ISSN 1070-3632, Russian Journal of General Chemistry, 2007, Vol. 77, No. 5, pp. 932–935. © Pleiades Publishing, Ltd., 2007. Original Russian Text © O.V. Shablykin, A.V. Golovchenko, V.S. Brovarets, B.S. Drach, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 5, pp. 837–841.

Reaction of 2-Aryl(methyl)-4-cyano-5-hydrazino-1,3-oxazoles with Aryl Isothiocyanates

O. V. Shablykin, A. V. Golovchenko, V. S. Brovarets, and B. S. Drach

Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 1, Kiev, 02660 Ukraine e-mail: drach@bpci.kiev.ua

Received October 9, 2006

Abstract—Accessible 2-aryl(methyl)-4-cyano-5-hydrazino-1,3-oxazoles add to aryl isothiocyanates. The resulting products undergo recyclization to form new 1,3,4-thiadiazole derivatives bearing an acylamino group on C^2 and an (acylamino)(cyano)methyl group on C^5 . The structure of the new compounds was proved by their IR and ¹H NMR spectra, as well as by conversion in other 1,3,4-thiadiazole derivatives. **DOI:** 10.1134/S1070363207050209

Proceeding with the research on transformations of substituted 5-hydrazino-1,3-oxazoles (I) [1-3] we have studied reaction of accessible bases I with aryl isothiocyanates. As shown in the scheme, the reaction produces initially expected adducts II that are capable of prototropism. Prototropic tautomers III lack the aromatic oxazole ring, and, therefore, they can undergo recyclization under fairly mild conditions (heating in dioxane) to form new 1,3,4-thiadiazole derivatives IV (Table 1). Analogous recyclization also occurs in the reactions of bases I with alkyl and aryl isothiocyanates [3]. However, in spite of this analogy, the structure of compounds IV, because of their intricate formation route, had to be reliably confirmed by spectral and chemical methods. The presence of the RCONHCHC=N fragment in the recyclization products follows no only from the IR and ¹H NMR spectra (Table 2), but also was proved by the $IV \rightarrow V$ transformation. This transformation readily occurs in trifluoroacetic acid already at 20-25°C, which is characteristic of many simpler α -acylaminonitriles [4]. The involvement of the acylamino fragment and the C=N bond in the cyclization is consistent the absence from the ¹H NMR spectra of compounds V of two doublet signals at 6.54-6.81 and 9.52-10.10 ppm, characteristic of the CHNH fragment in compounds IV. Furthermore, the presence of the unstable 5-amino-1,3-oxazole fragment in compounds V is evidenced by the fact that the latter are cleaved by aqueous acetic acid to give new-type 1,3,4-thiadiazole derivatives VI.

However, from the preparative viewpoint, instead of the $V \rightarrow VI$ transformation, one can take better advantage of the acid hydrolysis $IV \rightarrow VI$ that occurs already at 20–25°C. The acid hydrolysis of all the

three types of relative compounds **IV–VI** in rigid conditions is accompanied by deacylation and decarboxylation to form, presumably, one and the same compound, 2-amino-5-(methylamino)-1,3,4-thiadiazole hydrochloride (**VII**). The latter, while not isolated individual, was converted into diacetyl derivative **VIII** which was previously obtained by independent synthesis [5]. Thus, the assignment of compounds **IV–VI** to 1,3,4-thiadiazoe derivatives is beyond doubt.

In summary we can conclude that attempted synthesis of one more type of related compounds IX containing, along with the thiadiazole ring, an α amino acid moiety failed. Treatment of amide VI with nitrous acid even under very mild conditions gave a complex mixture of compounds, that contained no acid IX. At the same time, compounds IV and VI in the scheme may well be considered as derivatives of not only 1,3,4-thiadiazole, but also of glycine, which is of no low importance for their assessment as potential bioregulators.

EXPERIMENTAL

The IR spectra were recorded on a Specord M-80 spectrometer in KBr. The 1H NMR spectra were obtained on a VXR-300 instrument in DMSO- d_6 , internal reference TMS.

