was carried out for 3 h (entry 4). An alkyne at a remote position from the carbonyl group did not affect the formation of tetrazole, and

Table 1. Reactions of α -Azido Ketones Containing

^{*a*}Reaction conditions: trimethylsilyldiazomethane (1.2 equiv), *n*-BuLi (1.3 equiv), azido ketone 1 (1.0 equiv) in THF, under N_2 at -78 °C for 1 h, then at rt for x h. ^{*b*}Isolated yield.

thus **2e** was obtained in good yield (75%), although a relatively longer reaction time was required (entry 5). Surprisingly, substrate **1f** with an ester functionality at the α' -position provided product **3f** (69%), which is derived from the protonation of the diazo moiety, followed by the substitution of N₂⁺ with water (entry 6). Interestingly, when the *gem*dimethyl group in **1c** was replaced with a *gem*-diethyl (**1g**) and a *gem*-dipropyl group (**1h**), only triazines **4g** and **4h** were generated, both in 53% yield (entries 7 and 8). Similarly, diethylpropyl-containing substrate **1i** afforded triazine **4i** in slightly lower yield (41%) (entry 9). These outcomes suggest that the formation of tetrazole **2** and 1,2,3-triazine **4** highly depends on the steric effect of the substituent around the reaction center.

These results prompted us to further explore the reactivity and selectivity of other α -azido ketones containing cycloalkyl substituents (Table 2). A variety of α -azido ketones containing a cyclohexyl substituent provided tetrazoles in moderate to good yield. α -Azido ketones **1j** and **1k** containing an α -silyloxy group reacted with LTMSD to provide tetrazoles **2j** and **2k** in 80 and 94% yield, respectively (entries 1 and 2). Similarly,

Table 2. Reactions of α -Azido Ketones Containing Cycloalkyl Substituents^{α}

^{*a*}Reaction conditions: trimethylsilyldiazomethane (1.2 equiv), *n*-BuLi (1.3 equiv), azido ketone 1 (1.0 equiv) in THF, under N₂ at -78 °C for 1 h, then rt for 1 h. ^{*b*}Isolated yield. ^{*c*}2 h. ^{*d*}0.5 h. ^{*e*}60 °C, 16 h.

tetrazoles **21** and **2m** also were obtained in 66 and 62% yield, respectively (entries 3 and 4). Although seemingly not significantly different from the others in the series, only ketone **1n** containing a propyl group provided triazine **4n** in 31% yield along with tetrazole **2n** in 33% yield (entry 5). α -Azido ketone **1o** containing an adamantyl group afforded tetrazole **2o** in 86% yield (entry 6), whereas azido cyclopentyl-containing ketone **1p** mainly afforded **3p** (78%), a protonated product of the corresponding intermediate, along with triazine **4p** in 22% yield (entry 7). Also, structurally similar azido ketones **1q** and **1r** provided tetrazoles **2q** and **2r** in 70 and 69% yield (entries 8 and 9). A moderate yield of tetrazole **2s** was generated (58%) from cyclobutyl-containing substrate **1s** (entry 10). Adamantane-based α -silyloxy and α -alkoxy azido ketones **1t** and **1u** provided only triazines **4t** and **4u** in 42 and 44% yield, respectively, without forming the corresponding tetrazoles.

It was found that the α -azido group is crucial for the addition of LTMSD sterically hindered ketones (Scheme 3).

The corresponding ketones \mathbf{lt}' and \mathbf{lu}' are inert to LTMSD, and these ketones were recovered intact under identical conditions. For α -azido ketones, most likely the lithiumchelated ketone is more active toward the nucleophile, which can overcome the severe steric hindrance, whereas ketones \mathbf{lt}' and \mathbf{lu}' do not have this activating mechanism to compensate the steric hindrance.¹⁴ Furthermore, the α -azido group stabilizes the intermediate IN1 such that in most cases the elimination of LiOSiMe₃ from IN1 is relatively slow compared with the corresponding adduct lacking the azido group.

