

Enantioselective Total Synthesis of Natural Isoflavans: Asymmetric Transfer Hydrogenation/Deoxygenation of Isoflavanones with Dynamic Kinetic Resolution

Anton Keßberg, Tilo Lübken, and Peter Metz*®

Fakultät Chemie und Lebensmittelchemie, Organische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany

Supporting Information

ABSTRACT: A concise and highly enantioselective synthesis of structurally diverse isoflavans from a single chromone is described. The key transformation is a single-step conversion of racemic isoflavanones into virtually enantiopure isoflavans by domino asymmetric transfer hydrogenation/deoxygenation with dynamic kinetic resolution.

F lavonoids represent a wide range of secondary metabolites in plants with various health benefits.¹ An important subgroup of these natural products are isoflavans.

(Š)-Equol (1), a potent phytoestrogenic isoflavan,² was first isolated from pregnant mares' urine in 1932 (Figure 1).³ It was

Figure 1. Structure of isoflavans 1-4.

shown to be a selective estrogen receptor modulator,⁴ and it exhibits antioxidant activity⁵ and is currently being investigated as a drug for the treatment of benign prostatic hyperplasia.⁶ Despite its interesting bioactivity and structural simplicity, catalytic protocols for the asymmetric synthesis of equol (1) are scarce.⁷ Spurred by our recent success in the enantioselective synthesis of flavanones,⁸ flavans,⁹ and isoflavanones^{7b} by means of asymmetric transfer hydrogenation (ATH), we envisioned establishing an efficient protocol for the catalytic asymmetric synthesis of isoflavans. We anticipated that a dynamic kinetic resolution (DKR) of racemic isoflavanones by means of an ATH/deoxygenation cascade might yield enantiopure isoflavans in a single step. In addition to (*S*)-equol (1), the isoflavans **2**, **3**, and **4** are interesting targets for this methodology. Initially isolated from *Maackia tenuifolia* by Zhu et al. in 1998,¹⁰ manuifolin K (2) was later obtained from *Dalea aurea* and was

shown to exhibit significant in vitro activity against the ameba Naegleria fowleri,¹¹ which triggers the rapidly fatal amebic meningoencephalitis.¹² Oh et al. reported that a number of flavonoids from Erythrina milbraedii effectively reduce protein tyrosine phosphatase 1 B activity.¹³ Among those, isoflavan 3 was the most potent agent identified, and as such, it might prove useful for the therapy of type 2 diabetes or obesity.¹⁴ Tanaka et al. screened plants of the genus Erythrina for their antibacterial activity against methicillin-resistant Staphylococcus *aureus* and found eryzerin D (4) to be an effective agent.¹⁵ Further studies revealed promising activity of 4 against vancomycin-resistant enterococci.¹⁶ The absolute configuration of the natural product 4 has yet to be determined. Except for equol (1), there is no synthetic access to the above-mentioned isoflavans. Herein, we report an enantioselective total synthesis of (S)-equol (1), manuifolin K (2), isoflavan 3, and eryzerin D (4).

Scheme 1 depicts the general retrosynthetic approach to isoflavans 1–4. First, the natural products 1–4 can be traced back to the respective phenols 5a-c. We envisioned that enantiopure isoflavans 5a-c might be obtainable from the racemic isoflavanones 6a-c in a single step through a domino ATH/deoxygenation process involving an *o*-quinone methide (I) as the crucial intermediate.⁹ In contrast to the previously reported transformation of flavanones,⁹ the isoflavanones 6a-c might readily racemize under the reaction conditions and, thus, allow for a dynamic kinetic resolution.^{7b} Finally, the isoflavanones rac-6a-c should be attainable from chromone 7^{17} by means of protecting group interchange, Suzuki coupling, and conjugate reduction.

The preparation of (*S*)-equol (1) is depicted in Scheme 2. Starting from chromone 7,¹⁷ a highly chemoselective cleavage of the 5-*O*-MOM functionality and subsequent treatment with methyl chloroformate afforded vinyl iodide **8** in excellent yield.

