Synthesis and Biological Evaluation of E-Selectin Antagonists that Present Different Carbohydrate Ligands in a Multivalent Format

Gebhard Thoma,* Franz Schwarzenbach

Novartis Institutes for BioMedical Research, Lichtstrasse 35, WSJ-507.4.12, 4056 Basel, Switzerland Fax +41(61)3246735; E-mail: gebhard.thoma@pharma.novartis.com

Received 12 January 2005

Dedicated to Prof. Bernd Giese on the occasion of his 65th birthday

Abstract: The synthesis of the first polylysine conjugates that present different carbohydrate ligands in a multivalent format is reported. Glycopolymers **3c** and **3d** have been prepared with a highly predictable composition as indicated by ¹H NMR. They function as multivalent E-selectin inhibitors but their potencies are not superior compared to previously-described related compounds.

Key words: sialyl Lewis X, slectins, glycopolymers, multivalency, carbohydrate chemistry

The interactions of E-selectin, a vascular endothelial cell surface protein, with its physiological glycoprotein ligand mediates leukocyte rolling on the blood vessel wall.¹ Inhibition of this early stage of the inflammatory response prevents excessive leukocyte recruitment and thus is a potential therapy for acute and chronic inflammatory disorders such as reperfusion injuries, psoriasis, rheumatoid arthritis, or respiratory diseases.² The tetrasaccharide sialyl Lewis X (1, sLe^x; Figure 1) is the minimum epitope recognized by E-selectin.³ The concentration of sLe^x to achieve 50% inhibition (IC₅₀) was determined to be 1000– 2000 μ M in a static, cell-free E-selectin binding assay⁴ which is in line with the observation that monovalent carbohydrate-protein interactions are generally very weak $(K_D = 10^{-3} - 10^{-4} \text{ M}^{-1})$.⁵ While modifying sLe^x we discovered the simplified analogue 2 (Figure 1) which showed 30-fold improved potency (IC₅₀ = 36 μ M) compared with sLe^x.^{6,7}

In some cases high affinity inhibitors can be obtained by multivalent presentation of low affinity ligands.⁸ Polymers, liposomes and protein conjugates containing sLe^x or similar carbohydrates have been described.⁹ We have prepared multivalent sLe^x–polyaspartic acid conjugates¹⁰ and poly-L-lysine–sLe^x conjugates¹¹ but did not observe improved potencies. However, multivalent polylysine conjugates of antagonist **2**, such as **3a** and **3b** (Scheme 1, Table 1) were highly active E-selectin inhibitors with IC₅₀ values as low as 0.04 μ M in the binding assay. Furthermore, these glycopolymers reduced neutrophil rolling on activated endothelial cells both in vitro and in vivo.^{12,13}

We here report on the synthesis, characterization and biological evaluation of compounds **3c** and **3d**, the first polyl-

SYNTHESIS 2005, No. 9, pp 1491–1495 Advanced online publication: 07.04.2005 DOI: 10.1055/s-2005-865299; Art ID: C00205SS © Georg Thieme Verlag Stuttgart · New York

Figure 1 E-Selectin antagonists and carbohydrate ligands incorporated in polylysine conjugates. *gal:* D-galactose; *glcNAc: N*-acetyl-D-glucosamine; *sia:* sialic acid; *fuc:* L-fucose; THP: tetrahydropyran

ysine conjugates with different carbohydrate ligands (Scheme 1).

The essential pharmacophores of sLe^x and **2** required to bind to E-selectin are the carboxylic acid function, all three OH-groups of the L-fucose as well as the 4-OH and 6-OH groups of the galactose.¹⁴ We have shown that the tetrahydropyran of antagonist **2** mainly functions as spacer to keep the pharmacophores in the appropriate positions with respect to each other.¹⁵ To study if random expression of all important pharmacophores in a multivalent format would lead to a potent antagonist we designed glycoconjugate **3c** containing multiple copies of galactose derivative **R⁴-S**- and fucose derivative **R⁵-S**-, which are fragments of antagonist **2**.