The effect of structural change was further examined. For example, α -azido ketone **1v** containing a quaternary center at the β -position generated only C–H insertion product **5v**, which is in equilibrium with an allylic transposed azide (Scheme 4). The additional methyl group in **1w** at the carbon

bearing an azide did not change its reactivity compared with **1**c, providing tetrazole **4w** as a 7:1 mixture of diastereomers. On the contrary, structurally similar ketones **1x** and **1y** only lead to the decomposition of the starting material. These results clearly indicate the importance of the right position and balance of the steric factors on the α, α' -carbons of the ketone for the formation of tetrazoles.¹⁵

To gain insight into the mechanism for the formation of bicyclic tetrazoles 2 and 1,2,3-triazines 4, density functional theory (DFT) calculations were carried out.¹⁶ For tetrazole formation, the initial adduct IN1 rearranges to IN2, which can undergo an anionic [3 + 2] dipolar cycloaddition^{6c,17} with a relatively low activation barrier (9.4 kcal/mol) via a lithiumion-chelated transition state TS2 (Figure 1). The initial cycloadduct IN3 then rearranges to a more stable aromatic form IN4, the protonation of which ultimately leads to

Figure 1. DFT-calculated reaction mechanism for the formation of tetrazole 2c.

tetrazoles 2. For the formation of 1,2,3-triazine 4, it is expected that two different mechanistic pathways are plausible, as shown in Scheme 1.¹⁸

The calculations show that the C–H insertion pathway from alkylidene carbine IN5 has a relatively low barrier via TS4 (3.5 kcal/mol) to generate azido cyclopropene IN6, which rearranges to 1,2,3-triazine 4 via TS5 (Figure 2). Although

Figure 2. DFT-calculated reaction mechanism for 1,2,3-triazine formation via the C–H insertion pathway.

the activation barrier for this rearrangement is relatively high (22.2 kcal/mol), in most cases, the triazine products formed at room temperature. Unexpectedly, the mechanism involving the interaction between the carbenic carbon and the terminal nitrogen of the azide to form a six-membered ring transition state **TS6** (17.2 kcal/mol) has much higher barrier, which only leads to fragmentation to form product **IN7**.

In conclusion, we have discovered unprecedented reactions to form 1,2,3-triazines via an azido cyclopropene intermediate, followed by its rearrangement, and bicyclic tetrazoles via an anionic $\begin{bmatrix} 3 + 2 \end{bmatrix}$ dipolar cycloaddition from a common intermediate derived from lithiated trimethylsilyldiazomethane and α -azido ketones. The selectivity and efficiency for these reactions crucially depend on the hypersensitive steric effect of the substituents on α -azido ketones. DFT calculations show that the formation of tetrazole is the consequence of a facile anionic [3 + 2] dipolar cycloaddition between a lithiated diazo moiety and an azido group, which is due to the chelation of a lithium ion with the nitrogen-based dipole and dipolarophile. DFT calculations also bolster that the formation of 1,2,3-triazines involves an initial C–H bond insertion by the alkylidene carbene at the carbon bearing an azido group to form 3-azidocyclopropenes, which subsequently rearrange to more stable 1,2,3-triazines. The generality of the anionically activated [3 + 2] dipolar cycloaddition of diazo-compound-based dipoles will be further investigated in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.9b04548.

Experimental procedures, characterization data, X-ray crystallographic data, and DFT calculations data (PDF)

Accession Codes

CCDC 1957606 and 1959780 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: dsunglee@uic.edu (D.L.). *E-mail: xyz@wzu.edu.cn (Y.X.). ORCID [©]

Fa-Jie Chen: 0000-0002-0421-3885 Yuanzhi Xia: 0000-0003-2459-3296 Donald J. Wink: 0000-0002-2475-2392 Daesung Lee: 0000-0003-3958-5475 Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF (CHE-1764141, D.L.) and the NSFC (21873074 and 21572163, Y.X.) for financial support. The Mass Spectrometry Laboratory at UIUC is acknowledged.

