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Accelerating the optimization of enzyme-
catalyzed synthesis conditions via machine
learning and reactivity descriptors†
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Enzyme-catalyzed synthesis reactions are of crucial importance for a wide range of applications. An accu-

rate and rapid selection of optimal synthesis conditions is crucial and challenging for both human knowl-

edge and computer predictions. In this work, a new scenario, which combines a data-driven machine

learning (ML) model with reactivity descriptors, is developed to predict the optimal enzyme-catalyzed

synthesis conditions and the reaction yield. Fourteen reactivity descriptors in total are constructed to

describe 125 reactions (classified into five categories) included in different reaction mechanisms.

Nineteen ML models are developed to train the dataset and the Quadratic support vector machine (SVM)

model is found to exhibit the best performance. The Quadratic SVM model is then used to predict the

optimal reaction conditions, which are subsequently used to obtain the highest yield among 109 200

reaction conditions with different molar ratios of substrates, solvents, water contents, enzyme concen-

trations and temperatures for each reaction. The proposed protocol should be generally applicable to a

diverse range of chemical reactions and provides a black-box evaluation for optimizing the reaction con-

ditions of organic synthesis reactions.

1. Introduction

In recent years, bio-enzyme-catalyzed synthesis reactions have
attracted significant attention because they can greatly reduce
the production of unnecessary products.1,2 In addition,
enzyme-catalyzed reactions can occur at 0–100 °C under
normal pressure, and they are much more energy-efficient
than traditional synthesis processes, generally with cumber-
some post-reaction treatments and environmental pollution
problems.3,4 However, the ability to accurately and rapidly
select an optimal reaction condition remains challenging for
all organic synthesis reactions, especially for enzyme-catalyzed
synthesis reactions due to large affecting factors such as the

molar ratio of substrates (mr), solvent oil–water partition
coefficient (log P), water content (W), enzyme concentration (c),
temperature (T ) and time (H). Despite many successes in
experimental research on optimal reaction conditions for
typical reactions, the fast evaluation of appropriate reaction
conditions and the prediction of the corresponding reaction
yield remain challenging due to the complex relationship
between different factors.

With the rapid development of the chemical space, tra-
ditional synthesis methods based on human knowledge cannot
meet the needs of accelerated reaction discovery.5,6 This
encourages chemists to assess chemical reactivity by using com-
puter predictions. Quantum chemical methods, especially
density functional theory (DFT), provide powerful tools to
predict reactivity trends of organic reactions, and have been
widely employed to study reaction mechanisms.7 However, such
predictions can only predict reactivity information under ideal
conditions. For typical organic synthesis reactions, reaction
yields and products are affected by reaction conditions, such as
temperatures, pressures, substrates, concentrations, etc., which
are hard to describe by traditional DFT calculations.

Machine learning (ML) models aiming to learn the corre-
lation between a sequence of descriptors and chemical reactiv-
ity now receive significant attention due to the rapid expan-
sions of the chemical space.8,9 The earlier ML model used to
predict chemical reactivity was usually recognized as the quan-
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titative structure–activity relationship (QSAR) method. For
example, Norrby and co-workers used QSAR and steric descrip-
tors to predict the regio- and stereo-selectivity in palladium-
catalyzed allylation reactions.10 Thereafter, researchers have
developed quantitative structure–selectivity relationships to
predict the various properties of chemical reactions.11–13

Recent advances in high-level quantum chemical calcu-
lations together with high-throughput experimentations and
data-mining techniques increase the data quality and also
expand the dataset, which significantly promote the use of ML
models in chemical reaction predictions. Doyle et al. used the
random forest (RF) algorithm to predict the yield of the
Buchwald–Hartwig coupling reaction at a specific temperature
and in a specific solvent using a high-throughput dataset.14

Denmark et al. carried out the accurate prediction of the
selectivity of chiral phosphoric acid catalysts for specific reac-
tions using artificial neural networks (ANN).15 Chen et al.
developed an efficient ML model to predict the reaction yields
of typical electro-organic synthesis reactions by the introduc-
tion of three electro-descriptors.16

