

Organic Preparations and Procedures International

The New Journal for Organic Synthesis

ISSN: 0030-4948 (Print) 1945-5453 (Online) Journal homepage: https://www.tandfonline.com/loi/uopp20

Synthesis of Quinolines, Spiro[4H-pyran-oxindoles] and Xanthenes Under Solvent-Free Conditions

Farzaneh Mohamadpour, Malek Taher Maghsoodlou, Mojtaba Lashkari, Reza Heydari & Nourallah Hazeri

To cite this article: Farzaneh Mohamadpour, Malek Taher Maghsoodlou, Mojtaba Lashkari, Reza Heydari & Nourallah Hazeri (2019): Synthesis of Quinolines, Spiro[4H-pyran-oxindoles] and Xanthenes Under Solvent-Free Conditions, Organic Preparations and Procedures International, DOI: 10.1080/00304948.2019.1653126

To link to this article: https://doi.org/10.1080/00304948.2019.1653126

Published online: 19 Aug 2019.

Submit your article to this journal 🕑

View related articles 🗹

🌔 View Crossmark data 🗹

Synthesis of Quinolines, Spiro[4*H*-pyran-oxindoles] and Xanthenes Under Solvent-Free Conditions

Farzaneh Mohamadpour,¹ Malek Taher Maghsoodlou,¹ Mojtaba Lashkari,² Reza Heydari,¹ and Nourallah Hazeri¹

¹Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P. O. Box 98135-674, Zahedan, Iran ²Faculty of Science, Velavat University, Iranshahr, Iran

Green multi-component domino reactions (MCRs)^{1–7} for the synthesis of fine chemicals have attracted much recent interest.^{8–9} Quinolines, spiro[4*H*-pyran-oxindoles] and xanthenes are reported as having a wide range of medicinal properties.^{10–17} Quinolines are found to undergo hierarchical self assembly into a variety of nano-structures and meso structures with enhanced electronic and photonic functions.¹⁸ Xanthenes have been widely used as pH sensitive fluorescent materials for visualization of biomolecules,¹⁹ laser technology,²⁰ luminescent dyes²¹ and sensitizers in photodynamic therapy.²² (*Figure 1*).

A number of methodologies for preparation of these compounds have been reported that include such catalysts as $Fe_3O_4@SiO_2$ -imid-PMAn,²³ SBNPTT,²⁴ NO₂-FePc/C,²⁵ nano-alumina sulfuric acid²⁶ and many others.²⁷⁻⁵⁵ However, some of these methods suffer from such disadvantages as low yields, long reaction times, harsh reaction conditions, tedious work-up or excess amounts of reagents or catalysts. As part of our ongoing research program on the development of green methodologies, we now report a clean and facile one-pot synthesis of polysubstituted quinolines,⁵⁶ spiro[4*H*-pyran] derivatives, 12-aryl-tetra-hydrobenzo[α]xanthene-11-ones and 14-aryl-14*H*-dibenzo[α ,*j*]xanthenes, in the presence of catalytic amounts of citric acid under solvent-free conditions.

Initial screening studies confirmed that the solvent-free technique is optimal for the preparation of quinolines **3a-g** (*Scheme 1, Table 1*). Thus, the cyclocondensation of 2-aminobenzophenone (1.0 mmol) and dimedone (1.0 mmol) was carried out with citric acid (15 mol %) as catalyst at 90 °C for 15 min under solvent-free conditions to give a yield of 92% (*Table 1*, Entry 4). The efficiency of citric acid was demonstrated by synthesizing a variety of polysubstituted quinolines at 90 °C under solvent-free conditions, as shown in *Table 2*.

We explored citric acid as an environmentally friendly catalyst for the synthesis of spiro[4*H*-pyran-oxindoles] through the coupling of isatin/acenaphthequinone (4, 1.0 mmol), malononitrile (5, 1.0 mmol) and 1,3-dicarbonyl compounds (6, 1.0 mmol). Isatin, malononitrile and dimedone were selected as the model substrates and reacted with different experimental variants (*Scheme 2*). The results are summarized in *Table 3*.

Received September 4, 2018; in final form March 18, 2019.

Address correspondence to Malek Taher Maghsoodlou, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran. E-mail: mt_maghsoodlou@yahoo.com; mt_maghsoodlou@chem.usb.ac.ir

Dye Sensitizers for Photodynamic Therapy

Antiviral therapy using xanthene dyes

Figure 1. Pharmaceutically active compounds with quinoline, spirocyclic oxindole and xanthene units.