Scheme 1 Synthesis of carbohydrate-polylysine conjugates

 Table 1
 E-Selectin Inhibition^a

Com pound	R ⁱ (% cont.)	R ⁱⁱ (% cont.)	R ⁱⁱⁱ (% cont.)	IC ₅₀ bind. ^b [μM]
1	monovalent			1000-2000
2	monovalent			36
3a	R ² (35)	_	R ⁶ (65)	0.04
3b	R ² (20)	-	R ⁶ (80)	0.18
3c	R ⁴ (30)	R ⁵ (30)	R ⁶ (40)	1900
3d	R ² (20)	_	R ⁴ (80)	0.40

^a For R groups, see Figure 1.

^b For multivalent compounds concentrations refer to carbohydrate ligand concentrations but not to macromolecule concentration.

Scheme 2 *Reagents and conditions*: (a) NIS, F₃CSO₃H, CH₂Cl₂, -10 °C; (b) 1. Pd/C, H₂, dioxane–H₂O 5:1, 20 °C; 2. NaOH, CH₃OH, 20 °C; (c) γ-thiobutyrolactone, Et₃N, CH₃OH, 64 °C; NIS: *N*-iodosuccinimide; Z: benzyl oxycarbonyl; Bn: benzyl; Bz: benzoyl

The structure of the physiological E-selectin ligand has not been fully elucidated¹⁶ but there is evidence that additional fucose residues in the proximity of sLe^x are required for high affinity binding.¹⁷ Glycopolymer **3d** with fucose derivative **R⁵-S**- in addition to the potent sLe^x mimic **R²-S**- was designed to study the role of additional fucose residues in close proximity to the potent sLe^x-like E-selectin inhibitor **2** in a multivalent format.

The E-selectin ligand **R²-SH** was prepared as reported earlier.¹¹ The modified galactose **R⁴-SH** was obtained from 7^{18} (Scheme 2). Glycosylation with propanolamine **8** furnished compound **9**, which was deprotected to give **10**. Subsequent reaction with γ -thiobutyrolactone gave thiol

Scheme 3 Reagents and conditions: (a) 1. Br₂, CH₂Cl₂, 0 °C, 2. Et₄NBr, CH₂Cl₂–DMF 3:2; (b) 1. Pd(OH)₂/C, H₂, dioxane/H₂O 4:1, 20 °C; 2. γ -thiobutyrolactone, Et₃N, DMF, 90 °C

PAPER

R⁴-SH. Likewise, fucose R⁵-SH was prepared from 11¹⁹ which was glycosylated (\rightarrow 12), deprotected and subsequently treated with γ -thiobutyrolactone (Scheme 3). The glycopolymers 3c and 3b were prepared from chloroacetylated polylysine 13.¹¹ Conjugate 3c was obtained by reacting 13 with 30 mol% of R⁴-SH and 30 mol% of R⁵-SH in the presence of DBU followed by the addition of an excess of R⁶-SH. Reaction of 13 with 20 mol% of R²-SH and subsequent treatment with a small excess of R⁴-SH furnished glycopolymer 3d. As we have shown that the degree of polymerization of the L-polyslysine starting material (n ca. 1200) is not altered under the reaction conditions applied¹¹ the molecular weight (M_n) of **3c** and **3b** can be estimated to ca 400-500 kD. Both composition and integrity of the novel glycopolymers were confirmed by means of ¹H NMR spectroscopy (Figure 2). Within the experimental error carbohydrate incorporation occurred quantitatively.