REFERENCES

(1) For recent reviews for alkylidene carbene chemistry, see: (a) Knorr, R. Alkylidenecarbenes, Alkylidenecarbenoids, and Competing Species: Which Is Responsible for Vinylic Nucleophilic Substitution, [1 + 2] Cycloadditions, 1,5-CH Insertions, and the Fritsch-Buttenberg-Wiechell Rearrangement? *Chem. Rev.* 2004, 104, 3795. (b) Grainger, R. S.; Munro, K. R. Recent Advances in Alkylidene Carbene Chemistry. *Tetrahedron* 2015, 71, 7795 and references cited therein.

(2) For alkylidene carbene insertion reactions, see: C-H insertion:
(a) Gilbert, J. C.; Giamalva, D. H.; Weerasooriya, U. Intramolecular Carbon-Hydrogen Insertions of Alkylidenecarbenes. I. Selectivity. J. Org. Chem. 1983, 48, 5251. (b) Gilbert, J. C.; Giamalva, D. H.; Baze, M. E. Intramolecular C-H Insertions of Alkylidenecarbenes. 2. Stereochemistry and Isotope Effects. J. Org. Chem. 1985, 50, 2557.

D

(c) Gilbert, J. C.; Blackburn, B. K. Formal 1,6-Insertion of an Alkylidenecarbene into a Carbon-Hydrogen Bond. Unveiling of a Stepwise Reaction Mechanism. Tetrahedron Lett. 1990, 31, 4727. (d) Ohira, S.; Okai, K.; Moritani, T. Generation of Alkylidenecarbenes by the Alkenylation of Carbonyl Compounds with Lithiotrimethyldiazomethane. J. Chem. Soc., Chem. Commun. 1992, 721. (e) Ohira, S.; Noda, I.; Mizobata, T.; Yamato, M. Synthesis of Tertiary Alcohol from Secondary Alcohol via Intramolecular C-H Insertion of Alkylidenecarbene. Tetrahedron Lett. 1995, 36, 3375. (f) Kosaka, T.; Bando, T.; Shishido, K. New Asymmetric Construction of the Benzylic Quaternary Stereogenic Center: an Enantiocontrolled Access to (-)- α -Cuparenone. Chem. Commun. 1997, 13, 1167. (g) Taber, D. F.; Christos, T. E. Improved Chemoselectivity in Intramolecular Alkylidene Carbene C-H Insertion. Tetrahedron Lett. 1997, 38, 4927. (h) Taber, D. F.; Yu, H. Synthesis of α -Necrodol: Unexpected Formation of a Cyclopropene. J. Org. Chem. 1997, 62, 1687. (i) Kitamura, T.; Tsuda, K.; Fujiwara, Y. Novel Heteroaromatic C-H Insertion of Alkylidenecarbenes. A New Entry to Furopyridine Synthesis. Tetrahedron Lett. 1998, 39, 5375. (j) Walker, L. F.; Connolly, S.; Wills, M. Synthesis of 2,5-Dihydrofurans via Alkylidene Carbene Insertion Reactions. Tetrahedron Lett. 1998, 39, 5273. (k) Taber, D. F.; Christos, T. E.; Neubert, T. D.; Batra, D. Cyclization of 1,1-Disubstituted Alkenes to Cyclopentenes. J. Org. Chem. 1999, 64, 9673. (l) Green, M. P.; Prodger, J. C.; Sherlock, A. E.; Hayes, C. J. A Convenient Method for 3-Pyrroline Synthesis. Org. Lett. 2001, 3, 3377. (m) Walker, L. F.; Bourghida, A.; Connolly, S.; Wills, M. Synthesis of 2,5-Dihydrofurans via Alkylidene Carbene Insertion Reactions. J. Chem. Soc., Perkin Trans. 1 2002, 7, 965. (n) Wardrop, D. J.; Zhang, W. Alkylidenecarbene Insertion at Anomeric C-H Bonds. Synthesis of 3-Deoxy-D-arabino-2-heptulosonic Acid (DAH) and 3-Deoxy-Dmanno-2-octulosonic Acid (KDO). Tetrahedron Lett. 2002, 43, 5389. (o) Hobley, G.; Stuttle, K.; Wills, M. Studies of Intramolecular Alkylidene Carbene Reactions: an Approach to Heterocyclic Nucleoside Bases. Tetrahedron 2003, 59, 4739. (p) Wardrop, D. J.; Bowen, E. G. A Formal Synthesis of (+)-Lactacystin. Chem. Commun. 2005, 5106. (q) Yun, S. Y.; Zheng, J.-C.; Lee, D. Stereoelectronic Effect for the Selectivity in C-H Insertion of Alkylidene Carbenes and Its Application to the Synthesis of Platensimycin. J. Am. Chem. Soc. 2009, 131, 8413. (r) Lee, S.; Lee, H.-Y. Construction of the ABC-Ring System of Delnudine through Free Radical Cyclization and Alkylidene Carbene CH Insertion. Bull. Korean Chem. Soc. 2010, 31, 557. (s) Munro, K. R.; Male, L.; Spencer, N.; Grainger, R. S. Diastereotopic Group Selectivity and Chemoselectivity of Alkylidene Carbene Reactions on 8-Oxabicyclo[3.2.1]oct-6-ene Ring Systems. Org. Biomol. Chem. 2013, 11, 6856. (t) Gholami, H.; Kulshrestha, A.; Favor, O. K.; Staples, R. J.; Borhan, B. Total synthesis of (-)-Salinosporamide A via a Late Stage C-H Insertion. Angew. Chem., Int. Ed. 2019, 58, 10110. N-H insertion: (u) Yagi, T.; Aoyama, T.; Shioiri, T. A New Two-Step Preparation of Pyrroles from β-Amino Ketones Utilizing Trimethylsilyldiazomethane. Synlett 1997, 1997, 1063. O-H and O-Si insertion: (v) Miwa, K.; Aoyama, T.; Shioiri, T. A New Synthesis of 5-Trimethylsilyl-2,3-dihydrofurans from β -Trimethylsiloxyketones Utilizing Trimethylsilyldiazomethane. Synlett 1994, 1994, 461.

