PLATINUM COMPLEX CATALYZED TRANSFORMATION OF AMINE.¹⁾ N-ALKYLATION AND N-ALLYLATION USING PRIMARY ALCOHOLS

Yasushi TSUJI, Ryo TAKEUCHI, Hiroshi OGAWA, and Yoshihisa WATANABE^{*} Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606

Amines reacted with primary alcohols in the presence of a platinum complex catalyst at 120-180 $^{\rm O}$ C to give N-alkylated or N-allylated compounds.

Recently, intensive researches have been carried out on Ru or Pd catalyzed transformation of amines including N-alkylation ^{3a)} and N-allylation ^{3b)} with alcohols as well as transalkylation.⁴⁾ However, Pt catalyzed transformation has attracted a little attention.²⁾ In this letter, we wish to report a novel catalysis of homogeneous platinum complex, which mediates N-alkylation and N-allylation of amines with primary alcohols.

Some representative results of N-alkylation are shown in Table 1. Aniline reacted with ethanol in the presence of PtCl₂(PhCN)₂ and SnCl₂·2H₂O as catalyst to give N,N-diethylaniline in high yield (Run 1). Without SnCl₂·2H₂O (Run 2) or with triphenylphosphine ligand (Run 3), conversion of aniline was low and Nmonoalkylanilines were obtained in only low yields. The reaction can be controlled at the N-monoalkyation stage (Run 4). Aliphatic amines were also N-alkylated in high yields without transalkylation reactions (Run 5), which were often significant side reactions with Ru catalyst.⁴ Similar reaction using allylic alcohols gave N-allylated products (Scheme 1). The reaction was carried out at 120 O C for allyl alcohol(1) or at 150 O C for crotyl(2) and methallyl(3) alcohols in the presence of PtCl₂(PPh₃)₂ (0.5 mol% based on the amines) and SnCl₂·2H₂O (Sn/Pt=0.5) as catalyst. This catalysis of Pt complex is quite different from that of Ru.⁵⁾ RuCl₂(PPh₃)₃ (1 mol% based on the amine) catalyzed the N-heterocyclization to give quinolines in high yields (Eq. 1),⁵⁾ while with Pt catalyst such a Nheterocyclization did not take place at all. In separate experiments, the present Pt catalyst system did not catalyze an isomerization of the allylic alcohols to the corresponding aldehydes, while RuCl₂(PPh₃)₃ did. This different feature between Pt and Ru might cause the different catalytic ability, because the N-heterocyclization proceeds via isomerisation of allylic alcohols to corresponding aldehydes.⁵⁾

Run	R-NH ₂	R'OH	Sn/Pt	Conv. of R-NH ₂ /% ^{b)}	Yield R-NR' ₂	NHR'
1	PhNH ₂	EtOH	0.5	100	82	4
2	PhNH ₂	EtOH	0	13	0	2
3 ^{c)}	PhNH ₂	EtOH	0.5	38	0	trace
4 ^{d)}	PhNH ₂	n-BuOH	1.0	90	2	85
5 ^{e)}	n-C ₈ H ₁₇ NH ₂	n-BuOH	0.6	95	90	0
6	n-C ₈ H ₁₇ NH ₂	n-BuOH	1.1	97	14	58

Table 1. Platinum Catalyzed N-Alkylation using Alcohols a)

a) Amine(20 mmol), alcohol(10 ml), $PtCl_2(PhCN)_2(0.2 mmol)$, $SnCl_2 \cdot 2H_2O$ at 180 °C for 4 h. b) Determined by GLC. c) $PtCl_2(PPh_3)_2(0.2 mmol)$.

d) At 150 °C for 1.3 h. e) Alcohol(20 ml).

R-NH ₂	+	r'ch=chr"ch ₂ 0h	$\frac{\text{PtCl}_{2}(\text{PPh}_{3})_{2} - \text{SnCl}_{2} \cdot \text{2H}_{2}^{0}}{120 \text{ °C} - 150 \text{ °C}}$	R'CH=CHR"CH ₂ NHR
R=Ph	1 ₁₇	R'=R"=H	(1)	67%
R=Ph		R'=CH ₃ , R"=H	(2) (E=100%)	64% (E/Z=3/1)
R=Ph		R'=H, R"=CH ₃	(3)	84%
R=n-C ₈ H		R'=R"=H	(1)	57%

References

- Part II in a series of "Platinum Complex Catalyzed Transformation of Amine."
 For the Part I, see Ref. 2 .
- 2) Y. Tsuji, J. Shida, R. Takeuchi, and Y. Watanabe, Chem. Lett., 1984, 889.
- 3) a) Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi, and T. Ohta, J. Org. Chem., <u>49</u>, 3359 (1984), and references cited therein; b) K. E. Atkins, W. E. Walker, and R. M. Manyik, Tetrahedron Lett., <u>1970</u>, 3821.
- 4) R. B. Wilson, Jr. and R. M. Laine, J. Am. Chem. Soc., <u>107</u>, 361 (1985).
- 5) Y.Watanabe, Y. Tsuji, Y. Ohsugi, and J. Shida, Bull. Chem. Soc. Jpn., <u>56</u>, 2452 (1983).

(Received November 27, 1985)