The glycoconjugates were evaluated in the binding assay. Compound **3c** was found to inhibit E-selectin with an IC₅₀ of 1900 μ M. Thus, random expression of all important pharmacophores in a multivalent format resulted in a inhibitory potential similar to monovalent sLe^x (Table 1, Figure 1). Conjugate **3d** was highly active showing an IC₅₀ value comparable to **3b** also containing 20% of **R²-S**-

Figure 2 ¹H NMR (500 MHz) spectra of glycopolymers **3c** and **3d** in D_2O at 60 °C. Several baseline-separated signals can be assigned to the corresponding R groups. Integration allows the determination of the composition within NMR accuracy.

but with \mathbf{R}^{6} -S- instead of additional fucose (Table 1, Figure 1). Thus, incorporation of fucose in a multivalent format does not lead to improved potency.

In conclusion we have prepared the first polylysine conjugates, which present different carbohydrate ligands in a multivalent format with a highly predictable composition. These compounds inhibit E-selectin but are not superior compared to previously-described related analogues.

All reactions were carried out under an atmosphere of anhyd Ar. Commercially available absolute solvents were used. The NMR spectra were recorded on a Bruker Avance DPX 400 spectrometer. Chemical shifts of the ¹H NMR signals of water-soluble compounds are reported relative to the shift of the DHO peak (4.75 ppm). The signal assignments are based on 2D ¹H–¹H-correlation (COSY) and ¹H–¹³C-correlation spectroscopy (HSQC). The MS spectra were obtained on a Finnigan MAT 90 mass spectrometer, the HRMS spectra on a Bruker Daltonics 9.4T APEX-III FT-MS mass spectrometer. Ultrafiltrations were performed using Amicon stirred cells 8010 (volume: 10 mL; diameter: 25 mm) and Amicon disc membranes YM3 (molecular weight cut-off: 3000).

Compound 3c

DBU (91 mg, 0.60 mmol) was added at 20 °C to a solution of **13** (50 mg, 0.25 mmol) and \mathbb{R}^2 -SH (37 mg; 0.05 mmol) in a mixture of DMF (4 mL) and water (0.1 mL). The mixture was stirred for 15 min. Then, \mathbb{R}^5 -SH (120 mg, 0.37 mmol) and DBU (73 mg, 0.49 mmol) were added and stirring continued for 2 h. The solution was added dropwise to a mixture of EtOH–Et₂O (30 mL, 1:1). The formed precipitate was filtered off and washed with EtOH. The crude product was dissolved in water and further purified by means of ultrafiltration (5 × 10 down to 2 mL, with the volume being made up with distilled water on each occasion). Following lyophilization, the product **3c** was isolated as a colorless powder (128 mg, 91%).

¹H NMR: see Figure 2.

Compound 3d

DBU (55 mg, 0.37 mmol) was added at 20 °C to a solution of **13** (50 mg, 0.25 mmol), **R⁴-SH** (39 mg, 0.08 mmol) and **R⁵-SH** (26 mg; 0.08 mmol) in a mixture of DMF (4 mL) and water (0.2 mL). The mixture was stirred for 15 min. Then, **R⁶-SH** (79 mg, 0.73 mmol) and Et₃N (0.2 mL) were added and stirring continued for 2 h. The solution was added dropwise to a mixture of EtOH–Et₂O (30 mL, 1:1). The formed precipitate was filtered off and washed with EtOH. The crude product was dissolved in water and further purified by means of ultrafiltration (5 × 10 down to 2 mL, with the volume being made up with distilled water on each occasion). Following lyophilization, the product **3d** was isolated as a colorless powder (107 mg, 100%).

¹H NMR: see Figure 2.

Compound R4-SH

Under rigorous exclusion of oxygen a solution of **10** (1000 mg, 2.56 mmol), γ -thiobutyrolactone (2600 mg, 25.6 mmol) and Et₃N (2600 mg, 25.6 mmol) in degassed CH₃OH (30 mL) was heated under reflux for 16 h. The solvent and volatile side products were removed in vacuo and the residue subjected to chromatography on silica gel (EtOAc–*i*-PrOH–water, 1:1:0.25). Lyophilization afforded the product **R⁴-SH** as a colorless powder (956 mg, 76%); $[\alpha]_D^{20}$ – 33.5 (*c* = 0.76, CH₃OH).