(3) (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. Reactions of Dimethylphosphono-Substituted Diazoalkanes. $(MeO)_2P(O)CR$ Transfer to Olefins and 1, 3-Dipolar Additions of $(MeO)_2P(O)C(N_2)$ R. J. Org. Chem. 1971, 36, 1379. (b) Gilbert, J. C.; Weerasooriya, U. Diazoethenes: Their Attempted Synthesis from Aldehydes and Aromatic Ketones by Way of the Horner-Emmons Modification of the Wittig Reaction. A Facile Synthesis of Alkynes. J. Org. Chem. 1982, 47, 1837. (c) Miwa, K.; Aoyama, T.; Shioiri, T. Extension of the Colvin Rearrangement Using Trimethylsilyldiazomethane. A New Synthesis of Alkynes. Synlett 1994, 1994, 107. (d) Myers, A. G.; Goldberg, S. D. Synthesis of the Kedarcidin Core Structure by a Transannular Cyclization Pathway. Angew. Chem., Int. Ed. 2000, 39, 2732. (e) Fürstner, A.; Wuchrer, M. Concise Approach to the "Higher Sugar" Core of the Nucleoside Antibiotic Hikizimycin. Chem. - Eur. J.

2006, 12, 76. (f) Bichler, P.; Chalifoux, W. A.; Eisler, S.; Shi Shun, A. L. K.; Chernick, E. T.; Tykwinski, R. R. Mechanistic Aspects of Alkyne Migration in Alkylidene Carbenoid Rearrangements. *Org. Lett.* 2009, 11, 519. (g) Habrant, D.; Rauhala, V.; Koskinen, A. M. P. Conversion of Carbonyl Compounds to Alkynes: General Overview and Recent Developments. *Chem. Soc. Rev.* 2010, 39, 2007.