Scheme 1. Synthesis of polysubstituted quinolines.

The condensation of isatin, malononitrile and dimedone was best catalyzed by 20 mol % citric acid at 80 °C (*Table 3*, entry 5). In the absence of catalyst only a trace of product was observed (*Table 3*, entry 1). To ascertain the scope and limitation of the present protocol, a number of reactions were examined, and the results are summarized in *Table 4*. We were pleased to find that all substrates were converted to the corresponding products in good to excellent yields (82-93%).

	Optimization of the F	Reaction Conditions for t	he Synthesis	of 3a ^{<i>a</i>}
	O Ph + NH ₂ O			Ph O
_	Citric acid		Time	Isolated
Entry	(mol %)	Temperature (°C)	(min)	Yields (%)
1	Catalyst free	90	420	No product
2	5	90	40	58
3	10	90	25	74
4	15	90	15	92
5	15	rt	420	trace
6	15	40	55	36
7	15	60	35	67
8	15	80	25	83
9	15	100	15	92
10	20	90	15	94

Table 1

We were further interested in the preparation of 12-aryl-tetrahydroben $zo[\alpha]$ xanthene-11-ones and the influence of a catalytic amount of citric acid on this type of reaction (Scheme 3). To obtain the optimized reaction conditions, the condensation of β -naphthol (1.0 mmol), benzaldehyde (1.0 mmol) and dimedone (1.0 mmol) was selected as a model. This reaction gave the desired 12-(phenyl)-9,9-dimethyl-8,9,10,12tetrahydrobenzo $[\alpha]$ xanthene-11-one and was studied in the presence of different molar ratios of citric acid at rt-90 °C under solvent-free conditions; the respective results are summarized in Table 5. The best results were obtained when the reaction was carried out using 20 mol % of the catalyst at 80 °C (Table 5, entry 5). To assess the efficiency and generality of the catalyst, β -naphthol (8, 1.0 mmol) was reacted with aromatic aldehyde derivatives (9, 1.0 mmol) and dimedone (10, 1.0 mmol). The results are displayed in Table 6. As Table 6 indicates, aldehydes with both electron-donating substituents and electron-attracting substituents rings afforded the desired products in high yields and short reaction times.

We were also interested in the preparation of 14-aryl-14*H*- dibenzo[α ,*j*]xanthenes from the reaction between β -naphthol (8, 2.0 mmol) and aromatic aldehyde derivatives (9, 1.0 mmol) in the present of citric acid under thermal and solvent-free conditions (Scheme 4). For optimization of the reaction conditions, the reaction of β -naphthol (2.0 mmol) and benzaldehyde (1.0 mmol) was chosen as the model, carried out in the presence of different catalytic amounts of citric acid and at various temperatures. The best result was obtained for the reaction of 2.0 mmol of β -naphthol with 1.0 mmol of benzaldehyde in the presence of 20 mol % citric acid at 80 °C, which gave 14-phenyl-14*H*-dibenzo $[\alpha, j]$ xanthene in 95% yield after 10 min (*Table 7*, entry 5). The model reaction was performed in the absence of catalyst, which led to only a trace of product after

^aReaction conditions: 2-aminobenzophenone (1, 1.0 mmol), carbonyl compound (2, 1.0 mmol) and citric acid heated at specified various temperatures for the times listed.

			Time	Isolated Vields		I it
Entry	Ketone/Ketoester	Product	(min)	(%)	Mp°C	Mp°C ^{ref}
1		Ph O N 3a	15	92	191-193	192-194 ²⁷
2	0	Ph O N 3b	10	93	155-157	157-159 ²³
3	° (Ph N 3c	15	89	154-156	153-154 ²⁷
4		Ph N 3d	15	87	128-130	129-131 ²⁷
5	O O OEt	Ph O OEt N 3e	15	91	99-101	98-99 ²³
6	OMe	Ph O OMe 3f	15	94	105-107	107-108 ²³
7		Ph O N 3g	10	92	114-116	113-114 ²³

 Table 2

 Citric Acid Catalyzed Synthesis of Polysubstituted Quinolines

7 hours. Different aldehydes and β -naphthol were reacted under the optimized reaction conditions to afford the corresponding products (*Scheme 4*, *Table 8*, entries 1-13). As shown in *Table 8*, both electron-donating and electron-withdrawing substituents in the benzaldehydes satisfactorily reacted with β -naphthol in good to excellent yields.