2-(Acylamino)-2-(2-acylamino-1,3,4-thiadiazol-5yl)acetonitriles IVa–IVf. Acyl isothiocyanate, 0.01 mol, was added to a stirred solution of 0.01 mol of compound Ia–Ic [1–3] in 20 ml of anhydrous dioxane. The mixture was refluxed for 15 min, cooled

 $R = Mf (Ia, IIa-IIc-Va-Vc), Ph (Ib, IId-IIf-Vd-Vf, VIa, VIb; IXa, IXb), 4-MeC_6H_4 (Ic, IIg, IIh-Vg, Vh; VIc, Vd; IXc, IXd); R' = Me (IIa, IId-Va, Vd), EtO (IIb, IIe, IIg-Vb, Ve, Vg; VIb, VIc; IXb, IXc), Ph (IIc, IIf, IIh-Vc, Vf, Vh; VId, IXd).$

Table 1	1.	Yields,	constants,	and	elemental	analyses	of	compounds	IV-VI	and	VIII
---------	----	---------	------------	-----	-----------	----------	----	-----------	-------	-----	------

Comp. no.	Yield,		Fou	nd, %		Calculated, %	
	%	mp, °C (solvent for crystallization)		S	Formula	N	S
IVa	66	247–248 (EtOH)	29.11	13.52	C ₈ H ₀ N ₅ O ₂ S	29.27	13.40
IVb	71	246–246 (dioxane)	25.85	12.33	$C_{9}H_{11}N_{5}O_{3}S$	26.01	11.91
IVc	90	290–292 (dioxane)	23.03	10.72	$C_{13}H_{11}N_5O_2S$	23.24	10.64
IVd	82	>300 decomp. (EtOH)	23.01	10.75	$C_{13}H_{11}N_5O_2S$	23.24	10.64
IVe	70	>300 decomp. (dioxane)	21.01	9.53	$C_{14}H_{13}N_5O_3S$	21.14	9.68
IVf	92	260–262 (dioxane)	19.10	8.68	$C_{18}H_{13}N_5O_2S$	19.27	8.82
IVg	75	>300 decomp. (dioxane)	20.08	9.14	$C_{15}H_{15}N_5O_3S$	20.28	9.28
IVh	87	255–257 (dioxane)	18.42	8.30	$C_{19}H_{15}N_5O_2S$	18.56	8.49
Va	85	245–246 decomp. (dioxane)	29.05	13.35	$C_8H_9N_5O_2S$	29.27	13.40
Vb	95	197–198 (CF ₃ COOH–MeOH, 1:10)	25.80	11.73	$C_9H_{11}N_5O_3S$	26.01	11.91
Vc	93	195–196 (CF ₃ COOH–MeOH, 1:10)	23.15	10.75	$C_{13}H_{11}N_5O_2S$	23.24	10.64

Table	1.	(Conto	l.)
		(~ /

Comp.	Yield,	mp, °C (solvent dor crystallization)		nd, %	Earraula	Calculated, %	
no.	%			S	Formula	N	S
Vd	91	285–286 decomp. (dioxane)	22.90	10.82	C ₁₃ H ₁₁ N ₅ O ₂ S	23.24	10.64
Ve	96	>300 decomp. $(CF_3COOH-MeOH, 1:10)$	21.03	9.79	$C_{14}H_{13}N_5O_3S$	21.14	9.68
Vf	94	268–269 (CF ₃ COOH–MeOH ,1:10)	19.13	8.70	$C_{18}H_{13}N_5O_2S$	19.27	8.82
Vg	97	>300 decomp. (CF ₃ COOH–MeOH, $1:10$)	20.11	9.09	$C_{15}H_{15}N_5O_3S$	20.28	9.28
Vh	92	260–261 (CF ₃ COOH–MeOH, 1:10)	18.44	8.32	$C_{19}H_{15}N_5O_2S$	18.56	8.49
VIa	55 ^a	290–291 (DMSO–H ₂ O, 1:10)	21.87	9.98	$C_{13}H_{13}N_5O_3S$	21.93	10.04
VIb	90 ^a	233–235 decomp. (CH ₃ COOH–H ₂ O, 10:1)	19.89	9.34	$C_{14}H_{15}N_5O_4S$	20.01	9.17
VIc	87 ^a	203–205 decomp. (CH ₃ COOH–H ₂ O, 10:1)	19.07	8.95	C ₁₅ H ₁₇ N ₅ O ₄ S	19.27	8.82
VId	85 ^a	266–267 decomp. (CH ₃ COOH–H ₂ O, 10:1)	17.51	8.23	C ₁₉ H ₁₇ N ₅ O ₃ S	17.71	8.11
VIII	51	290–292 ^b (EtOH–H ₂ O, 2:1)	26.31	15.01	$C_7H_{10}N_4O_2S$	26.15	14.97

^a Yield by procedure *a*. ^b Published data [5]: mp 292°C.