¹H NMR (D₂O): $\delta = 0.90-1.75$ (m, 13 H, $CH_2-cC_6H_{11}$), 1.79 (quint, J = 6.5 Hz, 2 H, OCH₂CH₂CH₂NH), 1.83 (quint, J = 7.5 Hz, 2 H, COCH₂CH₂CH₂SH), 2.30 (t, J = 7.5 Hz, 2 H, COCH₂CH₂CH₂CH₂SH), 2.49 (t, J = 7.5 Hz, 2 H, COCH₂CH₂CH₂SH), 3.25 (m, 2 H,

OCH₂CH₂CH₂NH), 3.36 (dd, *J* = 9.5, 3.0 Hz, 1 H, H3), 3.54 (dd, *J* = 9.5, 8.0 Hz, 1 H, H2), 3.63 (m, 1 H, OC*Ha*HbCH₂), 3.66–3.77 (m, 3 H, H5, H6, H6'), 3.87 (br d, *J* = 3.0 Hz, 1 H, H4), 3.93 (m, 2 H, OCHaHbCH₂, OCHCO₂H), 4.35 (d, *J* = 8.0 Hz, 1 H, H1).

¹³C NMR (D₂O): δ = 22.6, 25.3, 25.5, 25.7, 27.8, 29.0, 31.3, 32.8, 33.1, 33.9, 35.9, 40.7, 60.6, 65.7, 67.3, 69.5, 74.0, 78.8, 82.4, 102.2, 175.6, 182.2.

HRMS: m/z [M + Na]⁺ calcd for C₂₂H₃₉NO₉S: 516.2238; found: 516.2240.

Compound R⁵-SH

A mixture of **12** (1000 mg, 1.60 mmol), Pd(OH)₂ (500 mg, 10% on charcoal), dioxane (16 mL) and H₂O (4 mL) was hydrogenated by means of a balloon at 20 °C for 16 h. Following filtration the solvent was removed to give a colorless oil which was dissolved in degassed DMF (20 mL). γ -Thiobutyrolactone (1630 mg, 16.0 mmol) and Et₃N (1620 mg, 16.0 mmol) were added and the mixture was stirred for 16 h at 90 °C. The solvent and volatile side products were removed in vacuo and the residue subjected to chromatography on silica gel (CHCl₃–MeOH–H₂O, 3:1:0 \rightarrow 3:1:0.3). The product **R⁵–SH** was isolated as a colorless oil (383 mg, 74%); [α]_D²⁰–112.2 (*c* = 0.76, CH₃OH).

¹H NMR (D₂O): δ = 1.15 (d, *J* = 6.5 Hz, 3 H, H6), 1.79 (m, 2 H, OCH₂CH₂CH₂NH), 1.83 (quint, *J* = 7.5 Hz, 2 H, COCH₂CH₂-CH₂SH), 2.31 (t, *J* = 7.5 Hz, 2 H, COCH₂CH₂CH₂SH), 2.49 (t, *J* = 7.5 Hz, 2 H, COCH₂CH₂CH₂SH), 2.49 (t, *J* = 7.5 Hz, 2 H, COCH₂CH₂CH₂SH), 3.17–3.33 (m, 2 H, OCH₂CH₂CH₂CH₂NH), 3.45 (m, 1 H, OCHaHbCH₂), 3.68 (m, 1 H, OCHaHbCH₂), 3.71 (dd, *J* = 10.5, 4.0 Hz, 1 H, H2), 3.74 (br d, *J* = 3.5 Hz, 1 H, H4), 3.81 (dd, *J* = 10.5, 3.5 Hz, 1 H, H3), 3.98 (br q, *J* = 6.5 Hz, 1 H, H5), 4.81 (d, *J* = 4.0 Hz, 1 H, H1).