However, as one of the promising synthesis reactions,
enzyme-catalyzed reactions have received little attention,
especially for the prediction of optimal reaction conditions
and yields. The major difficulties in the development of an ML
model for such predictions are: (1) complex factors affecting
the reaction process and (2) the appropriate descriptor defi-
nition for these factors. To this end, relatively simple descrip-
tors are introduced in the present work to describe different
factors of reaction conditions. These descriptors are then used
as the input to develop an efficient ML model, aiming to
predict the optimal reaction conditions of enzyme-catalyzed
synthesis reactions ultimately.

2. Methodologies

The first step of our work is developing a general framework.
125 reactions classified into five categories are selected,
including the aldol reaction, nitro-aldol reaction, Knoevenagel
condensation reaction, Baylis–Hillman reaction and Michael
addition reaction, only involving an Escherichia coli enzyme
(BioH) with their related reaction mechanisms (as shown in
Fig. 1).17–21 Four functional groups (aldehyde groups, nitro
groups, double bonds and halo groups) and five- and six-mem-
bered rings are contained in the structures of the substrates. It
can be seen that the structures of the substrates in the dataset
are diverse. To incorporate the information of reaction mecha-
nisms, descriptors from the molecular frontier orbital theory
are introduced. Considering the large number of species and
the molecular size of these species, the semi-empirical
PM7 method22 is used to optimize the geometries and
compute the descriptors, i.e., the highest occupied molecular
orbital energy (EiHOMO), the lowest unoccupied molecular
orbital energy (EiLUMO), the cavity surface (SiCOSMO) and the
cavity volume (ViCOSMO) based on the conduct-like screening
model for each substrate (i = 1, 2). Specifically, most of the

initial structures of the reactants/products are adopted from
the NIST Chemistry WebBook,23 while the others are derived
using the Avogadro software.24 Then, we perform geometry
optimization using the semi-empirical PM7 method.
Currently, it is hard to consider the conformer effect on the
computed properties, i.e., HOMO and LUMO energies; thus,
we use the lowest energy structures to compute quantum
chemical descriptors. The optimized structures with confor-
mers are rechecked to ensure that they are generally in good
consistency with the general knowledge of organic chemistry,
i.e., the optimized geometries are in trans-structures. All
quantum chemical calculations are performed using the
MOPAC software.25 In addition to the substrates with different
structures, mr, log P, W, c, T and H also affect the reaction.
Therefore, a total number of 14 descriptors related to reaction
yields are adopted.

The entire dataset consists of a training set (100 chemical
reactions) and a test set (25 chemical reactions) in a ratio of
80% and 20% at random. The training set is used to fit the
known data to obtain the prediction model, and the test set is
used to verify and evaluate the prediction effect. In the devel-
opment of ML models, redundant information may be carried
by some descriptors, which further increase the complexity of
ML models. Thus, the number of descriptors selected in the
models should be as small as possible to promote ML model
development and reduce computational cost. For this purpose,
correlation analysis is firstly employed to select important

Fig. 1 Five types of chemical reactions in the dataset.
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descriptors used for the development of ML models. Then, we
use the selected important descriptors as the input for 19 ML
models to explore the most accurate ML model for the optimiz-
ation of reaction conditions. Finally, the selected ML model is
employed for the prediction of optimal conditions via high-
throughput virtual screenings.

3. Results and discussion
3.1. Correlation analysis

In order to ensure the rationality of the prediction model,
there should be no serious overlap between the descriptors in
the model. Thus, the correlation degree needs to be evaluated.
The Pearson correlation coefficient (r), which can intuitively
reflect the degree of collinearity between two variables, is used
as the indicator. The correlation coefficient matrix of 14
descriptors is computed as shown in Fig. 2.