(4) (a) Berson, J. A.; Duncan, C. D.; Corwin, L. R. Relative Diylophylic Reactivities of Olefins toward a Trimethylenemethane. J. Am. Chem. Soc. 1974, 96, 6175. (b) Berson, J. A.; Corwin, L. R.; Davis, J. H. Mechanistic Separation of Singlet and Triplet Reactions of a Trimethylenemethane. Stereospecificity and Regiospecificity in the Cycloadditions of 2-Isopropylidenecyclopentane-1,3-diyl to Olefins. J. Am. Chem. Soc. 1974, 96, 6177. (c) Platz, M. S.; Berson, J. A. Absolute Rates of Triplet-Triplet Dimerization and Cycloaddition of Trimethylenemethane Biradicals. J. Am. Chem. Soc. 1976, 98, 6743. (d) Rule, M.; Mondo, J. A.; Berson, J. A. Synthesis and Thermolysis of 5-Alkylidenebicyclo[2.1.0]pentanes. Generation and Dimerization of Trimethylenemethane Triplet Biradicals by Bond Rupture of Strained Hydrocarbons. J. Am. Chem. Soc. 1982, 104, 2209. (e) Lazzara, M. G.; Harrison, J. J.; Rule, M.; Hilinski, E. F.; Berson, J. A. Observation of Two Characteristic Methylenecyclopropane Stereomutations in a System That Also Forms Trimethylenemethane Dimers. An Experimental Connection between Putative and Directly Observed Biradicals. J. Am. Chem. Soc. 1982, 104, 2233. (f) Salinaro, R. F.; Berson, J. A. Implication of A Common Trimethylenemethane Intermediate in Dimer Formation and Structural Methylenecyclopropane Rearrangement of a Bicyclo[3.1.0]hex-1-ene to a 5-Alkylidenebicyclo[2.1.0]pentane. J. Am. Chem. Soc. 1982, 104, 2228. (g) Ogawa, H.; Aoyama, T.; Shioiri, T. Lithium Trimethylsilyldiazomethane: A Convenient Reagent for the Preparation of Cyclohepta-[b]pyrrol-2-ones from N-Methylanilides of α -Keto Acids. Synlett 1994, 1994, 757. (h) Sakai, A.; Aoyama, T.; Shioiri, T. A New Preparation of Methylenecyclopropanes Utilizing Trimethylsilyldiazomethane. Tetrahedron 1999, 55, 3687. (i) Lee, H.-Y.; Kim, W.-Y.; Lee, S. Triquinanes from Linear Ketones via Trimethylenemethane Diyls. Tetrahedron Lett. 2007, 48, 1407. (j) Zheng, J.-C.; Liu, H.; Lee, N.-K.; Lee, D. Dimerization Behavior of Substituted Bicyclo [3.1.0]hex-1-ene Derivatives. Eur. J. Org. Chem. 2014, 2014, 506.

(5) Zheng, J.-C.; Yun, S. Y.; Sun, C.; Lee, N.-K.; Lee, D. Selectivity Control in Alkylidene Carbene-Mediated C-H Insertion and Allene Formation. J. Org. Chem. 2011, 76, 1086.

(6) (a) Shioiri, T.; Aoyama, T.; Snowden, T.; Lee, D.; Gupta, S. Trimethylsilyldiazomethane. In *Encyclopedia of Reagents for Organic Synthesis*; Wiley, 2006; pp 1–15. (b) Li, J.; Sun, C.; Lee, D. Cyclopropenation of Alkylidene Carbenes Derived from α -Silyl Ketones. *J. Am. Chem. Soc.* **2010**, *132*, 6640. (c) O'Connor, M. J.; Sun, C.; Guan, X.; Sabbasani, V. R.; Lee, D. Sequential 1,4-/1,2-Addition of Lithiumtrimethylsilydiazomethane onto Cyclic Enones to Induce C–C Fragmentation and N–Li Insertion. *Angew. Chem., Int. Ed.* **2016**, *55*, 2222. (d) Lee, D.; Gupta, S. Trimethylsilyldiazomethane (TMSCHN₂) in Carbon–Carbon and Carbon–Heteroatom Bond-Forming Reactions. *Aldrichimica Acta* **2018**, *51* (3), 77.