¹³C NMR (CDCl₃): δ = 15.8, 23.7, 28.6, 29.1, 34.3, 36.7, 65.6, 65.8, 68.8, 70.8, 71.4, 98.1, 172.1.

HRMS: m/z [M + Na]⁺ calcd for C₁₃H₂₅NO₆S: 346.1295; found: 346.1295.

Compound 9

Under rigorous exclusion of moisture CF₃SO₃H (70 µL) was added at -10 °C to a solution of **7** (1070 mg, 5.13 mmol), **8** (2000 mg, 2.56 mmol) and NIS (866 mg, 3.85 mmol) in CH₂Cl₂ and the mixture stirred for 30 min. EtOAc was added and the mixture extracted with Na₂S₂O₃, NaHCO₃ and brine. The solvent was removed and the residue subjected to flash chromatography on silica gel (hexane– EtOAc, $3:1 \rightarrow 1:1$). Compound **9** was isolated as a colorless oil (2070 mg, 87%); $[\alpha]_D^{20}$ +17.3 (c = 0.74, CH₃OH).

¹H NMR (CDCl₃): $\delta = 0.44-1.79$ (m, 15 H, $CH_2c-C_6H_{11}$, OCH₂CH₂CH₂NH), 3.14 (m, 2 H, OCH₂CH₂CH₂NH), 3.55 (m, 1 H, OCHaHbCH₂), 3.90 (dd, J = 9.5, 3.0 Hz, 1 H, H3), 3.94 (m, 1 H, OCHaHbCH₂), 3.97 (br t, J = 6.0 Hz, 1 H, H5), 4.19 (dd, J = 8.0, 4.5 Hz, 1 H, OCHCO₂H), 4.43 (dd, J = 11.5, 5.0 Hz, 1 H, H6), 4.49 (dd, J = 11.5, 7.0 Hz, 1 H, H6'), 4.55 (d, J = 8.0 Hz, 1 H, Hvv1), 4.99 (br t, J = 6.0 Hz, 1 H, NH), 5.03 (m, 2 H, OBn), 5.08 (d, J = 12 Hz, 1 H, CO₂Bn), 5.19 (d, J = 12 Hz, 1 H, CO₂Bn), 5.63 (dd, J = 10.0, 8.0 Hz, 1 H, H2), 5.94 (br d, J = 3.0 Hz, 1 H, H4), 7.29–8.16 (m, 25 H, ArH).

 ^{13}C NMR (CDCl₃): δ = 16.2, 28.6, 39.7, 66.0, 66.1, 67.6, 72.9, 73.0, 74.3, 75.7, 77.3, 79.1, 97.8, 127.0–138.4 (signals of aromatic C-atoms), 158.2.

HRMS: m/z [M + Na]⁺ calcd for C₅₄H₅₇NO₁₃: 950.3722; found: 950.3724.

Compound 10

A mixture of **9** (2.07 g, 2.23 mmol), $Pd(OH)_2$ (1.00 g, 10% on charcoal), dioxane (40 mL), H_2O (10 mL) and HOAc (0.34 mL) was hydrogenated by means of a balloon at 20 °C for 16 h. Following

filtration the solvent was removed and the residue dissolved in a mixture of MeOH (50 mL) and NaOH (2 N, 11 mL). The solution was stirred at 60 °C for 4 h. The solvents were removed and the residue subjected to flash chromatography on silica gel (EtOAc–*i*-PrOH–H₂O, 1:1:0.5). Compound **10** was isolated as a colorless oil (0.855 g, 98%).

