2006 Vol. 8, No. 14 3129-3132

Use of α -Chlorinated *N*-(tert-Butanesulfinyl)-imines in the Synthesis of Chiral Aziridines

Bram Denolf,† Sven Mangelinckx,† Karl W. Törnroos,‡ and Norbert De Kimpe*,†

Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway norbert.dekimpe@UGent.be

Received May 8, 2006

ABSTRACT

Reaction of chiral α -chloro *tert*-butanesulfinyl aldimines with Grignard reagents efficiently afforded β -chloro *N*-sulfinamides in high diastereomeric excess. The latter compounds were cyclized toward the corresponding chiral aziridines in a high-yielding one-pot reaction or after separate treatment with base. The diastereoselectivity obtained in the newly synthesized β -chloro sulfinamides is explained via the coordinating ability of the α -chloro atom with magnesium resulting in the opposite stereochemical outcome as generally observed for nonfunctionalized *N*-sulfinyl imines.

α-Halogenated imines have received considerable attention as versatile intermediates for the synthesis of biologically active compounds. The simple synthesis of α-halo imines from the corresponding readily available α-chloro aldehydes or α-chloro ketones and the subsequent cyclization, after a nucleophilic addition reaction, toward azaheterocycles make the α-halogenated imidoyl function an interesting building block. Even though these α-halogenated imines have found wide application, their use is not without problems (e.g., hydrolytically unstable, poor electrophiles). The use of a chiral N-protective group to activate the imino function for nucleophilic addition in a diastereofacial way and for easy removal after reaction under mild conditions is of interest to synthesize a variety of compounds. The diastereoselective addition of organometallics to N-sulfinyl imines, pioneered

by Davis³ and Ellman,⁴ has proven to be a straightforward method to synthesize chiral amines, amino alcohols, and amino acids, among other interesting compounds. The use of halogenated *N*-sulfinyl imines has been limited to some fluorinated examples,⁵ despite the advantageous reactivity of known alkylated and arylated halogenated imines mentioned. A few examples of chloro or bromo *N*-sulfinyl imines are described,⁶ but their reactivity has not been investigated up to now. Incorporation of a chlorine atom in *N*-sulfinyl imine 2, as compared to *N*-sulfinyl imine 1, could lead to chiral aziridines, which are of considerable interest in organic chemistry,^{7–10} in a very straightforward way. The stereoselective synthesis of aziridines 4 via α-halo *N*-sulfinyl imines

[†] Ghent University.

[‡] University of Bergen.

^{(1) (}a) Mangelinckx, S.; Giubellina, N.; De Kimpe, N. *Chem. Rev.* **2004**, 104, 2353. (b) Giubellina, N.; Aelterman, W.; De Kimpe, N. *Pure Appl. Chem.* **2003**, 75, 1433. (c) Stevens, C.; De Kimpe, N. *Org. Prep. Proced. Int.* **1990**, 22, 589. (d) De Kimpe, N.; Verhé, R. In *The chemistry of* α-haloketones, α-haloaldehydes and α-haloimines; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1988.

^{(2) (}a) Concellon, J. M.; Riego, E.; Rivero, I. A.; Ochoa, A. *J. Org. Chem.* **2004**, *69*, 6244. (b) Sulmon, P.; De Kimpe, N.; Schamp, N. *Tetrahedron* **1989**, *45*, 3907. (c) De Kimpe, N.; De Smaele, D. *Tetrahedron Lett.* **1994**, *35*, 8023.

^{(3) (}a) Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.; Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll, P. J. *J. Org. Chem.* **1997**, *62*, 2555. (b) Zhou, P.; Chen, B.-C.; Davis, F. A. *Tetrahedron* **2004**, *60*, 8003 and references cited therein.

^{(4) (}a) Cohan, D. A.; Lui, G.; Ellman, J. A. *Tetrahedron* **1999**, *55*, 8883. (b) Ellman, J. A.; Owens, T. D.; Tang, T. P. *Acc. Chem. Res.* **2002**, *35*, 984. (c) Ellman, J. A. *Pure Appl. Chem.* **2003**, *75*, 39.