Comparisons of catalytic abilities reported in the literature for the synthesis of polysubstituted quinolines, spiro[4*H*-pyran-oxindoles], 12-aryl-tetrahydrobenzo[α]xanthene-11ones and 14-aryl-14*H*-dibenzo[α ,*j*]xanthenes are shown in *Tables 9*, *10*, *11* and *12*.

Scheme 2. Synthesis of spiro[4H-pyran-oxindoles].

Opti	mization of the Re	eaction Conditions for	or the Synthesi	s of $7a^{a}$
	+ CN CN	+		O NH2 NO H
Entry	Citric acid (mol %)	Temperature (°C)	Time (min)	Isolated Yields (%)
1	Catalyst free	80	420	trace
2	5	80	75	63
3	10	80	65	76
4	15	80	50	94
5	20	80	40	91
6	20	rt	420	trace
7	20	40	70	35
8	20	60	55	57
9	20	70	45	76
10	20	90	10	93
11	25	80	40	92

Table 3Optimization of the Reaction Conditions for the Synthesis of $7a^a$

^aReaction conditions: isatin (4, 1.0mmol); malononitrile (5, 1.0mmol), dimedone (6, 1.0mmol) and citric acid heated at specified temperatures for the appropriate times.

In summary, a green synthetic route to the facile preparation of polysubstituted quinolines, spiro[4*H*-pyran-oxindoles], 12-aryl-tetrahydrobenzo[α]xanthene-11-ones and 14-aryl-14*H*-dibenzo[α ,*j*]xanthenes has been developed using citric acid as a catalyst under solvent-free reaction conditions. All reactions are completed in a short period of time and the products are obtained in good to excellent yields. The salient features of this green approach are easy work-up, the absence of organic solvents and the use of a readily available green catalyst.

	Lit. Mp°C ^{ref}	$Mp > 300^{40}$	289-291 ⁴⁰	283-285 ⁴⁰
	$Mp^{\circ}C$	298-300	289-291	284-286
[s:	Yields (%)	91	87	85
ran-oxindole	Time (min)	40	45	55
Table 4 talyzed Synthesis of Spiro[4H-p)	Product	of one of the second se	cl O	7b HH ₂ HH ₂ CN H ₂ CN CN H ₂ CN CN H ₂ CN CN CN H ₂ CN CN CN CN CN CN CN CN CN CN CN CN CN
Citric Acid Ca	6	\sim	\sim	HOOO
	4	O H H	CI C	O NH
	Entry	-	0	ç

Maghsoodlou et al.

Ś

9

~

HO

4

Maghsoodlou et al.

Scheme 3. Synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11-ones.

Table 5Optimization of the Reaction Conditions for the Synthesis of $11a^a$

• +	H O		
-----	-----	--	--

Entry	Citric acid (mol %)	Temperature (°C)	Time (min)	Isolated Yields (%)
1	Catalyst free	80	420	trace
2	5	80	45	49
3	10	80	35	65
4	15	80	20	81
5	20	80	10	93
6	20	rt	420	trace
7	20	40	55	37
8	20	60	45	59
9	20	70	20	74
10	20	90	10	93
11	25	80	10	92

^{*a*}Reaction conditions: β -naphthol (8, 1.0 mmol), benzaldehyde (9, 1.0 mmol), dimedone (10, 1.0 mmol) and citric acid heated at specified temperatures for the appropriate times.

Experimental Section

Melting points of all compounds were determined using an Electro thermal 9100 apparatus and are uncorrected ¹H NMR spectra were recorded on a Bruker DRX-400 Avance instrument with $CDCl_3$ or DMSO-d₆ as solvents. All reagents and solvents were

Entry	Aldehyde	Product	Time (min)	Yields (%)	Mp°C	Lit. Mp°C ^{ref}
1	O H		10	93	148-150	148-150 ⁴³
2	Br	Br 0 11b	25	84	182-184	184-186 ⁴³
3	Br OH	Br O O IIc	25	85	163-165	161-164 ⁴⁴
4	NO ₂		15	94	177-179	175-178 ⁴⁴
5	NO ₂		15	95	165-167	167-169 ⁴⁵
6	OMe OH	OMe OMe OMe IIf	20	87	204-206	202-204 ⁴³

Table 6
Citric Acid Catalyzed Synthesis of 12-aryl-tetrahydrobenzo[a]xanthene-11-ones

(Continued)

Table 6

		(Continued).				
Entry	Aldehyde	Product	Time (min)	Yields (%)	Mp°C	Lit. Mp°C ^{ref}
7	O H	OMe 0 11g	20	90	205-207	204-205 ⁴⁶
8	CI		25	86	175-177	176-178 ⁴³
9	CI OH		25	87	180-182	179-180 ⁴⁷
10	F O H	F O O IIj	10	96	182-184	184-185 ⁴⁵
11	Me O H	Me 0 11k	10	94	172-174	171-173 ⁴³

purchased from Merck, Fluka and Acros chemical companies and were used without further purification. TLC was done on silica gel plates, using solvents specified in individual procedures.

