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Abstract: The first catalytic addition of terminal alkynes to simple
cyclic ketones in water catalyzed by silver was developed. Cyclic
ketones were reacted with terminal alkynes efficiently in water to
give the corresponding propargyl alcohols.
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The classical Grignard-type nucleophilic addition of or-
ganometallic reagents to carbonyl compounds provided
an important milestone in the history of organic chemis-
try. However, such fundamental reactions have two
broadly defined essential requirements: (1) the necessity
of an aprotic environment (i.e., anhydrous conditions and
protection of protic functional groups) and, (2) the pre-
generation of highly reactive stoichiometric organometal-
lic reagents.1 As an effort to overcome the aprotic require-
ment, we and others have carried out extensive research
on Grignard-type reactions in aqueous media.2 On the oth-
er hand, recent efforts have been directed at catalytic di-
rect nucleophilic addition of C–H bonds to various
electrophiles, which provides atom-economical alterna-
tives to the classical stoichiometric reactions.3 One of the
most successful achievements of such reactions is the cat-
alytic direct addition of terminal alkynes to aldehydes.4

However, such reactions generally still require anhydrous
conditions and the absence of protic functional groups.

On the other hand, our own laboratory has pioneered a
wide range of direct catalytic additions of terminal al-
kynes to various electrophiles in water.5 For example, ter-
minal alkynes were efficiently added directly to
aldehydes,6 imines,7 iminiums,8 acyliminiums,9 acid ha-
lides,10 as well as unsaturated carbonyl compounds in wa-
ter.11 To react with the much more challenging ketones,
we found that the use of a silver catalyst12 together with an
electron-rich phosphine13 or an N-heterocyclic carbene
ligand14 allows the direct addition of terminal alkynes to
highly electron-deficient ketones. However, the catalytic
direct addition of terminal alkynes to simple ketones in

water has never been successful. We reasoned that such a
challenge can potentially be met via further increasing the
activity of the alkynyl–silver intermediate by using an
even more electron-donating ligand or by destabilizing
the intermediate through increased steric bulkiness of the
ligand. Herein, we wish to report that terminal alkynes
were added to simple ketones efficiently via the activation
of alkyne C–H bonds catalyzed by silver to afford Gri-
gnard-type nucleophilic addition products in water
(Scheme 1).

Scheme 1  Silver-catalyzed alkynylation of cyclic ketones

To begin our study, we examined the reaction between
cyclohexanone (1a) and phenylacetylene (2a) by using
our earlier AgCl–PCy3 (tricyclohexylphosphine), AuCl–
PMe3 (trimethylphosphine)15 and Pd(OAc)2–PMe3 cata-
lytic systems. However, using AgCl–PCy3 (tricyclo-
hexylphosphine) as the catalyst, we could obtain only
trace amounts of the desired product (Table 1, entries 1–
3). Then, we reasoned that the use of a sterically bulky li-
gand might provide additional assistance in transferring
the alkynyl moiety to the less reactive ketone by destabi-
lizing the alkynyl–silver bond and thus lowering the acti-
vation energy of the overall reaction. Dialkylbiaryl
phosphines like the Buchwald’s ligands RuPhos (4; Fig-
ure 1) and XPhos (5; Figure 1) have been shown to gener-
ate highly active catalysts for a range of cross-coupling
reactions.16 We were pleased to see that the desired prod-
uct was obtained in 22% yield by using AgCl–RuPhos
(5%) as the catalyst and DIPEA (diisopropylethylamine)
as the base after 24 hours at 100 °C in water (Table 1, en-
try 4); whereas XPhos was not an effective ligand (Table
1, entry 5). When we increased the catalyst loading to
10% and used an excess amount of ketone, we could ob-
tain the target product in 62% yield (or 54% yield using a
syringe pump to add excess alkyne; Table 1, entry 6). En-
couraged by these preliminary results, we then tested dif-
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ferent silver salts under the same reaction conditions.
AgF, AgBr and AgI also gave similar promising results
(Table 1, entries 7–9). It is noteworthy that the use of
DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) as the base
gave the product in 80% yield (or 77% yield using a sy-
ringe pump to add excess alkyne; Table 1, entry 10). We
also investigated the reaction temperature and the reaction
time; however, either increasing or decreasing the temper-
ature and either shortening or prolonging the reaction time
were not helpful to increase the yield of the desired prod-
uct (Table 1, entries 11–14).