^{(5) (}a) Wang, H.; Zhao, X.; Li, Y.; Lu, L. *Org. Lett.* **2006**, *8*, 1379. (b) Kuduk, S. D.; Marco, C. N. D.; Pitzenberger, S. M.; Tsou, N. *Tetrahedron Lett.* **2006**, *47*, 2377. (c) Crucianelli, M.; De Angelis, F.; Lazarro, F.; Malpezzi, L.; Volonterio, A.; Zanda, M. *J. Fluorine Chem.* **2004**, *125*, 573. (d) Asensio, A.; Bravo, P.; Crucianelli, M.; Farina, A.; Fustero, S.; Soler, J. G.; Meille, S. V.; Panzeri, W.; Viani, F.; Volonterio, A.; Zanda, M. *Eur. J. Org. Chem.* **2001**, 1449. (e) Davis, F. A.; Srirajan, V.; Titus, D. D. *J. Org. Chem.* **1999**, *64*, 6931. (f) Bravo, P.; Crucianelli, M.; Vergani, B.; Zanda, M. *Tetrahedron Lett.* **1998**, *38*, 7771.

2 X = Br. CI

2 has not been described (Scheme 1). In this report, the above methodology with α -halo N-sulfinyl imines **2**, carrying a chiral (R_S)-tert-butanesulfinyl group at nitrogen, will be worked out toward the chiral synthesis of aziridines.

 α -Chloro *N*-sulfinyl aldimines (R_S)-**6**, a new class of functionalized *N*-sulfinyl imines, were synthesized via condensation of α -chloro aldehydes **5** (1.1 equiv)^{1d} with (R_S)-tert-butanesulfinamide in the presence of 2 equiv of Ti(OEt)₄ in THF under reflux (Scheme 2).

Scheme 2. Synthesis of α -Chloro *N*-Sulfinyl Aldimines (R_S)-6

 α -Chloro *N*-sulfinyl aldimines (R_S)-**6** were isolated in high yields (87–95%) after distillation to separate the small excess of aldehydes **5** used.

Upon treatment of α -chloro *N*-sulfinyl imine (R_S)-**6a** with 2 equiv of EtMgBr in dichloromethane at -78 °C for 4 h

(6) (a) Davis, F. A.; Prasad, K. R.; Nolt, B.; Wu, Y. Org. Lett. 2003, 5, 925. (b) Schenkel, L. B.; Ellman, J. A. Org. Lett. 2003, 5, 545. (c) Davis, F. A.; Nolt, M. B.; Wu, Y.; Prasad, K. R.; Li, D.; Yang, B.; Bowen, K.; Lee, S. H.; Eardley, J. H. J. Org. Chem. 2005, 70, 2184. (d) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.

(7) (a) Padwa, A.; Murphee, S. *Arkivoc* **2006**, *3*, 6. (b) Hu, X. E. *Tetrahedron* **2004**, *60*, 2701. (c) Sweeney, J. B. *Chem. Soc. Rev.* **2002**, *31*, 247. (d) Zwanenburg, B.; ten Holte, P. *Top. Curr. Chem.* **2001**, *216*, 93. (e) McCoull, W.; Davis, F. A. *Synthesis* **2000**, 1347. (f) Lindström, U. M.; Somfai, P. *Synthesis* **1998**, 109. (g) Padwa, A.; Woolhouse, A. D. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 7, pp 47–97. (8) (a) Fernàndez, I.; Valdivia, V.; Gori, B.; Alcudia, F.; Alvarez, E.;

(8) (a) Fernàndez, I.; Valdivia, V.; Gori, B.; Alcudia, F.; Alvarez, E.; Khiar, N. *Org. Lett.* **2005**, *7*, 1307. (b) Morton, D.; Pearson, D.; Field, R. A.; Stockman, R. A. *Org. Lett.* **2004**, *6*, 2377. (c) Yang, Y.-F.; Zhang, M.-J.; Hou, X.-L.; Dai, L.-X. *J. Org. Chem.* **2002**, *67*, 8097. (d) García Ruano, J. L.; Fernández, I.; Hamdouchi, C. *Tetrahedron Lett.* **1995**, *36*, 295. (e) Davis, F. A.; Zhou, P.; Liang, C.-H.; Reddy, R. E. *Tetrahedron: Asymmetry* **1995**, *6*, 1511.