Received: April 2, 2018

Scheme 2. Synthesis of (S)-Equol (1)

Construction of the isoflavanone *rac*-**6a** was achieved in two steps by Suzuki coupling¹⁸ with 4-(methoxymethoxy)-phenylboronic acid¹⁹ and conjugate reduction of the resulting isoflavone. The crucial ATH of ketone *rac*-**6a** was studied using a chiral ruthenium catalyst²⁰ and a mixture of triethylamine and formic acid as the hydrogen source. To our delight, the desired ATH/deoxygenation cascade proceeded smoothly at low catalyst loading and gave rise to the virtually enantiopure product (*S*)-**5a** in 90% yield. Reductive removal of the free hydroxyl group by treatment of compound **5a** with triflic anhydride and subsequent palladium-catalyzed deoxygenation²¹

furnished product 10 in very good yield. Finally, (S)-equol (1) was obtained by simple hydrolysis of the acetal moieties with 99% enantiomeric excess.

Starting with chromone 8, we continued our investigation on the domino ATH/deoxygenation with isoflavans 2 and 3 as the targets (Scheme 3). While initial attempts to convert aryl

Scheme 3. Synthesis of Isoflavan 14

bromide 11^{22} to the corresponding boronic acid 12 failed, an in situ quenching protocol by Li et al.²³ allowed for convenient handling and gave the best results. Suzuki coupling of 8 with 12 and subsequent treatment with L-Selectride gave rise to the ATH substrate *rac-*6b. In order to maintain a reasonable reaction time, a slightly higher catalyst loading was used, compared to the domino ATH/deoxygenation of *rac-*6a. This was largely because of the presence of the 2'-OMOM group. Subsequent treatment with triflic anhydride allowed for a convenient purification and gave rise to virtually enantiopure isoflavan 13 in good yield over two steps. Finally, deoxygenation at the 5-position and removal of the tosylate group furnished product 14, which was further used to generate both manuifolin K (2) and pyrano-isoflavan 3.

Commencing with isoflavan 14, manuifolin K(2) was readily available in two steps (Scheme 4). Initially, prenyl ether 15 was synthesized under Mitsunobu conditions 24 in good yield and short reaction time. The subsequent Claisen rearrangement was carried out in acetic anhydride²⁵ in order to avoid an abnormal rearrangement.²⁶ Due to partial MOM cleavage and acetylation, the crude product mixture was submitted to solvolysis, followed by acidic deblocking in order to obtain manufolin K(2) as the sole product²⁷ with excellent enantiomeric excess and good yield. Isoflavan 3 was also obtained from compound 14 in six steps. The prenyl groups were introduced by means of Tsuji-Trost allylation with allylic carbonate 16^{28} and subsequent europium-catalyzed rearrangement.^{29,30} In comparison to the perfect regioselectivity of the Claisen rearrangement of ether 15, this transformation exhibited moderate selectivity, favoring the 5'-position over the 3'-position due to steric constraints. However, both regioisomers were transformed to the single product 17 using the same two-step protocol once again. Thus, phenol 17 was obtained in good overall yield from isoflavan 14. Benzopyran 18 was synthesized through oxidative cyclization using DDQ.³¹ Surprisingly, no regioisomeric product was observed next to 18. Finally, acid-promoted cleavage of the acetal moieties furnished the target compound 3 in moderate

Scheme 4. Synthesis of Isoflavans 2 and 3

yield due to the unstable nature of structure 3. Unexpectedly, the spectroscopic data of the synthetic sample 3 did not match the reported data.¹³ A thorough review of the published information revealed that Oh et al. in fact isolated eryzerin D (4) rather than isoflavan 3.