(7) For the rearrangement of azido cyclopropenes to triazines, see: (a) Chandross, E. A.; Smolinsky, G. The Rearrangement of 1-Azido-1,2,3-triphenylcyclopropene to 4,5,6-Triphenyl-v-triazine. *Tetrahedron Lett.* **1960**, *1*, 19. (b) Neunhoeffer, H.; Vötter, H.-D.; Ohl, H. 1.2.3-Triazine, I. *Chem. Ber.* **1972**, *105*, 3695. (c) Closs, G. L.; Harrison, A. M. Rearrangements, Pyrolysis, and Photolysis of Trimethylcyclopropenyl Azide. J. Org. Chem. **1972**, *37*, 1051.

(8) Gupta, S.; Lin, Y.; Xia, Y.; Wink, D. J.; Lee, D. Alder-ene Reactions Driven by High Steric Strain and Bond Angle Distortion to Form Benzocyclobutenes. *Chem. Sci.* **2019**, *10*, 2212.

(9) For the chemistry of α -azido ketones, see: Reviews: (a) Patonay, T.; Kónya, K.; Juhász-Tóth, É. Syntheses and Transformations of α -Azido Ketones and Related Derivatives. *Chem. Soc. Rev.* **2011**, 40, 2797. (b) Faiz, S.; Zahoor, A. F.; Rasool, N.; Yousaf, M.; Mansha, A.; Zia-Ul-Haq, M.; Jaafar, H. Z. E. Synthesis and Consecutive Reactions of α -Azido Ketones: A Review. *Molecules* **2015**, 20, 14699. Preparation: (c) Patonay, T.; Hoffman, R. V. A General and Efficient Synthesis of a-Azido Ketones. J. Org. Chem. 1994, 59, 2902. (d) Magnus, P.; Barth, L. Oxidative Addition of Azide Anion to Triisopropylsilyl Enol Ethers: Synthesis of *a*-Azido Ketones and 2-Amino(methoxycarbonyl)alk-2-en-1-ones. Tetrahedron 1995, 51, 11075. (e) Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. [Hydroxy(tosyloxy)iodo]benzene Mediated α -Azidation of Ketones. Molecules 2006, 11, 523. (f) Kamble, D. A.; Karabal, P. U.; Chouthaiwale, P. V.; Sudalai, A. NaIO4-NaN3-mediated diazidation of styrenes, alkenes, benzylic alcohols, and aryl ketones. Tetrahedron Lett. 2012, 53, 4195. Reaction: (g) Patonay, T.; Hoffman, R. V. Base-Promoted Reactions of α -Azido Ketones with Aldehydes and Ketones: A Novel Entry to α -Azido- β -hydroxy Ketones and 2,5-Dihydro-5-hydroxyoxazoles. J. Org. Chem. 1995, 60, 2368. (h) Majo, V. J.; Perumal, P. T. Intramolecular Cyclization of Azides by Iminium Species. A Novel Method for the Construction of Nitrogen Heterocycles under Vilsmeier Conditions. J. Org. Chem. 1998, 63, 7136. (i) Yang, T.; Fan, X.; Zhao, X.; Yu, W. Iron-Catalyzed Acyl Migration of Tertiary α -Azidyl Ketones: Synthetic Approach toward Enamides and Isoquinolones. Org. Lett. 2018, 20, 1875. (j) More, A. A.; Pathe, G. K.; Parida, K. N.; Maksymenko, S.; Lipisa, Y. B.; Szpilman, A. M. α -N-Heteroarylation and α -Azidation of Ketones via Enolonium Species. J. Org. Chem. 2018, 83, 2442.

(10) Liu, H.; Sun, C.; Lee, N.-K.; Henry, R. F.; Lee, D. New Methylene Homologation Method for Cyclic Ketones. *Chem. - Eur. J.* **2012**, *18*, 11889.