(9) (a) Zheng, J.-C.; Liao, W.-W.; Sun, X.-X.; Sun, X.-L.; Tang, Y.; Dai, L. X.; Deng, J. G. *Org. Lett.* **2005**, *7*, 5789. (b) Ferreira, F.; Audouin, M.; Chemla, F. *Chem.—Eur. J.* **2005**, *11*, 5269. (c) Chemla, F.; Ferreira, F. *Synlett* **2004**, 983.

(10) (a) Davis, F. A.; Wu, Y.; Yan, H.; McCoull, W.; Prasad, K. R. *J. Org. Chem.* **2003**, *68*, 2410. (b) Davis, F. A.; Deng, J.; Zhang, Y.; Haltiwanger, R. C. *Tetrahedron* **2002**, *58*, 7135. (c) Volonterio, A.; Bravo, P.; Pesenti, C.; Zanda, M. *Tetrahedron Lett.* **2001**, *42*, 3985. (d) Kim, D. Y.; Suh, K. H.; Choi, J. S.; Mang, J. Y.; Chang, S. K. *Synth. Commun.* **2000**, *30*, 87. (e) Davis, F. A.; McCoull, W.; Titus, D. D. *Org. Lett.* **1999**, *1*, 1053.

and subsequent stirring for 12 h at ambient temperature, 3-ethylaziridine 8a was formed in modest yield (46%) and diastereoselectivity (dr = 70:30) (Table 1, entry a).

Table 1. Addition of Grignard Reagents Across α -Chloro *N*-Sulfinyl Aldimine (R_S)-6a

	R' (equiv)	solvent	<i>t</i> (h) [°C]	product	yield $\%^a (d\mathbf{r})^b$
a	Et (2.0)	$\mathrm{CH_{2}Cl_{2}}$	$4 [-78]^c$	8a	46 (70:30)
b	Ph (2.0)	$\mathrm{CH_2Cl_2}$	$1 [-78]^d$	9b	43 (98:2)
c	Et (2.0)	CH_2Cl_2	4[-78]	9a	73 (88:12)
d	Ph (1.1)	CH_2Cl_2	$5 [-78]^{c,d}$	9b	82 (99:1)
e	Et (1.1)	$\mathrm{CH_2Cl_2}$	$4 [-78]^c$	8a	$95^e (96:4)$
f	Et (1.1)	toluene	4[-78]	9a	94^{e} (95:5)
g	Et (1.1)	THF	4[-78]	9a	92^{e} (72:28)
h	Et (1.1)	$\mathrm{Et_{2}O}$	4[-78]	9a	96^e (78:22)
i	Et (1.1)	$ ext{CH}_2 ext{Cl}_2$	4[-78]	9a	$95^e (96:4)$

^a Determined by a mass balance after chromatography. ^b Determined by NMR analysis of the reaction mixture. ^c Followed by stirring at room temperature for 12 h. ^d Addition of the Grignard reagent at −97 °C. ^e Determined by a mass balance of the reaction mixture.

The temperature effect was of great importance for both the yield and the stereoselectivity of the addition reaction. Reaction of aldimine (R_S) -**6a** with 2 equiv of PhMgCl for 4 h at -78 °C and subsequent stirring at room temperature for 12 h yielded a complex reaction mixture from which only traces of the desired 2-phenylaziridine **8b** were obtained next to some of the corresponding arylated β -chloro N-sulfinamide **9b**. At higher temperatures (-20 °C), side reactions became even more important and it was a major drawback if PhMgCl was used as the reagent of choice. In contrast, if the Grignard reagent was added at -97 °C and the reaction mixture was allowed to react further at -78 °C for 5 h, a very clean addition reaction yielded β -chloro N-sulfinamide (R_S ,R)-**9b**. No traces of the corresponding aziridine (R_S ,R)-**8b** were detected under these conditions.