Synthesis of the structurally challenging ATH substrate *rac*-6c, required for eryzerin D (4), is depicted in Scheme 5. Starting with chromone 7, treatment with concentrated HCl allowed the clean removal of both MOM functionalities. Ether 20 was obtained by means of a highly chemoselective

Scheme 5. Synthesis of ATH Substrate rac-6c

propargylation³² and subsequent prenylation under Mitsunobu conditions.²⁴ A cascade of domino Claisen/Cope rearrangement, followed by annulation³³ of the pyran moiety, comprising five pericyclic transformations, gave rise to chromone **21** in a single step in satisfying yield. Europium catalysis^{29,30} was crucial for this reaction in order to ensure the domino Claisen/Cope process occurred first and, thus, counter to the usual regioselectivity of the annulation reaction.³⁴ Treatment of product **21** with methyl chloroformate gave rise to chromone **22**. Finally, Suzuki coupling of vinyl iodide **22** with 2,4-bis(methoxymethoxy)phenylboronic acid³⁵ and subsequent conjugate reduction furnished isoflavanone *rac*-**6c**.

Scheme 6 illustrates the ATH/deoxygenation of isoflavanone *rac*-6c and the final steps toward eryzerin D (4). Isoflavan (*R*)-

Scheme 6. Synthesis of Eryzerin D (4)

5c was obtained with 98% ee, applying the same reaction conditions used for the transformation of isoflavanone rac-6b. Unfortunately, in situ racemization of compound (S)-6c proved to be quite slow, and thus, complete conversion of rac-6c was not achieved. While reduction of substrate rac-6c was not impeded by the addition of Lewis and Brønsted acids or bases, racemization was not accelerated either. Nonetheless, enantioselective reduction of the highly functionalized isoflavanone rac-**6c** yielded 40% of the fairly unstable product (*R*)-**5c**, which was submitted to further transformation right away. Treatment of 5c with triflic anhydride and subsequent deoxygenation gave rise to isoflavan 23 in good yield. Finally, eryzerin D (4) was obtained by removal of the MOM groups. In accordance with the chemical behavior of isoflavans 3 and 5c, the combination of a pyran moiety and free phenolic hydroxyl groups led to the fairly unstable properties of 4. With isoflavan 4 in hand, comparison of specific rotation and CD spectrum of the synthetic sample with the literature data¹⁵ revealed the absolute configuration of eryzerin D (4) to be R. Furthermore, NMR and MS data are in good agreement with the data reported by Oh et al.^{13,36}

In summary, we have accomplished the first enantioselective total synthesis of manuifolin K (2), eryzerin D (4), and isoflavan 3. Our results verify the *R* configuration for the natural product 4, and the absolute configuration of isoflavan 2 was unambiguously established. In addition, the published structure of compound 3 was revised to be identical to that of eryzerin D (4). Furthermore, a new catalytic protocol for the asymmetric total synthesis of equal (1) was established. Central to our

strategy is a DKR of isoflavanones by means of a domino ATH/ deoxygenation reaction. This protocol allows a single-step preparation of isoflavans from racemic isoflavanones in a highly enantioselective fashion and also tolerates substitution at the 2'position of the substrates.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b01034.

Experimental procedures, spectroscopic data, and ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: peter.metz@chemie.tu-dresden.de.

Peter Metz: 0000-0002-0592-9850

Notes

The authors declare no competing financial interest.

REFERENCES

 (a) Middleton, E., Jr.; Kandaswami, C.; Theoharides, T. C. Pharmacol. Rev. 2000, 52, 673-751.
 (b) Teixeira, A. F.; de Carvalho Alcântara, A. F.; Pilý-Veloso, D. Magn. Reson. Chem. 2000, 38, 301-304.
 (c) de Carvalho Alcântara, A. F.; Teixeira, A. F.; da Silva, I. F.; de Almeida, W. B.; Pilý-Veloso, D. Quim. Nova 2004, 27, 371-377.
 (d) Brahmachari, G. Nat. Prod. Commun. 2008, 3, 1337-1354.
 (e) Prasad, S.; Phromnoi, K.; Yadav, V. R.; Chaturvedi, M. M.; Aggarwal, B. B. Planta Med. 2010, 76, 1044-1063.
 (f) Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Phytother. Res. 2015, 29, 323-331.