Scheme 4. Synthesis of 14-aryl-14*H*-dibenzo[α,j]xanthenes.

Optimization of the Reaction Conditions for the Synthesis of 12a				
+ OH	+	но —		
	Citric acid		Time	Isolated
Entry	(mol %)	Temperature (°C)	(min)	Yields (%)
1	Catalyst free	80	420	trace
2	5	80	50	47
3	10	80	35	68
4	15	80	15	83
5	20	80	10	95
6	20	rt	420	trace
7	20	40	55	51
8	20	60	30	67
9	20	70	20	79
10	20	90	10	94
11	25	80	10	95

Table 7Optimization of the Reaction Conditions for the Synthesis of $12a^a$

^{*a*}Reaction conditions: β -naphthol (8, 2.0 mmol), benzaldehyde (9, 1.0 mmol) and citric acid heated at specified temperatures for the appropriate times.

General Procedures for Preparation of Polysubstituted Quinolines, Spiro[4Hpyran-oxindoles], 12-aryl-tetrahydrobenzo[α]xanthene-11-ones and 14-aryl-14Hdibenzo[α ,j]xanthenes

Synthesis of polysubstituted quinolines (3): A mixture of 2-aminobenzophenone (1, 1.0 mmol), ketone/ketoester (2, 1.0 mmol) and citric acid (15 mol %) was heated at 90 °C for the appropriate time. After completion of the reaction (TLC using ethylacetate/n-hexane

Table 8	
Citric Acid Catalyzed Synthesis of 14-aryl-14 <i>H</i> -dibenzo[α , <i>j</i>]xanthenes	

Entry	Aldehyde	Product	Time (min)	Yields (%)	Mp°C	Lit. Mp°C ^{ref}
1	O H		10	95	182-184	183-184 ⁵¹
2	Br O H	Br	20	87	295-297	297-298 ⁴³
3	Br OH	Br Br 12c	20	88	190-192	191-193 ⁴⁵
L	NO ₂		10	91	306-308	308-309 ⁵²
i	NO ₂ OH		10	93	213-215	212-213 ⁵²
5	NO ₂ OH		10	93	211-213	213-214 ⁵²

Table 8 (Continued).						
Entry	Aldehyde	Product	Time (min)	Yields (%)	Mp°C	Lit. Mp°C ^{ref}
7	OMe OH	OMe OMe I2g	15	89	204-206	204-205 ⁴³
8	OMe OH	OMe OMe 12h	10	90	171-173	172-173 ⁵²
9	O H		20	86	290-292	289-290 ⁵¹
10	CI O H		20	89	213-215	212-213 ⁵¹
11	F O H	F 12k 12k	10	94	241-243	240-242 ⁵³
12	Me O H	Me 121	10	92	226-228	227-228 ⁴³

(Continued)

Table 8 (Continued).						
Entry	Aldehyde	Product	Time (min)	Yields (%)	Mp°C	Lit. Mp°C ^{ref}
13	Me OH	Me 12m	10	94	195-197	197-198 ⁵²

Table 9

Comparison of Catalytic Ability of Catalysts Reported in the Literature for Synthesis of Polysubstituted $Quinolines^a$

Entry	Catalyst	Conditions	Time/Yield (%)	References
1	DSIMHS	Solvent-free, 70°C	25 min/89	[27]
2	FeCl ₂ ·2H ₂ O-RiHA	Solvent-free,90 °C	35 min/86	[28]
3	Cellulose sulfuric acid	Solvent-free, 100 °C	35 min/70	[29]
4	Starch sulfuric acid	Solvent-free, 100 °C	45 min/75	[29]
5	Amberlyst-15	EtOH, Reflux	210 min/72	[30]
6	P_2O_5/SiO_2	Solvent-free, 80 °C	35 min/94	[31]
7	Citric acid	Solvent-free, 90 °C	15 min/92	This work

^aBased on reaction of 2-aminobenzophenone (1.0 mmol) and dimedone (1.0 mmol).