Generally, if the correlation coefficient between two descrip-
tors satisfies |r| > 0.8, it indicates that they have a strong linear
overlap relationship. Hence, it is necessary to delete one of the
descriptors. By calculating the averaged value of |r| between
one descriptor and the other descriptors |r̄|, the descriptors
with larger ones are eliminated. In the end, we eliminated
three descriptors V1COSMO, E

1
HOMO, and V2COSMO. The remaining

11 descriptors are used to further establish the prediction
model of yields.

3.2. Machine learning models

Most of the relationships between descriptors and properties
usually tend to be nonlinear. ML algorithms are very suitable
to fit nonlinear mathematical relationships. However, different
types of ML models have different core algorithms, which are
suitable for different datasets. Thus, the selection of appropri-
ate ML algorithms is crucial for the accurate prediction of reac-
tion yields. It is worth noting that it is hard to consider all
existing ML methods due to the rapid development of various
algorithms. Herein, we use 19 typical ML models based on
their availability in the widely used MATLAB software.26 These
models include three regression trees (RT), six support vector
machines (SVM), four Gaussian process regressions (GPR), two
ensemble trees (ET), and four artificial neural networks (ANN)
for model comparison as listed in Table 1. These models cover
the widely used ML algorithms in chemistry nowadays. For
ANN based on an error back propagation algorithm (BP-ANN),
the Andrea rule and Xu Lu rule are used to determine the
number of hidden layers.27,28 Trainlm is selected as the train-
ing function, and the activation function in the neuron is
Sigmoid. The remaining hyper-parameters of other ML models
adopt the system default values; all ML model development
and validation are carried out using the MATLAB software.26

The coefficient of determination (R2) and the root mean
square error (RMSE) of the test set are used to describe the
accuracy of the prediction results. The larger the R2 value, the
smaller the RMSE value, indicating a better external predictive

Fig. 2 The computed correlation coefficient matrix of the 14 descriptors.
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ability of the model. Table 1 also shows the test results of the
two values from different ML models. Generally, a model with
a large R2 value is accompanied by a small RMSE value. It is
found that the Quadratic SVM model has the highest R2 value
and the lowest RMSE value (R2Test = 0.86; RMSE = 10.1%)
among the 19 ML models, indicating that this model has an
excellent accuracy for predicting the yield of enzyme-catalyzed
synthesis in the dataset. In addition, it can be seen that only
the Quadratic SVM model exhibits an R2 value exceeding 0.8.
Thus, this model is employed for further studies.

The Quadratic SVM model is then used to evaluate its per-
formance in the prediction of reaction yields for both the
training and test datasets as shown in Fig. 3. For both the
training and test datasets, most of the scattered points are
evenly distributed around the straight line y = x (i.e., predicted

value = experimental value), indicating that the developed ML
model shows good prediction accuracy. The value of R2Train is
0.88, indicating that the model fits the relationship between
the descriptor and the yield well. The difference of R2 between
the training set and the test set is only 0.02, which implies
that the model has overcome the problem of overfitting during
the training process. As the Quadratic SVM model is an ML
model with a quadratic function as the basis function, the
relationship between the descriptors and the yield tends to be
quadratic.

In order to show the necessity of deleting high-relevance
descriptors, Quadratic SVM is used to establish a prediction
model for the 14 original descriptors and the remaining 11
descriptors after removing the high-relevance descriptors. The
R2Test value of the former is 0.87 and that of the latter is 0.86.
The difference between them is only 0.01, but there is a signifi-
cant difference in the prediction speed. The prediction speed
of the model without descriptors removed is ∼2500 per
second. After excluding high-correlation descriptors, the pre-
diction speed is increased to 3100 per second. This shows that
the introduction of high-relevance descriptors will not signifi-
cantly improve the prediction accuracy, but it will have a
serious impact on the speed of modeling.

In order to further prove that the Quadratic SVM model has
a universal predictive ability for different types of reactions, we
leave one type out as a test set. The predicted results for
different reactions are shown in Table 2.

It can be seen in Table 2 that for different types of chemical
reactions, the R2 value of the test set ranges from 0.77 to 0.87,
which is very close to 1, indicating that Quadratic SVM can
effectively predict different types of reactions, and this model
has excellent robustness.