(11) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. CXIX.-The Formation and Stability of Spiro-Compounds. Part I. Spiro-Compounds from Cyclohexane. J. Chem. Soc., Trans. 1915, 107, 1080. (b) Jung, M. E.; Gervay, J. gem-Dialkyl Effect in the Intramolecular Diels-Alder Reaction of 2-Furfuryl Methyl Fumarates: The Reactive Rotamer Effect, the Enthalpic Basis for Acceleration, and Evidence for a Polar Transition State. J. Am. Chem. Soc. 1991, 113, 224. (c) Jung, M. E.; Piizzi, G. gem-Disubstituent Effect: Theoretical Basis and Synthetic Applications. Chem. Rev. 2005, 105, 1735. (d) Bachrach, S. M. The gem-Dimethyl Effect Revisited. J. Org. Chem. 2008, 73, 2466. For the exo-Thorpe Ingold effect, see: (e) Wang, K.-P.; Yun, S. Y.; Lee, D.; Wink, D. J. Structure and Reactivity of Alkyne-Chelated Ruthenium Alkylidene Complexes. J. Am. Chem. Soc. 2009, 131, 15114. (f) Sabbasani, V. R.; Gupta, S.; Yun, S. Y.; Lee, D. A General Approach for the Formation of Oxygen-Chelated Ruthenium Alkylidene Complexes Relying on the Thorpe-Ingold Effect. Org. Chem. Front. 2018, 5, 1532.

(12) For the chemistry of tetrazoles, see: (a) Benson, F. R. The Chemistry of the Tetrazoles. *Chem. Rev.* **1947**, *41*, 1. (b) Zhao, H.; Qu, Z.-R.; Ye, H.-Y.; Xiong, R.-G. In situ Hydrothermal Synthesis of Tetrazole Coordination Polymers with Interesting Physical Properties. *Chem. Soc. Rev.* **2008**, *37*, 84. (c) Neochoritis, C. G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. *Chem. Rev.* **2019**, *119*, 1970.

(13) For the chemistry of 1,2,3-triazines, see: (a) Ohsawa, A.; Itoh, T. 1,2,3-Triazines and their Benzo Derivatives. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon, 1996; Vol. 6, pp 483-505. (b) Aldabbagh, F. Bicyclic 5-6 Systems: Five Heteroatoms 2:3 or 3:2. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier Science, 2008; Vol. 10, pp 661-702. (c) Oliva, C. G.; Laza, P. G.; Ocariz, C. O. Six-Membered Heterocycles: Triazines, Tetrazines and Other Polyaza Systems. In Modern Heterocyclic Chemistry; Alvarez-Builla, J., Vaquero, J. J., Barluenga, J., Eds.; Wiley, 2011; Vol. 3, pp 1777-1864. (d) Anderson, E. D.; Boger, D. L. Inverse Electron Demand Diels-Alder Reactions of 1,2,3-Triazines: Pronounced Substituent Effects on Reactivity and Cycloaddition Scope. J. Am. Chem. Soc. 2011, 133, 12285. (e) Anderson, E. D.; Boger, D. L. Scope of the Inverse Electron Demand Diels-Alder Reactions of 1,2,3-Triazine. Org. Lett. 2011, 13, 2492. (f) Kumar, R.; Singh, A. D.; Singh, J.; Singh, H.; Roy, R. K.; Chaudhary, A. 1,2,3-Triazine Scaffold as a Potent Biologically Active Moiety: A Mini Review. Mini-Rev. Med. Chem. 2014, 14, 72. (g) Prokhorov, A. M.; Prokhorova, P. E. Triazines and Tetrazines.

In Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds.; Elsevier, 2015; Vol. 27, pp 451–464. (h) Glinkerman, C. M.; Boger, D. L. Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis. Org. Lett. 2015, 17, 4002. (i) Sugimura, H.; Takeuchi, R.; Ichikawa, S.; Nagayama, E.; Sasaki, I. Synthesis of 1,2,3-Triazines Using the Base-Mediated Cyclization of (Z)-2,4-Diazido-2-alkenoates. Org. Lett. 2018, 20, 3434.