 Table 10

 Comparison of Catalytic Ability of Catalysts Reported in the Literature for Synthesis of Spiro[4H-pyran-oxindoles]^a

Entry	Catalyst	Conditions	Time/Yield (%)	References
1	SBNPTT	H ₂ O, Reflux	H ₂ O, Reflux	[24]
2	Silica-Sulfuric acid NPs	EtOH, Reflux	EtOH, Reflux	[33]
3	Carbon-SO ₃ H	EtOH, Reflux	EtOH, Reflux	[37]
4	L-Proline	H ₂ O, 80 °C	H ₂ O, 80 °C	[38]
5	$Mg(ClO_4)_2$	EtOH/H ₂ O,50 °C	EtOH/H ₂ O,50 °C	[39]
6	Sodium stearate	H ₂ O, 60 °C	H ₂ O, 60 °C	[40]
7	MgO nanocrystalline	H ₂ O, 80 °C	H ₂ O, 80 °C	[41]
8	InCl ₃	CH ₃ CN, Reflux	CH ₃ CN, Reflux	[42]
9	Citric acid	Solvent-free, 80 °C	Solvent-free, 80 °C	This work

^aBased on three-component reaction of isatin (1.0mmol), malononitrile (1.0mmol) and dimedone (1.0mmol)

(3:6) as eluent), 3 ml EtOH was added. The mixture was poured into cold water (10 mL) and the resulting precipitate was recrystallized from ethanol to give pure product (**3a-g**).

Table 11

Entry	Catalyst	Conditions	Time/Yield (%)	References
1	NO2 – FePc/C	EtOH, Reflux	30 min/91%	[25]
2	DSIMHS	Solvent-free, 55 °C	20 min/93	[43]
3	Fe ₃ O ₄ @SiO ₂ -SO ₃ H	Solvent-free, 110 °C	30 min/95	[45]
4	NaHSO ₄ /SiO ₂	CH ₂ Cl ₂ , Reflux	300 min/91	[48]
5	CAN	Microwave irradiation, 120 °C	120 min/85	[49]
6	Sr(OTf) ₂	1,2-Dichloroethane, 80°C	300 min/85	[50]
7	Citric acid	Solvent-free, 80 °C	10 min/93	This work

Comparison of Catalytic Ability of Catalysts Reported in the Literature for Synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11-ones^{*a*}

^{*a*}Based on the three-component reaction of β -naphthol (1.0 mmol), benzaldehyde (1.0 mmol) and dimedone (1.0 mmol).

Table 12
Comparison of Catalytic Ability of Catalysts Reported in the Literature for Synthesis
of 14-aryl-14 <i>H</i> -dibenzo[α , <i>j</i>]xanthenes ^{<i>a</i>}

Entry	Catalyst	Conditions	Time/Yield (%)	References
1	[BMim][BF ₄]	Mg(BF ₄) ₂ , 80 °C	15 min/95	[35]
2	DSIMHS	Solvent-free, 90 °C	3 min/94	[43]
3	Fe ₃ O ₄ @SiO ₂ -SO ₃ H	Solvent-free, 110°C	30 min/94	[45]
4	Diatomite-SO ₃ H	Solvent-free, 90 °C	10 min/93	[51]
5	[H-NMP][HSO ₄]	Solvent-free, 110°C	12 min/94	[52]
6	SFP	Solvent-free, 90 °C	30 min/98	[54]
7	SiO ₂ -Pr-SO ₃ H	Solvent-free, 125 °C	20 min/98	[55]
8	Citric acid	Solvent-free, 80 °C	10 min/95	This work

^{*a*}Based on the three-component reaction of β -naphthol (2.0 mmol) and benzaldehyde (1.0 mmol).

Synthesis of spiro[4H-pyran-oxindoles] (7): A mixture of isatin/acenaphthequinone (4, 1.0 mmol), malononitrile (5, 1.0 mmol), and different 1,3-dicarbonyl compounds (6, 1.0 mmol) in the present of citric acid (20 mol %) was heated at 80 °C for the appropriate time. After completion of the reaction (TLC using ethylacetate/n-hexane (3:7) as eluent), the mixture was cooled to 25 °C, the solid products were filtered and then were recrystallized from ethanol to give the pure compounds (7a-I).