Considering that the division of the training set and test set
is random, the model will be affected by random factors. As
one of the most commonly used verification methods, 10-fold
cross-validation can effectively avoid the influence of random-
ness. It divides the entire dataset into 10 parts, 9 of which are
used for training, and the other part is used for performance
evaluation. The advantage of this method is that each sample
can be used as test data for training and verification only once,
which has greater credibility than random sampling. The
cross-validation coefficients (Q2) of the 19 ML models are
shown in Table 3.

The model with a higher Q2 value has better stability; it can
be seen in Table 3 that the Quadratic SVM model has the
highest stability, indicating that the choice of it is reasonable.

Table 1 The R2 and RMSE values from different ML models for the test
set

Model R2 RMSE (%)

Coarse Gaussian SVM 0.27 26.7
Elman ANN 0.29 26.1
RBF ANN 0.33 25.6
Simple Tree 0.36 25.1
Cubic SVM 0.4 24.4
Linear SVM 0.41 24.1
Medium Tree 0.46 23.1
Bagged Trees 0.48 22.6
GRNN 0.51 21.4
Complex Tree 0.54 21.2
BP ANN 0.57 20.3
Boosted Trees 0.6 19.8
Fine Gaussian SVM 0.61 19.6
Matern 5/2 GPR 0.66 18.3
Medium Gaussian SVM 0.66 18.1
Rational Quadratic GPR 0.7 17.1
Exponential GPR 0.71 16.8
Squared Exponential GPR 0.74 15.9
Quadratic SVM 0.86 10.1

Fig. 3 Predicted reaction yields using the Quadratic SVM model for
both the training and test datasets.

Table 2 Predictive performance of the Quadratic SVM model for
different types of chemical reactions

No. Training set Test set R2Test

1 30–125 1–29 0.84
2 1–29, 54–125 30–53 0.79
3 1–53, 76–125 54–75 0.81
4 1–75, 102–125 76–101 0.87
5 1–101 102–125 0.77
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3.3. Optimizing reaction conditions via high-throughput
virtual screenings

As shown previously, the ultimate goal of developing appropri-
ate ML models is to accurately predict the optimal reaction
conditions to obtain the highest reaction yield for specific pro-
ducts. Herein, three enzyme-catalyzed reactions outside the
dataset shown in Fig. 4 are used to further validate the
Quadratic SVM model. They have different but similar struc-
tures to reactions 1, 102 and 54 in Table S1,† respectively.

Reactions 1, 2, and 3 in Table 4 have the same reaction con-
ditions as reactions 1, 102, and 54 in Table S1,† but the posi-
tions of the nitro substituents are changed from para to meta,
ortho, and ortho positions, respectively. They are also used for
reaction condition optimization. Table 4 lists the corres-
ponding initial reaction conditions for the three reactions. The
Quadratic SVM model is used to predict the reaction yields
against the experimental results as shown in Fig. 4.

It can be seen that the developed Quadratic SVM ML model
can accurately predict the reaction yields compared with the
experimental results. Therefore, it is proved that the developed
Quadratic SVM ML model not only exhibits good external pre-
diction ability for the dataset in this work, but also shows
good prediction accuracy for samples outside the dataset. To
further evaluate the applicability of the developed ML model,
we perform high-throughput virtual screenings for the three
reactions by changing the different reaction factors that are
affecting the reaction yield to obtain the optimal reaction con-
ditions. It is worth noting that the optimal conditions
obtained in the literature are relative rather than absolute.
This work traverses all the conditions through the ML model,
and can obtain the potential optimal conditions. Especially for
reactions 2 and 3 in Table 4, we have found new optimal con-
ditions, which can provide a reference and guidance for exper-
imenters to carry out efficient synthesis. Considering that reac-
tion 2 in Table 4 and reaction 102 in Table S1† belong to the
same reaction type and have similar structures, reactions
102–108 in Table S1† are the process of single-factor optimiz-
ation of the reaction concentration. It can be seen that as the