Table	2.	Spectral	data	of	compounds	IV-	-VI	and	VIII
-------	----	----------	------	----	-----------	-----	-----	-----	------

Comp. no.	IR spectrum (KBr), v, cm ⁻¹	¹ H NMR spectrum (DMSO- <i>d</i> ₆), δ, ppm
IVa	1675 (NC=O), 1705 (NC=O), 3100-3450	1.95 s (3H, CH ₃), 2.20 s (3H, CH ₃), 6.61 d (1H, CH, ³ J _{HH} 7.8 Hz),
	(NH as.)	9.55 d (1H, NH, ${}^{3}J_{HH}$ 7.8 Hz), 12.70 br.s (1H, NH)
IVb	1660 (NC=O), 1725 (OC=O), 3150-3400	1.29 t (3H, CH ₃), 1.94 s (3H, CH ₃), 4.25 q (2H, OCH ₂), 6.54 d (1H,
	(NH as.)	CH, ${}^{3}J_{\text{HH}}$ 8.1 Hz), 9.52 d (1H, NH, ${}^{3}J_{\text{HH}}$ 8.1 Hz), 12.28 br.s (1H, NH)
IVc	1675 ^a (NC=O), 3100–3380 (NH as.)	1.98 s (3H, CH ₃), 6.58 d (1H, CH, ${}^{3}J_{HH}$ 7.5 Hz), 7.56 m (3H _{arom}),
		8.14 d (2 H_{arom}), 9.55 d (1H, NH, ${}^{3}J_{HH}$ 7.5 Hz), 13.19 s (1H, NH)
IVd	1670 ^a (NC=O), 3000–3300 (NH as.)	2.19 s (3H, CH ₃), 6.81 d (1H, CH, ${}^{3}J_{\text{HH}}$ 7.5 Hz), 7.50 m (3H _{arom}),
		$7.92 \text{ d} (2\text{H}_{\text{arom}}), 10.07 \text{ d} (1\text{H}, \text{NH}, {}^{3}J_{\text{HH}}, 7.5 \text{ Hz}), 12.69 \text{ br.s} (1\text{H}, \text{NH})$
IVf	1650 (NC=O), 1730 (NC=O), 3100–3300	6.81 d (1H, CH, ${}^{3}J_{\text{HH}}$ 8.1 Hz), 7.56 m (6H _{arom}), 7.95 d (2H _{arom}),
	(NH as.)	8.12 d ($2H_{arom}$), 10.10 d (1H, NH, $^{3}J_{HH}$ 8.1 Hz), 13.20 br.s (1H, NH)
IVg	1655 (NC=O), 1730 (C=O), 3100–3400	$1.32 \text{ t} (3\text{H}, \text{CH}_3), 2.37 \text{ s} (3\text{H}, \text{CH}_3), 4.24 \ddagger (2\text{H}, \text{OCH}_2), 6.69 \text{ d} (1\text{H}, 1\text{H})$
	(NH as.)	CH, J_{HH} 7.8 Hz), 7.27 d (2H _{arom}), 7.82 d (2H _{arom}), 9.93 d (1H,
TX 71	1(50 (NG O) 1(90 (NG O) 2100 2250	NH, ${}^{3}J_{\text{HH}}$ 7.8 Hz), 12.25 br.s (1H, NH)
Ivn	1650 (NC=0), 1680 (NC=0), 3100-3350	2.40 s (1H, CH ₃), 6.79 d (1H, CH, ${}^{3}J_{\text{HH}}$ 7.8 Hz), 7.31 d (2H _{arom}),
	(NH as.)	$7.00 \text{ m} (3H_{\text{arom}}), 7.84 \text{ d} (2H_{\text{arom}}), 8.11 \text{ d} (2H_{\text{arom}}), 10.01 \text{ d} (1H, 1H)$
Ve	1670^{a} (NC-0.5) 2800 2200 (NH as)	NIT, J_{HH} 7.6 IIZ), 15.19 U.S (1II, NII) 2.16 c (2H CH) 2.21 c (2H CH) 6.52 hr c (2H NH) 12.14 hr c
va	1070 (NC=0, $0_{\rm NH_2}$), 2000–3200 (NH as.),	(11 NH)
Vh	1670^{a} (NC-O δ_{cm}) 1725 (OC-O) 2800	(111, 101) 1 30 t (3H CH ₂) 2 32 s (3H CH ₂) 4 22 a (2H OCH ₂) 6 61 br s
۷IJ	$(NC=0, 0_{NH_2}), 1725 (OC=0), 2800 = 3200 (NH_{as}), 3350, 3425 (NH_{as})$	$(2H \ NH_{2})$ 11 79 hr s (1H NH)
Ve	1650^{a} (NC=0 $\delta_{\rm NW}$) 3000–3300 (NH as)	(211, 1012), (11.7) of s (111, 101) 2 31 s (3H CH ₂) 6 69 hr s (2H NH ₂) 7 52 m (3H $_{\odot}$) 8 11 d
ve	$3350 3420 (NH_2)$	(2H) 12.78 br s (1H NH)
Vd	$1650 \text{ (NC=0, } \delta_{\text{NH}} \text{)}, 2700-3250 \text{ (NH as.)},$	2.20 s (3H, CH ₂), 7.27 br.s (2H, NH ₂), 7.50 m (3H,), 7.83 d
	$3270, 3380 (NH_2)$	$(2H_{arom})$, 12.41 br.s (1H, NH)
Ve	1650^{a} (NC=O, δ_{NH}), 1740 (OC=O), 2800–	1.32 t (3H, CH ₂), 4.27 g (2H, OCH ₂), 7.07 br.s (2H, NH ₂), 7.47 m
	3250 (NH as.), 3300 , 3430 (NH ₂)	(3H _{arom}), 7.83 d (2H _{arom}), 11.88 br.s (1H, NH)
Vf	1650 ^a (NC=O, δ_{NH_2}), 2800–3100 (NH as.),	7.18 br.s (2H, NH ₂), 7.51 m (6H _{arom}), 7.87 d (2H _{arom}), 8.15
	3320, 3450 (NH ₂)	(2H _{arom}), 12.60 br.s (1H, NH)
Vg	1655^{a} (NC=O, δ_{NH_2}), 1720 (O=OC), 2800–	1.31 t (3H, CH ₃), 2.37 s (3H, CH ₃), 4.24 q (2H, OCH ₂), 7.00 br.s
	3200 (NH as.), ² 3325, 3420 (NH ₂)	(2H, NH ₂), 7.35 d (2H _{arom}), 7.60 d (2H _{arom}), 11.87 br.s (1H, NH)
	1	