By lowering the excess of Grignard reagent, the yields of β -chloro sulfinamide (R_S ,R)-**9b** improved. Even more, the diastereoselectivity was also slightly improved (Table 1, entries a-e). A lower diastereoselectivity was obtained in ethereal solvents, such as THF or diethyl ether. The use of noncoordinating solvents such as dichloromethane or toluene resulted in better diastereoselectivities (Table 1, entries f-i).

The best results were obtained if 1.1 equiv of Grignard reagent was allowed to react with aldimine (R_S) -6a in dichloromethane at -78 °C for 4-5 h. Though the addition of PhMgCl was preferred at -97 °C, these low-temperature conditions were not required for the addition reaction of EtMgBr, vinylMgBr, and allylMgCl. Upon treatment of (R_S) -6a with Grignard reagent, under the former conditions, β -chloro N-sulfinamides (R_S, R) -9 were isolated in high yield (82-99%) and diastereoselectivity (62:38-99:1) (Scheme 3). Reaction of ally IMgCl with (R_s) -6a afforded β -chloro N-sulfinamide (R_S,R) -9d in 99% yield but as a (62:38) mixture of diastereomers (Scheme 3). Both diastereomers were separated by flash chromatography after further ring closure (vide infra) toward the aziridines (R_S,R) -8d and (R_S,S) -8d in 57% and 10% yield, respectively. Notably, addition of *i*-PrMgCl to (R_S) -6a at -97 °C and reaction at

3130 Org. Lett., Vol. 8, No. 14, 2006

Scheme 3. Stereoselective Aziridination of Imine (R_S) -6a

-78 °C resulted in the reduction of the imidoyl function affording the reduced β -chloro sulfinamide **10a** in high yield (95%) (Scheme 3).¹¹

Quenching of the reaction mixture of (R_s) -6a upon treatment with Grignard reagent ($R' \neq Ph$) with aq NH₄Cl at -78 °C after 4 h afforded the alkylated β -chloro N-sulfinamide (R_s,R) -9 in high yield (92-99%). Moreover, if the reaction mixture was allowed to stir at room temperature after completion of the addition at -78 °C, the desired aziridines 8 were isolated in excellent yield (Scheme 3). However, if R' = Ph, it was noticed that the β -chloro N-sulfinamides (R_s,R) -9b were not ring closed toward the corresponding aziridines (R_s,R) -8b if the reaction mixture was stirred at ambient temperature for 12 h (Table 1, entry

d). Longer reaction times or higher temperatures did not afford the desired aziridines (R_S ,R)-**8b** in acceptable yield. Therefore, a series of bases (BuLi, LDA, NaH, and K₂CO₃) were applied in different solvents to facilitate the cyclization reaction of β -chloro N-sulfinamide (R_S ,R)-**9b** toward aziridine (R_S ,R)-**8b** (Supporting Information).

Experimentally, it was shown that KOH in H_2O/THF (1:1 ratio) at 50 °C gave the best results to ring close the β -chloro N-sulfinamide (R_S,R)-9b toward the corresponding aziridine (R_S,R)-8b in high yields. Even more, these conditions were applied to all β -chloro N-sulfinamides (R_S,R)-9 affording the corresponding aziridines (R_S,R)-8 in excellent yield without detectable loss of chirality. Thus, these aziridines 8 were synthesized in a high-yielding one- or two-pot reaction (Scheme 3) and were obtained as a single diastereomer after flash chromatography.

Upon treatment of the more sterically hindered α -chloro N-sulfinyl imine (R_S) -**6b** (R = Et) with EtMgBr at -78 °C for 4 h in THF, most of the aldimine (R_S) -**6b** was recovered. Almost no addition reaction was observed under the latter conditions (Table 2, entry a). Upon raising the temperature from -78 °C to -40 °C, after the addition of the Grignard reagent at -78 °C or -97 °C (vide supra), depending on the reagent used, mixtures of the β -chloro N-sulfinamide (R_S,R) -11 and the corresponding aziridine (R_S,R) -12 were obtained in reasonable yield. The β -chloro N-sulfinamides (R_S,R) -11 could only be isolated in low yields after flash chromatography of the reaction mixture. Various attempts failed to synthesize the β -chloro N-sulfinamide (R_S , R)-11a as such, without any of the aziridine 12a present. However, if the reaction mixture was stirred for 12 more hours at ambient temperature, the β -chloro N-sulfinamides (R_S,R) -