Table 3 The Q2 values from different ML models

Model Q2

Cubic SVM 0.25
Elman ANN 0.29
Linear SVM 0.29
Coarse Gaussian SVM 0.31
Medium Tree 0.35
Simple Tree 0.36
RBF ANN 0.38
Complex Tree 0.39
Bagged Trees 0.43
Boosted Trees 0.49
GRNN 0.51
Fine Gaussian SVM 0.58
Medium Gaussian SVM 0.59
Rational Quadratic GPR 0.62
BP ANN 0.62
Matern 5/2 GPR 0.63
Squared Exponential GPR 0.63
Exponential GPR 0.64
Quadratic SVM 0.75

Fig. 4 The three enzyme-catalyzed synthesis reactions used for ML model validation and reaction condition optimization.

Table 4 Names and values of different factors

No. Reaction mr Solvent W c T H Predicted yield (%)

1 Initial conditions 15 Cyclohexane 20 1.5 37 200 66
Optimal conditions 15 Cyclohexane 20 2 45 200 73

2 Initial conditions 1 Dimethyl formamide 0 1 37 120 20
Optimal conditions 15 Dimethyl sulfoxide 0 5 50 120 70

3 Initial conditions 15 Dimethyl formamide 20 3 37 168 40
Optimal conditions 10 Dimethyl sulfoxide 20 6 40 168 71
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concentration increases, the yield of the reaction also
increases, indicating that in the predicted optimal conditions,
the result of c = 5 is credible to a certain extent. For reaction 3
in Table 4, its initial conditions are the same as those of reac-
tion 54 in Table S1,† and their reactants are relatively similar
in structure. Reactions 54–59 in Table S1† are the process of
single-factor optimization of the solvent. It can be seen that as
the log P value increases, the yield of the reaction continues to
decrease. Therefore, it is reasonable to choose dimethyl sulfox-
ide with the smallest log P value in the optimal conditions of
prediction. Reactions 66–70 and 54 in Table S1† are the single-
factor optimization of the concentration, and it can be seen
that the increase of the concentration leads to an increase of
the yield. Therefore, in the predicted optimal conditions, c = 6
is also acceptable. However, there are also mutual influences
between different reaction factors. However, the results of
theoretical predictions still need to be verified by experiments.

Table 5 lists the factors and their corresponding ranges
used for high-throughput virtual screenings. The changes in
the substrate structure and the reaction time of the chemical
reactions are not considered in the screening process, since
they usually involve reaction mechanism studies and are not
changed too much in real synthesis experiments. Five reaction
factors, including seven kinds of substrate molar ratios, ten
kinds of solvents, thirteen kinds of water contents, twelve
kinds of enzyme concentrations and ten kinds of tempera-
tures, are shown in Table 5. A total number of 109 200 reaction
conditions for each reaction are calculated by combining these
factors. The developed Quadratic SVM model is used to predict
the reaction yields of these different conditions, and the pre-
dicted optimal conditions with the highest yields for the three
reactions are listed in Table 4. The number of processor cores
of the computer is 2, the memory is 128 MB, and the CPU
model is Intel i5-2415M, which can reach a speed of predicting
60 000 responses within one minute.

4. Conclusion

This work proposes a novel scenario that combines the data-
driven machine learning method and descriptors to optimize
the reaction conditions of enzyme-catalyzed synthesis. The
descriptors related to the synthesis yield are obtained via
quantum chemistry calculation and the collection of reaction
conditions. Correlation analysis is used to delete overlapping

descriptors. The remaining eleven descriptors are used to
build a machine learning model for the prediction of reaction
yields. The Quadratic SVM model exhibits the best agreement
with the experimental results. It is further used to predict the
yield of three reactions with 109 200 conditions, and then the
optimal conditions corresponding to the highest yield are cal-
culated. This work can quickly find the optimal reaction con-
ditions and provide guidance for the design of organic syn-
thesis reactions.

Code availability

The code is available on the GitHub website (https://github.
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