Table 2. (Contd.)

Comp. no.	IR spectrum (KBr), v, cm^{-1}	¹ H NMR spectrum (DMSO- d_6), δ , ppm
Vh	1650 ^a (NC=O, δ_{NH_2}), 2800–3180 (NH as.),	2.38 s (3H, CH ₃), 7.12 br.s (2H, NH ₂), 7.27 d (2H _{arom}), 7.61 m
VIa	3340, 3460 ² (NH ₂) 1635 (NC=O), 1700 ^a (NC=O), 2800–3400 (NH as.)	(3H _{arom}), 7.75 d (2H _{arom}), 8.14 d (2H _{arom}), 12.87 br.s (1H, NH) 2.18 s (3H, CH ₃), 5.95 d (1H, CH, ${}^{3}J_{\text{HH}}$ 7.7 Hz), 7.51 m (3H _{arom}), 7.55 br.s, 7.83 br.s (2H, NH ₂), 7.93 d (2H _{arom}), 9.23 d (1H, NH,
VIb	1645 ^a (NC=O), 1730 ^a (OC=O), 2800–3400 (NH as.)	${}^{3}J_{\text{HH}}$ 7.7 Hz), 12.48 br.s (1H, NH) 1.28 t (3H, CH ₃), 4.22 q (2H, OCH ₂), 5.80 d (1H, CH, ${}^{3}J_{\text{HH}}$ 8.1 Hz), 7.51 m (5H, 3H _{arom} , NH ₂), 7.93 d (2H _{arom}), 9.08 d (1H, NH, ${}^{3}J_{\text{HH}}$
VIc	1645 ^a (NC=O), 1705, 1740 (NC=O, OC=O), 2800–3500 (NH as.)	8.1 HZ, 12.02 bits (1H, NH) 1.28 t (3H, CH ₃), 2.38 s (3H, CH ₃), 5.91 d (1H, CH, ${}^{3}J_{\text{HH}}$ 7.8 Hz), 7.27 d (2H _{arom}), 7.47 br.s, 7.74 br.s (2H, NH ₂), 7.81 d (2H _{arom}), 8.97 d (1H, NH) ${}^{3}L_{\text{err}}$ 7.8 Hz), 12.00 br.s (1H, NH)
VId	1645 ^a (NC=O), 1665, 1680 (NC=O), 2800– 3400 (NH as.)	2.39 s (3H, CH ₃), 5.97 d (1H, CH, ${}^{3}J_{HH}$ 7.5 Hz), 7.27 d (2H _{arom}), 7.52 (3H _{arom}), 7.60 br.s, 7.79 br.s (2H, NH ₂), 7.84 d (2H _{arom}),
VIII	1655 (NC=O), 1700 (NC=O), 2900–3280 (NH as.)	8.11 d ($^{2}H_{arom}$), 9.02 d (1H, NH, $^{3}J_{HH}$ 7.5 Hz), 12.97 br.s (1H, NH) 1.88 s (3H, CH ₃), 2.16 s (3H, CH ₃), 4.48 d (2H, CH ₂ , $^{3}J_{HH}$ 5.7 Hz), 8.63 t (1H, NH), 12.34 br.s (1H, NH)