Synthesis of 12-aryl-tetrahydrobenzo[α]xanthene-11-ones (11): A mixture of β -naphthol (8, 1.0 mmol), benzaldehyde (9, 1.0 mmol), dimedone (10, 1.0 mmol) and citric acid (20 mol %) was heated at 80 °C for the appropriate time. After completion of the reaction (TLC using ethylacetate/n-hexane (3:5) as eluent), the mixture was cooled to 25 °C, ethanol was added and the precipitate was separated by filtration. The solid was recrystallized from ethanol to afford the pure products (11a- k).

Synthesis of 14-aryl-14H-dibenzo[α ,j]xanthenes (12): A mixture of β -naphthol (8, 2.0 mmol), benzaldehyde (9, 1.0 mmol) and citric acid (20 mol %) was heated at 80 °C for the appropriate time. After completion of the reaction (TLC using ethylacetate/n-hexane (3:5) as eluent), the mixture was cooled to 25 °C and ethanol was added. The

 Table 13

 Spectral Data of Representative Compounds

Compound	Spectral data
3a Ph O	¹ H NMR (400 MHz, CDCl ₃): 1.19 (6H, s, 2CH ₃), 2.59 (2H, s, CH ₂), 3.33 (2H, s, CH ₂),7.19-7.22 (2H, m, ArH), 7.45 (1H, t, <i>J</i> = 8.0 Hz, ArH), 7.50- 7.56 (4H, m, ArH), 7.80 (1H, t, <i>J</i> = 8.0 Hz, ArH) , 8.13 (1H, brs, ArH).
$7a$ H O O O NH_2 O NH_2 O NH_2 NH_2 O NH_2	¹ H NMR (400 MHz, DMSO-d ₆): 1.00 (3H, s, CH ₃), 1.03 (3H, s, CH ₃), 2.08-2.19 (2H, m, CH ₂), 2.53 (2H, s, CH ₂), 6.79 (1H, d, <i>J</i> =7.2 Hz, ArH), 6.89 (1H, t, <i>J</i> =7.2 Hz, ArH), 6.98 (1H, d, <i>J</i> =6.8 Hz, ArH), 7.14 (1H, t, <i>J</i> =6.4 Hz, ArH), 7.22 (2H, s, NH ₂), 10.39 (1H, s, NH)
O O CN NH ₂	¹ H NMR (400 MHz, DMSO-d ₆): 1.02 (3H, s, CH ₃), 1.04 (3H, s, CH ₃), 2.04-2.13 (2H, m, CH ₂), 2.63 (2H, s, CH ₂), 7.32 (2H, s, NH ₂), 7.38-8.28 (6H, m, ArH).
OMe OMe	¹ HNMR (400 MHz, CDCl ₃): 0.99 (3H, s, CH ₃), 1.12 (3H, s, CH ₃), 2.16-2.35 (2H, m, CH ₂), 2.58 (2H, s, CH ₂), 3.71 (3H, s,OCH ₃), 5.68 (1H, s, CHAr), 6.72 (2H, d, <i>J</i> = 8.4 Hz, ArH), 7.21-7.47 (5H, m, ArH), 7.85 (2H, t, <i>J</i> = 9.2 Hz, ArH), 8.01 (1H, d, <i>J</i> = 8.4 Hz, ArH).
Me O O	¹ H NMR (400 MHz, CDCl ₃): 1.01 (3H, s, CH ₃), 1.15 (3H, s, CH ₃), 2.23 (3H, s, CH ₃), 2.28 (1H, d, <i>J</i> = 16.0 Hz, CH ₂), 2.34 (1H, d, <i>J</i> = 16.0 Hz, CH ₂), 2.60 (2H, s, CH ₂), 5.71 (1H, s, CHAr), 7.00–8.06 (10H, m, ArH).
	¹ H NMR (400 MHz, CDCl ₃): 2.18 (3H, s, CH ₃), 6.47 (1H, s, CHAr), 6.81(1H, d, <i>J</i> = 7.6 Hz, ArH), 6.81(1H, t, <i>J</i> = 7.6 Hz, ArH), 7.40-7.85 (12H, m, ArH), 8.42 (2H, d, <i>J</i> = 8.8 Hz, ArH).

precipitate was separated by filtration and the solid was recrystallized from ethanol to afford the pure products (**12a-m**). The products have been characterized by melting points and ¹H NMR spectroscopy. Spectral data of selected products are reported in *Table 13*.