¹H NMR (D₂O): $\delta = 0.83-1.73$ (m, 13 H, CH₂c-C₆H₁₁), 1.98 (m, 2 H, OCH₂CH₂CH₂NH), 3.14 (t, *J* = 7.0 Hz, 2 H, OCH₂CH₂CH₂CH₂NH), 3.39 (dd, *J* = 10.0, 3.0 Hz, 1 H, H3), 3.58 (br t, *J* = 9.0 Hz, 1 H, H2), 3.68 (m, 1 H, H5), 3.74 (m, 2 H, H6, H6'), 3.79 (m, 1 H, OCHaHb), 3.89 (d, *J* = 3.0 Hz, 1 H, H4), 3.94 (dd, *J* = 8.0, 3.0 Hz, 1 H, OCHCO₂H), 4.03 (m, 1 H, OCHaHbv), 4.39 (d, *J* = 8.0 Hz, 1 H, H1).

MS: $m/z = 392 [M + H]^+$.

Compound 12

A solution of Br₂ (2.21 g, 13.8 mmol) in CH₂Cl₂ (20 mL) was added dropwise at 0 °C to a solution of **11** (6.0 g, 12.6 mmol) in CH₂Cl₂ (20 mL). After stirring for 30 min at 0 °C cyclohexene (2.5 mL) was added to consume excessive Br₂. The solution was added within 10 min to a mixture of **8** (5.25 g, 25.1 mmol) and Et₄NBr (6.30 g, 30.1 mmol; dried for 2 h at 200 °C) in DMF–CH₂Cl₂ (100 mL, 1:1). The mixture was stirred for 90 h at 20 °C, diluted with EtOAc, washed with NaHCO₃, H₂O, HCl (0.5 M) and brine and dried with Na₂SO₄. The solvent was removed and the residue subjected to flash–chromatography on silica gel (hexane–acetone, 6:1). Compound **12** was isolated as a colorless oil (7.0 g, 89%); $[\alpha]_D^{20}$ –74.5 (c = 1.2, CH₃OH).

¹H NMR (CDCl₃): δ = 1.09 (d, *J* = 6.5 Hz, 3 H, H6), 1.80 (quint, *J* = 6.0 Hz, 2 H, OCH₂CH₂CH₂NH), 3.25 (m, 1 H, OCH₂CH₂-CH*a*HbNH), 3.39–3.53 (m, 2 H, OCH*a*HbCH₂CH*aHb*NH), 3.59 (m, 1 H, H4), 3.78–3.86 (m, 2 H, H5, OCH*a*Hb), 3.88 (dd, *J* = 10.0, 2.0 Hz, 1 H, H3), 4.01 (dd, *J* = 10.0, 4.0 Hz, 1 H, H2), 4.65 (m, 3 H, OBn), 4.71 (d, *J* = 4.0 Hz, 1 H, H1), 4.78 (d, *J* = 11.5 Hz, 1 H, OBn), 4.80 (d, *J* = 11.5 Hz, 1 H, OBn), 4.96 (d, *J* = 11.5 Hz, 1 H, OBn), 5.03 (d, *J* = 12.0 Hz, 1 H, OBn), 5.10 (d, *J* = 12.0 Hz, 1 H, OBn), 5.90 (m, 1 H, NH), 7.24–7.36 (m, 20 H, ArH).

¹³C NMR (CDCl₃): δ = 25.1, 25.4, 25.7, 29.1, 32.2, 32.9, 33.0, 37.6, 40.0, 62.4, 65.9, 66.2, 67.0, 69.4, 71.5, 72.2, 76.7, 77.8, 101.1, 127.5–135.1 (signals of aromatic C-atoms), 156.2, 164.8, 165.5, 165.9, 172.1.

HRMS: m/z [M + Na]⁺ calcd for C₃₈H₄₃NO₇: 648.2932; found: 648.2931.

Acknowledgment

We thank Mr. François Nuninger for technical assistance.