(14) For the directing effect of an azido group in lithiation, see: Ageshina, A. A.; Chesnokov, G. A.; Topchiy, M. A.; Alabugin, I. V.; Nechaev, M. S.; Asachenko, A. F. Making *endo*-Cyclizations Favorable Again: A Conceptually New Synthetic Approach to Benzotriazoles via Azide Group Directed Lithiation/Cyclization of 2-Azidoaryl Bromides. *Org. Biomol. Chem.* **2019**, *17*, 4523.

(15) For the synthesis of tetrazoles via a [3 + 2] dipolar cycloaddition, see: (a) Duncia, J. V.; Pierce, M. E.; Santella, J. B., III Three Synthetic Routes to a Sterically Hindered Tetrazole. A New One-Step Mild Conversion of an Amide into a Tetrazole. J. Org. Chem. 1991, 56, 2395. (b) Himo, F.; Demko, Z. P.; Noodleman, L. Density Functional Theory Study of the Intramolecular [2 + 3] Cycloaddition of Azide to Nitriles. J. Org. Chem. 2003, 68, 9076. (c) Majumder, S.; Bhuyan, P. J. An Efficient One-Pot, Three-Component Reaction: Synthesis of Complex-Annelated α -Carbolines via an Intramolecular [3 + 2]-Dipolar Cycloaddition Reaction. Synlett 2011, 2011, 1547. (d) Merling, E.; Lamm, V.; Geib, S. J.; Lacôte, E.; Curran, D. P. [3 + 2]-Dipolar Cycloaddition Reactions of an N-Heterocyclic Carbene Boryl Azide. Org. Lett. 2012, 14, 2690.

(16) All calculations were done at the SMD/M06/6-31+G(d) level of theory.

(17) For anionic [3 + 2] dipolar cycloaddition, see: (a) Ito, T.; Hatano, K.; Kurono, Y.; Aoyama, T.; Shioiri, T. Reaction of Lithum Trimethylsilydiazomethane with β -Amino- α , β -Unsaturated Ketones. Heterocycles 1993, 35, 41. (b) Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Base-Mediated Reaction of the Bestmann-Ohira Reagent with Nitroalkenes for the Regioselective Synthesis of Phosphonylpyrazoles. Org. Lett. 2007, 9, 1125. (c) Deng, X.; Mani, N. S. Base-Mediated Reaction of Hydrazones and Nitroolefins with a Reversed Regioselectivity: A Novel Synthesis of 1,3,4-Trisubstituted Pyrazoles. Org. Lett. 2008, 10, 1307. (d) Muruganantham, R.; Namboothiri, I. Phosphonylpyrazoles from Bestmann-Ohira Reagent and Nitroalkenes: Synthesis and Dynamic NMR Studies. J. Org. Chem. 2010, 75, 2197. (e) Mohanan, K.; Martin, A. R.; Toupet, L.; Smietana, M.; Vasseur, J.-J. Three-Component Reaction Using the Bestmann-Ohira Reagent: A Regioselective Synthesis of Phosphonyl Pyrazole Rings. Angew. Chem., Int. Ed. 2010, 49, 3196. (f) O'Connor, M. J.; Sun, C.; Lee, D. Synthesis of the Amathaspiramides via Aminocyanation of Enoates. Angew. Chem., Int. Ed. 2015, 54, 9963. (g) Sun, C.; Lee, H.; Lee, D. Synthesis of the Carbocyclic Core of Massadine. Org. Lett. 2015, 17, 5348.

(18) One reviewer suggested the 6-endo mode cyclization of **IN1** as an alternative mechanism for the formation of triazine; however, DFT calculations showed that this pathway is much more unfavorable with activation barriers of ca. 25-28 kcal/mol, ruling out the 6-endo mode of cyclization as a viable pathway as compared with the energies in Figure 2.

R = Me, 25.6 kcal/mol; R = Et, 27.6 kcal/mol