Table 2. Optimization of the Addition of Grignard Reagents Across α -Chloro N-Sulfinyl Aldimine (R_S)-**6b,c**

entry	substrate	reagent	equiv	solvent	t (h) [°C] (rt)	product	yield % ^d (%) ^e	(dr) ^f
a	6b	EtMgBr	2	THF	4 [-78]	11a	8	(-)
b	6b	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$3[-40]^a 12 (rt)$	12a	83	(86:14)
c	6b	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$1 [-40]^a 12 (rt)$	12a	29	(-)
d	6b	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^a \ 12 \ (rt)$	12a	82	(92:8)
e	6b	EtMgBr	1.1	$\mathrm{Et_{2}O}$	$6 \ [-40]^a \ 12 \ (rt)$	12a	84	(78:22)
\mathbf{f}	6b	EtMgBr	1.1	toluene	$6 \ [-40]^a \ 12 \ (rt)$	12a	81	(91:9)
g	6b	PhMgCl	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 [-40]^b 12 (rt)$	11b	77	(96:4)
h	6b	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{a,c}$	12a	82 (66)	(92:8)
i	6b	PhMgCl	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{b,c}$	12b	77 (57)	(96:4)
j	6b	vinylMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{a,c}$	12c	83 (62)	(93:7)
k	6b	allylMgCl	1.1	$\mathrm{CH_2Cl_2}$	$6 [-40]^{a,c}$	12d	90 (45)[21]	(62:38)
1	6c	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^a$	13a	(25)	(-)
m	6c	EtMgBr	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{a,c}$	14a	82 (63)	(92:8)
n	6c	PhMgCl	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{b,c}$	14b	43 (20)	(70:30)
0	6c	vinylMgBr	1.1	$\mathrm{CH_2Cl_2}$	$6 \ [-40]^{a,c}$	14c	85 (56)	(86:14)
p	6c	allylMgCl	1.1	$\mathrm{CH_{2}Cl_{2}}$	$6 \ [-40]^{a,c}$	14d	84 (41)	(70:30)

^a Addition of the Grignard reagent at −78 °C. ^b Addition of the Grignard reagent at −97 °C. ^c Subsequent ring closure with 3 equiv of KOH in THF/H₂O (1:1) for 24 h at 50 °C. ^d Determined by a mass balance of the reaction mixture. ^e Isolated yield of the (major) [minor] diastereomer after flash chromatography. ^f Determined by NMR analysis of the reaction mixture.

Org. Lett., Vol. 8, No. 14, 2006

11 were ring closed toward the corresponding aziridines 12 if $R' \neq Ph$.

If the reaction was performed for less than 6 h at -40 °C before raising the temperature to 20 °C for 12 h, lower diastereoselectivities were obtained, which was an indication that the reaction was not completed at -40 °C (Table 2; entries b-d).

Altering the solvent from CH₂Cl₂ to Et₂O or toluene did not improve the yield or the stereoselectivity of the reaction (entries d-f).

Thus, addition of 1.1 equiv of Grignard reagent to imine (R_S) -**6b** in dichloromethane at -78 °C and subsequent stirring for 6 h at -40 °C afforded a mixture of β -chloro Nsulfinamide (R_S,R) -11 and aziridine (R_S,R) -12, after aqueous workup. The latter mixture was treated with base (3 equiv of KOH) at 50 °C for 24 h to obtain the ring-closed N-sulfinyl aziridine 12 (Table 2). No racemization was observed under these conditions. These conditions were applied with good result (77-90% yield and dr of 62:38-96:4) for the synthesis of a variety of new chiral sterically hindered aziridines $(R_S R)$ -12a-d starting from α -chloro N-sulfinyl imine (R_S) -**6b** (Table 2). It was found that chiral 1-azaspiro[2.5]octanes (R_S,R) -14a-d could be synthesized in moderate to good yield (43-85%) and diastereoselectivity (70:30–92:8), starting from α -chloro N-sulfinyl imine (R_S)-**6c** under these optimized conditions (Table 2). All chiral aziridines 12,14 were obtained as a single enantiomer $[(R_S,R)$ -**12.14**] after flash chromatography. β -Chloro N-sulfinamide (R_S,R) -13a could be isolated as a pure product in 25% yield, starting from α -chloro N-sulfinyl imine (R_S) -6c, after the addition of 1.1 equiv of EtMgBr at -78 °C, subsequent stirring for 6 h at -40 °C, aqueous workup with NH₄Cl at this temperature, and subsequent flash chromatography of the crude reaction mixture (Table 2, entry 1).