Acknowledgments

We gratefully acknowledge financial support from the Research Council of the University of Sistan and Baluchestan.

References

- 1. Y. Wang, X. Liu and C. Du, Org. Prep. Proc. Int., 49, 28 (2017).
- 2. S. F. Hojati and H. Raouf, Org. Prep. Proc. Int., 48, 474 (2016).
- 3. S. Ameli, A. Davoodnia and M. Pordel, Org. Prep. Proc. Int., 48, 328 (2016).
- B. Maleki, E. Sheikh, E. Rezaei Seresht, H. Eshghi, S. S. Ashrafi, A. Khojastehnezhad and H. Veisi, Org. Prep. Proc. Int., 48, 37 (2016).
- 5. K. Karthikeyan and G. Sivaprasad, Org. Prep. Proc. Int., 47, 449 (2015).
- 6. M. B. Gürdere, S. M. Öztürk and M. Ceylan, Org. Prep. Proc. Int., 47, 473 (2015).
- F. Mohamadpour, M. T. Maghsoodlou, R. Heydari and M. Lashkari, *Res. Chem. Intermed.*, 42,7841 (2016).
- 8. B. Maleki, Org. Prep. Proc. Int., 48, 303 (2016).
- F. Mohamadpour, M. T. Maghsoodlou, R. Heydari and M. Lashkari, J. Iran. Chem. Soc., 13, 1549 (2016).
- R. Kakadiya, H. Dong, A. Kumar, D. Narsinh, X. Zhang, T. C. Chou, T. C. Lee, A. Shah and T. L. Su, *Bioorg. Med. Chem.*, 18, 2285 (2010).
- 11. H. Vander Mierde, P. van der Voort and F. Verpoort, Tetrahedron Lett., 49, 6893 (2008).
- N. Muruganantham, R. Sivakumar, N. Anbalagan, V. Gunasekaran and J. T. Leonard, *Biol. Pharm. Bull.*, 27, 1683 (2004).
- Y. L. Chen, K. C. Fang, J. Y. Sheu, S. L. Hsu and C. C. Tzeng, J. Med. Chem., 44, 2374 (2001).
- 14. V. V. Vintonyak, K. Warburg, H. Kruse, S. Grimme, K. Hübel, D. Rauh and H. Waldmann, *Angew. Chem. Int. Ed. Engl.*, **49**, 5902 (2010).
- S. Yu, D. Qin, S. Shangary, J. Chen, G. Wang, K. Ding, D. McEachern, S. Qiu, Z. Nikolovska-Coleska, R. Miller, S. Kang, D. Yang and S. Wang, *J. Med. Chem.*, **52**, 7970 (2009).
- A. Fensome, W. R. Adams, A. L. Adams, T. J. Berrodin, J. Cohen, C. Huselton, A. Illenberger, J. C. Kern, V. A. Hudak, M. A. Marella, E. G. Melenski, C. C. McComas, C. A. Mugford, O. D. Slayden, M. Yudt, Z. Zhang, P. Zhang, Y. Zhu, R. C. Winneker and J. E. Wrobel, J. Med. Chem. Soc., 51, 1861 (2008).
- 17. F. Zelefack, D. Guilet, N. Fabre, C. Bayet, S. Chevalley, S. Ngouela, B. N. Lenta, A. Valentin, E. Tsamo and M. G. Dijoux-Franca, *J. Nat. Prod.*, **72**, 954 (2009).