References

- (a) Kansas, G. S. *Blood* **1996**, 88, 3259. (b) Varki, A. *Proc. Natl. Acad. Sci. U.S.A.* **1994**, *91*, 7390. (c) Welply, J. K.; Keene, J. L.; Schmuke, J. L.; Howard, S. C. *Biochim. Biophys. Acta* **1994**, *1197*, 215. (d) Springer, T. A. *Cell* **1994**, *76*, 301.
- (2) (a) Cines, D. B.; Pollak, E. S.; Buck, C. A.; Loscalzo, J.; Zimmermann, G. A.; McEver, R. P.; Pober, J. S.; Wick, T. M.; Konkle, B. A.; Schwartz, B. S.; Barnathan, E. S.; McCrae, K. R.; Hug, B. A.; Schmidt, A.-M.; Stern, D. M. *Blood* **1998**, *91*, 3527. (b) Mousa, S. A. *Drugs Future* **1996**, *21*, 283. (c) Mousa, S. A.; Cheresh, D. A. *Drug Discov. Today* **1997**, *2*, 187.

- (3) (a) Springer, T. A.; Lasky, L. *Nature (London)* 1999, 349, 196. (b) Drickamer, K. *Glycobiology* 1994, 4, 245. (c) Ng, K. K.-S.; Weis, W. I. *Biochemistry* 1997, 36, 965. (d) Phillips, M. L.; Nudelman, E.; Gaeta, F. C. A.; Perez, M.; Singhal, A. K.; Hakomori, S.; Paulson, J. C. *Science* 1990, 250, 1130. (e) Walz, G.; Aruffo, A.; Kolanus, W.; Bevilacqua, M.; Seed, B. *Science* 1990, 250, 1132. (f) Lowe, J. B.; Stoolman, L. M.; Nair, R. P.; Larsen, R. D.; Berhend, T. L.; Marks, R. M. *Cell* 1990, 63, 475. (g) Tiemyer, M.; Swiedler, S. J.; Ishihara, M.; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B. K. *Proc. Natl. Acad. Sci. U.S.A.* 1991, 88, 1138.
- (4) Thoma, G.; Magnani, J. L.; Oehrlein, R.; Ernst, B.;
 Schwarzenbach, F.; Duthaler, R. O. J. Am. Chem. Soc. 1997, 119, 7414.
- (5) Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28, 321.
- (6) Thoma, G.; Kinzy, W.; Bruns, C.; Patton, J. T.; Magnani, J. L.; Bänteli, R. J. Med. Chem. 1999, 42, 4909.
- (7) Other small molecule E-selectin antagonists are summarized in: Simanek, E. E.; McGarvey, G. J.; Jablonowski, J. A.; Wong, C.-H. *Chem. Rev.* **1998**, 98, 833.
- (8) (a) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 2754. (b) Lee, R. T.; Lee, Y. C. Glycoconjugate J. 2000, 17, 543. (c) Lundquist, J. J.; Toone, E. J. Chem. Rev. 2002, 102, 555. (d) Ercolani, G. J. Am. Chem. Soc. 2003, 125, 16097. (e) Kitov, P. I.; Bundle, D. R. J. Am. Chem. Soc. 2003, 125, 16271. (f) Kiessling, L. L.; Pontrello, J. K.; Schuster, M. C. In Carbohydrate-Based Drug Discovery, Vol. 2; Wong, C. H., Ed.; Wiley-VCH: Weinheim, 2003, 575. (g) Kiessling, L. L.; Young, T.; Mortell, K. H. In Glycoscience – Chemistry and Chemical Biology, Vol. 2; Fraser-Reid, B. O.; Tatsuta, K.; Thiem, J., Eds.; Springer: New York, 2001, 1817.
- (9) (a) Manning, D. D.; Hu, X.; Beck, P.; Kiessling, L. L. J. Am. Chem. Soc. 1997, 119, 3161. (b) Sanders, W. J.; Gordon, E. J.; Oren, D.; Beck, P. J.; Ronen, A.; Kiessling, L. L. J. Biol. Chem. 1999, 274, 5271. (c) Miyauchi, H.; Tanaka, M.; Koike, H.; Kawamura, N.; Hayashi, M. Bioorg. Med. Chem. Lett. 1997, 7, 985. (d) Palcic, M. M.; Li, H.; Zanini, D.; Bhella, R. S.; Roy, R. Carbohydr. Res. 1998, 305, 433. (e) Stahn, R.; Schäfer, H.; Kernchen, F.; Schreiber, J. Glycobiology 1998, 8, 311. (f) Lin, C.-C.; Kimura, T.; Wu, S.-H.; Weitz-Schmidt, G.; Wong, C.-H. Bioorg. Med. Chem. Lett. 1996, 6, 2755. (g) Roy, R.; Park, W. K. C.; Srivastava, O. P.; Foxall, C. Bioorg. Med. Chem. Lett. 1996, 6, 1399. (h) DeFrees, S. A.; Phillips, L.; Guo, L.; Zalipsky, S. J. Am. Chem. Soc. 1996, 118, 6101. (i) Spevak, W.; Foxall, C.; Charycj, D. H.; Dasgupta, F.; Nagy, J. O. J. Med. Chem. 1996, 39, 1018. (j) Welply, J. K.; Abbas, S. Z.; Sudder, P.; Keene, J. L.; Broschat, K.; Casnocha, S.; Gorka, C.; Steininger, C.; Howard, S. C.; Schmuke, J. J.; Graneto, M.; Rotsaert, J. M.; Manger, I. D.; Jacob, G. S. Glycobiology 1994, 4, 259. (k) Berg, E. L.; Robinson, M. K.; Mansson, O.; Butcher, E. C.; Magnani, J. L. J. Biol. Chem. 1991, 266, 14869.
- (10) Thoma, G.; Ernst, B.; Schwarzenbach, F.; Duthaler, R. O. *Bioorg. Chem. Med. Lett.* **1997**, *7*, 1705.
- Thoma, G.; Patton, J. T.; Magnani, J. L.; Ernst, B.; Oehrlein,
 R.; Duthaler, R. O. *J. Am. Chem. Soc.* **1999**, *121*, 5919.
- (12) Thoma, G.; Duthaler, R. O.; Magnani, J. L.; Patton, J. T. J. Am. Chem. Soc. 2001, 123, 10113.
- (13) Ali, M.; Hicks, A. E. R.; Hellewell, P. G.; Thoma, G.; Norman, K. E. *FASEB J.* **2004**, *18*, 152.
- (14) Somers, W. B.; Tang, J.; Shaw, G. D.; Camphausen, R. T. *Cell* **2000**, *103*, 467.