In the literature, no precedents of the synthesized amides (R_S,R) -9,13 or aziridines (R_S,R) -8,12,14 have been reported. The *N*-sulfinamides (R_S,R) -9,13 and *N*-sulfinyl aziridines (R_S,R) -8,12,14 could be deprotected by simple treatment with a saturated solution of dry HCl in dioxane. Stirring for 5 min at room temperature afforded the HCl salts of the β -chloro amines (R)-18,19 or aziridines (R)-15—17 in high yield (>90%) and purity (>80%) (Scheme 4). Deprotection

of *N*-sulfinyl aziridine (R_S , R)-8**b** resulted mainly in aziridine (R)-15**b**, though up to 15% of β -chloro amine (R)-18**b** (R = Me; R' = Ph) was also formed.

Without any of the β -chloro amines (R)-18,19 or aziridines (R)-15-17 reported in the literature, the absolute configuration had to be determined by X-ray diffraction analysis. From the X-ray diffraction analysis of N-(tert-butanesulfinyl)-2,2-dimethyl-3-phenylaziridine (R_S)-8b the absolute configuration of the structure was undoubtedly characterized as being the (R_S ,R)-aziridine 8b. This configuration is opposite to the one that is predicted via the chelation-controlled transition state A (Figure 1), which is the general intermediate

Figure 1. Proposed transition states.

proposed for nonfunctionalized N-sulfinyl imines.^{4,12} The reversal of the stereochemical outcome of the reaction is attributed to the α -coordinating ability of the chlorine atom as depicted in Figure 1 (transition states \mathbf{B} and \mathbf{C}). The reversal of selectivity is analogous to the results obtained with other N-sulfinyl imines containing an α -coordinating group, such as a nitrogen or oxygen atom.^{12a,13}

In conclusion, a novel stereoselective synthesis of chiral 2-arylated and 2-alkylated aziridines (R)-15-17 has been developed. Reaction of α -chloro N-sulfinyl imines (R_S) -6 with Grignard reagents afforded β -chloro N-sulfinamides (R_S,R) -9 in good yields or 11 and 13 as nonisolated intermediates. The latter compounds were ring closed toward the corresponding N-sulfinyl aziridines (R_S,R) -8,12,14 in a high-yielding one-pot reaction or after separate treatment with base. Chiral aziridines (R)-15-17 were synthesized by subsequent deprotection of the N-protecting group. The absolute configuration of the aziridines formed was proven by X-ray analysis.

Acknowledgment. Research funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Supporting Information Available: Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0611245

3132 Org. Lett., Vol. 8, No. 14, 2006

^{(11) (}a) Schroeter, M. Synth. Commun. **2005**, 35, 2203. (b) Lajis, N. Hj.; Khan, M. N.; Hassan, H. A. Tetrahedron **1993**, 49, 3405. (c) Miller, J.; Gregoriou, G.; Mosher, H. J. Am. Chem. Soc. **1961**, 83, 3966. (d) Whitmore, F. C.; George, R. S. J. Am. Chem. Soc. **1942**, 64, 1239.

^{(12) (}a) Davis, F. A.; McCoull, W. J. Org. Chem. 1999, 64, 3396. (b)
Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001, 66, 8772.
(13) (a) Fujisawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett.
1996, 37, 3881. (b) Kuduk, S. D.; DiPardo, R. M.; Chang, R. K.; Ng, C.;
Bock, M. G. Tetrahedron Lett. 2004, 45, 6641.