(2) Muthyala, R. S.; Ju, Y. H.; Sheng, S.; Williams, L. D.; Doerge, D. R.; Katzenellenbogen, B. S.; Helferich, W. G.; Katzenellenbogen, J. A. *Bioorg. Med. Chem.* **2004**, *12*, 1559–1567.

(3) Marrian, G. F.; Haslewood, G. A. D. Biochem. J. 1932, 26, 1227–1232.

(4) Setchell, K. D. R.; Zhao, X.; Jha, P.; Heubi, J. E.; Brown, N. M. Am. J. Clin. Nutr. 2009, 90, 1029–1037.

(5) Choi, E. J.; Kim, G.-H. Mol. Med. Rep. 2014, 9, 328-332.

(6) Nilsson, S.; Koehler, K. F.; Gustafsson, J.-Å. Nat. Rev. Drug Discovery **2011**, 10, 778–792.

(7) (a) Lee, J.-W.; List, B. J. Am. Chem. Soc. 2012, 134, 18245– 18248. (b) Qin, T.; Metz, P. Org. Lett. 2017, 19, 2981–2984. (c) Xia, J.; Nie, Y.; Yang, G.; Liu, Y.; Zhang, W. Org. Lett. 2017, 19, 4884– 4887.

(8) Lemke, M.-K.; Schwab, P.; Fischer, P.; Tischer, S.; Witt, M.; Noehringer, L.; Rogachev, V.; Jäger, A.; Kataeva, O.; Fröhlich, R.; Metz, P. Angew. Chem. 2013, 125, 11865–11869; Angew. Chem., Int. Ed. 2013, 52, 11651–11655.

(9) (a) Keßberg, A.; Metz, P. Angew. Chem. **2016**, 128, 1173–1176; Angew. Chem., Int. Ed. **2016**, 55, 1160–1163. (b) Keßberg, A.; Metz, P. Org. Lett. **2016**, 18, 6500–6503.

(10) Zeng, J.-F.; Wei, H.-X.; Li, G.-L.; Zhu, D.-Y. *Phytochemistry* **1998**, 47, 903–905.

(11) Belofsky, G.; Carreno, R.; Goswick, S. M.; John, D. T. Planta Med. 2006, 72, 383–386.

(12) Cetin, N.; Blackall, D. Blood 2012, 119, 3658.

(13) Jang, J.; Na, M.; Thuong, P. T.; Njamen, D.; Mbafor, J. T.; Fomum, Z. T.; Woo, E.-R.; Oh, W. K. *Chem. Pharm. Bull.* **2008**, *56*, 85–88.

(14) (a) Moller, D. E. Nature 2001, 414, 821–827. (b) Wagman, A. S.; Nuss, J. M. Curr. Pharm. Des. 2001, 7, 417–450. (c) van

Huijsduijnen, R. H.; Bombrun, A.; Swinnen, D. Drug Discovery Today 2002, 7, 1013–1019.

(15) Tanaka, H.; Oh-Uchi, T.; Etoh, H.; Sako, M.; Asai, F.; Fukai, T.; Sato, M.; Murata, J.; Tateishi, Y. *Phytochemistry* **2003**, *64*, 753–758.

(16) Sato, M.; Tanaka, H.; Oh-Uchi, T.; Fukai, T.; Etoh, H.; Yamaguchi, R. *Phytother. Res.* **2004**, *18*, 906–910.

(17) (a) Selepe, M. A.; Drewes, S. E.; van Heerden, F. R. *J. Nat. Prod.* **2010**, 73, 1680–1685. (b) St. Denis, J. D.; Gordon IV, J. S.; Carroll, V. M.; Priefer, R. *Synthesis* **2010**, 2010, 1590–1592.

(18) Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc. 2009, 131, 16045–16047.

(19) Miyakawa, M.; Scanlan, T. S. Synth. Commun. 2006, 36, 891–902.

(20) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1995**, *117*, 7562–7563. (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. *J. Am. Chem. Soc.* **1996**, *118*, 2521–2522.