- (15) (a) Thoma, G.; Magnani, J. L.; Patton, J. T.; Ernst, B.; Jahnke, W. *Angew. Chem. Int. Ed.* **2001**, *40*, 1941.
 (b) Kolb, H. C.; Ernst, B. *Chem.–Eur. J.* **1997**, *3*, 1571.
- (16) (a) Levinovitz, A.; Muehlhoff, J.; Isenman, S.; Vestweber, D. J. Cell Biol. 1993, 121, 449. (b) Lenter, M.; Levinovitz, A.; Isenman, S.; Vestweber, D. J. Cell Biol. 1994, 125, 471. (c) Steegmaier, M.; Levinovitz, A.; Isenman, S.; Borges, E.; Lenter, M.; Kocher, H. P.; Kleuser, B.; Vestweber, D. Nature (London) 1995, 373, 615.
- (17) (a) Patel, T. P.; Goelz, S. E.; Lobb, R. R.; Parekh Raj, B. *Biochemistry* **1994**, *33*, 14815. (b) Handa, K.; Stroud, M. R.; Hakomori, S. *Biochemistry* **1997**, *36*, 12412.
- (18) Bänteli, R.; Herold, P.; Bruns, C.; Patton, J. T.; Magnani, J. L.; Thoma, G. *Helv. Chim. Acta* 2000, *83*, 2893.
- (19) Yamazaki, F.; Kitajima, T.; Numata, T.; Ito, T.; Ogawa, T. Carbohydr. Res. 1990, 201, 15.