- 18. X. Zhang, A. S. Shetty and S. A. Jenekhe, *Macromolecules*, 33, 2069 (2000).
- 19. J. F. Callan, P. De Silva and D. C. Magri, Tetrahedron, 61, 8551(2005).
- M. Ahmad, T. A. King, D. K. Ko, B. H. Cha and J. Lee, J. Phys. D: Appl. Phys., 35, 1473 (2002).
- G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison and G. W. Robinson, J. Am. Chem. Soc., 99, 4306 (1977).
- 22. O. Sirkecioglu, N. Talinli and A. Akar, J. Chem. Res. Synop., 12, 502 (1995).
- 23. M. Esmaeilpour and J. Javidi, J. Chin. Chem. Soc., 62, 328 (2015).
- 24. K. Niknam and P. Abolpour, Monatsh Chem., 146, 683 (2015).
- 25. H. Huang, Y. Yao, Q. Lin, J. Zhao, C. Hu and X. Gou, Russ. J. Gen. Chem., 86, 934 (2016).
- 26. F. Davod, A. R. Kiasat, M. Enjilzadeh and M. Cheraghchi. Lett. Org. Chem., 13, 58 (2016).
- F. Shirini, A. Yahyazadeh, K. Mohammadi and N. Ghaffari Khaligh, C. R. Chimie, 17, 370 (2014).
- 28. F. Shirini, S. Akbari-Dadamahaleh and A. Mohammad-Khah, Chin. J. Catal., 34, 2200 (2013).
- 29. A. Shaabani, A. Rahmati and Z. Badri, Catal. Commun., 9, 13 (2008).
- 30. B. Das, K. Damodar, N. Chowdhury and R. Aravind Kumar, J. Mol. Catal. A: Chem., 274, 148 (2007).
- A.R. Hasaninejad, A. Zare, M. A. Zolfigol, M. Abdeshah, A. Ghaderi and F. Nami-Ana, *Iran. J. Chem. Chem. Eng.*, **30**, 73 (2011).
- L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J. Q. Liu, F. L. Guo and Y. Liu, *Tetrahedron*, 66, 339 (2010).
- B. Sadeghi, M. Ghasemi Pirbaluti, P. Farokhi Nezhad and R. Abbasi Nezhad, *Res. Chem. Intermed.*, 41, 4047 (2015).
- 34. G.-D. Wang, X.-N. Zhang and Z.-Hui Zhang, J. Heterocyclic. Chem., 50, 61 (2013).
- 35. K. Rad-Moghadam and S.C. Azimi, J. Mol. Catal A: Chem., 363-364, 465 (2012).
- 36. M. Saeedi, M. M. Heravi, Y. S. Beheshtiha and A. Oskooie, Tetrahedron, 66, 5345 (2010).
- B. Maheshwar Rao, G. Niranjan Reddy, T. Vijaikumar Reddy, B. L. A. Prabhavathi Devi, R. B. N. Prasad, J. S. Yadav and B. V. Subba Reddy, *Tetrahedron Lett.*, 54, 2466 (2013).
- 38. Y. Li, H. Chen, C. Shi, D. Shi and S. Ji, J. Comb. Chem., 12, 231 (2010).
- 39. C. Wu, R. Shen, J. Chen and C. Hu, Bull. Korean. Chem. Soc., 34, 2431 (2013).
- L. M. Wang, N. Jiao, J. Qiu, J. J. Yu, J. Q. Liu, F. L. Guo and Y. Liu, *Tetrahedron*, 66, 339 (2010).
- 41. B. Karmakar, A. Nayak and J. Banerji, Tetrahedron Lett., 53, 5004 (2012).
- 42. G. Shanthi, G. Subbulakshmi and P. T. Perumal, Tetrahedron, 63, 2057 (2007).
- 43. F. Shirini, A. Yahyazadeh and K. Mohammadi, Chin. Chem. Lett., 25, 341 (2014).
- 44. A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, M. Khojasteh, Z. Asgari, V. Khakyzadeh and A. Khalafi-Nezhad, *Catal. Commun.*, **20**, 54 (2012).

- 45. F. Nemati and S. Sabaqian, J. Saudi. Chem. Soc., 21, S383 (2017).
- 46. M. M. Heravi, H. Alinegjhad, K. Bakhtiari and H. Oskooie, Mol. Divers., 14, 621 (2010).
- 47. F. Nemati, M. Arghan and A. Amoozadeh, Synth. Commun., 42, 33 (2012).
- 48. B. Das, K. Laxminarayana, M. Krishnaiah and Y. Srinivas, Synlett., 20, 3107 (2007).
- 49. S. Sudha and M. A. Pasha, Ultra. Sonochem., 19, 994 (2012).
- 50. J. Li, W. Tang, L. Lu and W. Su, Tetrahedron Lett., 49, 7117 (2008).
- 51. H. Naeimi and Z. S. Nazifi, App. Catal. A: Gen., 477, 132 (2014).
- 52. H. Naeimi and Z.S. Nazifi, C.R. Chimie., 17, 41 (2014).
- 53. G. B. Dharma Rao, M. P. Kaushik and A. K. Halve, Tetrahedron Lett., 53, 2741 (2012).
- 54. A. B. Zare and F. Reghbat, Iran. J. Catal., 6, 113 (2016).
- 55. G. Mohammadi Ziarani, A. R. Badiei and M. Azizi, Scientica Iranica., 18, 453 (2011).
- 56. P. Friedländer, Chemische Berichte., 15, 2572 (1882).