(21) (a) Cacchi, S.; Ciattini, P. G.; Morera, E.; Ortar, G. *Tetrahedron Lett.* **1986**, 27, 5541–5544. (b) Engler, T. A.; Lynch, K. O., Jr.; Reddy,

J. P.; Gregory, G. S. Bioorg. Med. Chem. Lett. 1993, 3, 1229-1232.

(22) Hiroya, K.; Suzuki, N.; Yasuhara, A.; Egawa, Y.; Kasano, A.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 2000, 4339–4346.

(23) Li, W.; Nelson, D. P.; Jensen, M. S.; Hoerrner, R. S.; Cai, D.; Larsen, R. D.; Reider, P. J. J. Org. Chem. **2002**, 67, 5394–5397.

(24) (a) Mitsunobu, O. Synthesis 1981, 1981, 1–28. (b) Hughes, D. L. Org. React. 1992, 42, 335–656.

(25) (a) Karanewsky, D. S.; Kishi, Y. J. Org. Chem. 1976, 41, 3026–3027. (b) Daskiewicz, J.-B.; Depeint, F.; Viornery, L.; Bayet, C.; Comte-Sarrazin, G.; Comte, G.; Gee, J. M.; Johnson, I. T.; Ndjoko, K.; Hostettmann, K.; Barron, D. J. Med. Chem. 2005, 48, 2790–2804.
(c) Tang, F.; Wang, Y.; Hou, A.-J. Tetrahedron 2014, 70, 3963–3970.
(26) (a) Hurd, C. D.; Pollack, M. A. J. Org. Chem. 1939, 3, 550–569.
(b) Lauer, W. M.; Doldouras, G. A.; Hileman, R. E.; Liepins, R. J. Org. Chem. 1961, 26, 4785–4790. (c) Marvell, E. N.; Anderson, D. R.; Ong, J. J. Org. Chem. 1962, 27, 1109–1110. (d) Scheinmann, F.; Barner, R.; Schmid, H. Helv. Chim. Acta 1968, 51, 1603–1608.

(27) Coombes, C. L.; Moody, C. J. J. Org. Chem. 2008, 73, 6758–6762.

(28) (a) Kaiho, T.; Yokoyama, T.; Mori, H.; Fujiwara, J.; Nobori, T.; Odaka, H.; Kamiya, J.; Maruyama, M.; Sugawara, T. JP 06128238, 1994. (b) Kamei, T.; Shindo, M.; Shishido, K. *Tetrahedron Lett.* **2003**, 44, 8505–8507. (c) Chantarasriwong, O.; Cho, W. C.; Batova, A.; Chavasiri, W.; Moore, C.; Rheingold, A. L.; Theodorakis, E. A. *Org. Biomol. Chem.* **2009**, 7, 4886–4894.

(29) Gester, S.; Metz, P.; Zierau, O.; Vollmer, G. *Tetrahedron* 2001, 57, 1015–1018.

(30) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **1998**, 120, 815–816. (31) Cardillo, G.; Cricchio, R.; Merlini, L. Tetrahedron **1968**, 24, 4825–4831.

(32) Liu, Z.-L.; Wang, X.-J.; Li, N.-G.; Sun, H.-P.; Wang, J.-X.; You, Q.-D. *Tetrahedron* **2011**, *67*, 4774–4779.

(33) Zsindely, J.; Schmid, H. Helv. Chim. Acta **1968**, 51, 1510–1514. (34) (a) Kolokythas, G.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Kousidou, O. C.; Tzanakakis, G. N.; Karamanos, N. K. Eur. J. Med. Chem. **2007**, 42, 307–319. (b) Dai, M.; Yuan, X.; Zhu, Z.-J.; Shan, L.; Liu, R.-H.; Sun, Q.-Y.; Zhang, W.-D. Arch. Pharm. **2013**, 346, 314– 320.

(35) See the Supporting Information for details.

(36) While the specific rotation indicates that Oh and co-workers¹³ actually isolated the enantiomer (*S*)-4, the reported CD spectrum is in poor agreement. Thus, information about the absolute configuration of natural compound 4, obtained by Oh and co-workers,¹³ remains ambiguous.