Subsequently, with the optimized reaction conditions in
hand, various substituted cyclohexanones, were similarly
coupled with phenylacetylene in water to afford the corre-
sponding propargyl alcohol products in good to excellent
yields. Selected examples are summarized in Table 2. The
substituents on the cyclohexanone did not affect the reac-
tion yield significantly. It is surprising that when cyclo-
heptanone was used as the ketone, the product was
obtained in 67% yield, but no desired product was ob-
tained for cyclopentanone (Table 2, compare entries 2 and
3). We also tested alkynylation of cyclohexanone with
different alkynes under the same conditions; to our de-
light, alkynes bearing hydroxyl groups can also be used
directly without any protection to get the target product in
good yields (Table 2, entries 14, 15).

In conclusion, we have succeeded in performing the first
catalytic addition of terminal alkynes to simple cyclic ke-
tones in water catalyzed by silver.17 Various cyclohexa-
nones and cycloheptanone were reacted with terminal
alkynes efficiently in water to give the corresponding
propargylic alcohols. Further improvement in the reactiv-
ity of the catalyst and applications of this reaction in syn-
theses are currently ongoing in our laboratory.Figure 1
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Table 1  Optimization of Reaction Conditions

Entry Catalyst (mol%) Ligand (mol%) Base (mol%) Temp (°C) Time (h) Yield (%)a

1 AgCl (10) PCy3 (10) DIPEA (20) 100 24 trace

2 AuCl (5) PMe3 (5) DIPEA (20) 80 24 n.d.

3 Pd(OAc)2 (5) PMe3 (20) – 60 24 n.d.

4 AgCl (5) RuPhos (10) DIPEA (20) 100 24 22

5 AgCl (5) XPhos (10) DIPEA (20) 100 24 n.d.

6 AgCl (10) RuPhos (20) DIPEA (20) 100 24 62b (54)c

7 AgF (10) RuPhos (20) DIPEA (20) 100 24 21

8 AgBr (10) RuPhos (20) DIPEA (20) 100 24 37

9 AgI (10) RuPhos (20) DIPEA (20) 100 24 27

10 AgCl (10) RuPhos (20) DBU (20) 100 24 80b (77)c

11 AgCl (10) RuPhos (20) DBU (20) 48 48 75

12 AgCl (10) RuPhos (20) DBU (20) 100 12 57

13 AgCl (10) RuPhos (20) DBU (20) r.t. 24 trace

14 AgCl (10) RuPhos (20) DBU (20) 80 24 43

a Isolated yield.
b Reaction conditions: 1a (1 mmol), 2a (0.25 mmol), sliver complex freshly prepared for use, H2O (0.25 mL) under argon at 100 °C for 24 h.
c Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol) addition by a syringe pump over 12 h, then react for another 12 h.
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Table 2  Substrate Scope of the Alkyne–Ketone Addition in Water

Entry Product 3 Yield (%) Entry Product 3 Yield (%)a

1

3a

80 9

3i

75

2

3b

67 10

3j

43

3

3c

N.R. 11

3k

49

4

3d

71 12

3l

52

5

3e

64 13

3m

73

6
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Table 2  Substrate Scope of the Alkyne–Ketone Addition in Water (continued)

Entry Product 3 Yield (%) Entry Product 3 Yield (%)a
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extracted with EtOAc (3 × 10 ml). The combined organic 
phase was concentrated and purified by flash column 
chromatography on silica gel (hexane–EtOAc, 10:1) to give 
the desired product 3a as a white solid (40 mg, 80%). The 
NMR data are in full agreement with those previously 
reported in the literature.18 1H NMR (400 MHz, CDCl3): δ = 

7.41–7.43 (m, 2 H), 7.26–7.30 (m, 3 H), 1.99–2.03 (m, 3 H), 
1.57–1.77 (m, 7 H), 1.28 (m, 1 H). 13C NMR (CDCl3, 75 
MHz) δ = 131.7, 128.3, 128.1, 122.9, 93.8, 83.6, 72.2, 43.2, 
28.0, 22.3.

(18) Yasukawa, T.; Miyamura, H.; Kobayashi, S. Org. Biomol. 
Chem. 2011, 9, 6208.
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