^a Band with a shoulder.

to $20-25^{\circ}$ C, the precipitate was filtered off, and compounds **IVa–IVf** were purified by crystallization from dioxane.

2-(Acylamino)-5-[2-aryl(methyl)-5-amino-1,3oxazol-4-yl]-1,3,4-thiadiazoles Va–Vf. A solution of 0.01 mol of compound IVa–IVf in 20 ml of trifluoroacetic acid was left to stand for 10 min at 20– 25°C, poured into 200 ml of ice water, the solution was neutralized to pH ~7 with aqueous sodium carbonate, the precipitate was filtered off, and compounds Va–Vf were purified by crystallization.

2-(Acylamino)-2-(2-acylamino-1,3,4-thiadiazol-5yl)acetamides VIa–IVd. *a*. A solution of 0.002 mol of compound Vd, Ve, Vg, or Vh in 10 ml of 70% acetic acid was refluxed for 2–3 h, the solvent was removed in a vacuum, the residue was treated with a 5% solution of sodium hydrocarbonate, the precipitate was filtered off, washed with water, and compounds VIa–VId were purified by crystallization.

b. A solution of 0.004 mol of compound Vd, Ve, Vg, or Vh in 2 ml of conc. H_2SO_4 was left to stand for 6 h at 20–25°C, poured into 100 ml of ice water, neutralized with 10% sodium carbonate, the precipitate was filtered off, and compounds VIa–VId were purified by reprecipitation from acetic acid with water (10:1). The yields of compounds VIa–VId were 60–70%. Mixed samples of samples of compounds VIa–VId prepared by procedures *a* and *b* gave no melting point depression.

2-(Acetylamino)-5-(acetylaminomethyl)-1,3,4thiadiazole (VIII). A suspension of 0.01 mol of compound IV–VI in 20 ml of 30% HCl was refluxed for 6 h, the precipitate was filtered off, the mother liquor was evaporated in a vacuum to dryness, the residue was treated with acetone, filtered off, dried, and dissolved in 20 ml of pyridine. Acetic anhydride, 0.06 mol, was then added, the mixture was stirred for 4 h at 50°C, the solvent was removed in a vacuum, the residue was treated with water, filtered, and compound VIII was purified by crystallization. A mixture of this sample of compound VIII and a sample of the same compound obtained by the known procedure [5] gave no melting point depression.

REFERENCES

- Pil'o, S.G., Brovarets, V.S., Vinogradova, T.K., Chernega, A.N., and Drach, B.S., *Zh. Obshch. Khim.*, 2001, vol. 71, no. 2, p. 310.
- Golovchenko, A.V., Pil'o, S.G., Brovarets, V.S., Chernega, A.N., and Drach, B.S., *Zh. Obshch. Khim.*, 2005, vol. 75, no. 3, p. 461.
- Golovchenko, O.V., Pilyo, S.G., Brovarets, V.S., Chernega, A.N., and Drach, B.S., *Heteroatom. Chem.*, 2004, vol. 15, no. 6, p. 454.
- Turchi, I.J., Oxazoles. The Chemistry of Heterocyclic Compounds, Turchi, I.J., Ed., New York: Wiley, 1986, vol. 45.
- 5. Ohta, M. and Koyata, H., J. Pharm. Soc. Jpn., 1952, vol. 72, p. 1636, Chem. Abstr., 1953, vol. 47, 9324a.