and reconstituted as described for 5d. Extraction efficiency was greater than 80%.

Separation Procedures. Three HPLC procedures were developed, one for the isolation and identification of 5d and two for 5m.

Procedure I: HPLC Separation of 5d. Stationary phase: Ultrasphere ODS precolumn (4.6 mm \times 45 mm) with a 5- μ m Ultrasphere ODS analytical column (4.6 mm \times 250 mm). Mobile phase: 60% CH₃CN, 40% sodium phosphate buffer (0.025 M), pH 7.2. Flow rate: 1 mL/min. Temperature: ambient. Either detection was spectrophotometric using a fixed-wavelength detector with a 229-nm filter (cadmium lamp) or fractions were collected for subsequent scintillation counting. The retention time for 5d was 10.4 min.

Procedure II: HPLC Separation of 5m Using Reversed-Phase Ion-Pair Chromatography. Stationary phase: Ultrasphere ion-pair precolumn (4.6 mm \times 45 mm) with a 5- μ m Ultrasphere ion-pair analytical column (4.6 mm \times 250 mm). Mobile phase: 55% MeOH, 22.5% tetrabutylammonium hydroxide (0.025 M), 22.5% potassium phosphate, pH 8.0, buffer (0.02 M). Flow rate: 1.2 mL/min. Temperature: 35 °C. Either detection was spectrophotometric using a fixed-wavelength detector with a 229-nm filter (cadmium lamp) or fractions were collected for subsequent scintillation counting. The retention time for 5m was 28 min.

Procedure III: HPLC Separation of 5m Using Reversed-Phase Chromatography. Stationary phase: Ultrasphere ODS precolumn (4.6 mm \times 45 mm) with a 5- μ m ultrasphere ODS analytical column (4.6 mm \times 250 mm). Mobile phase: 35% MeOH, 65% potassium phosphate, pH 5.3, buffer (20 mM). Flow rate: 1 mL/min. Temperature: ambient. Detection was as described above. The retention time for 5m was 24.5 min.

Mass Spectral Analysis of M_1 . A sample of metabolite M_1 (50 mg) was purified under HPLC conditions III by collecting fractions eluting from the HPLC column that coeluted with the radioactive peak for M_1 . The material collected was evaporated to dryness under N_2 . Mass spectra were obtained by using a Finnigan 4000 series quadrupole mass spectrometer. Solid-probe electron-impact ionization spectra of both 5m and M_1 were obtained.

 β -Glucuronidase Deconjugation and Mass Spectral Analysis of M₂. The purified metabolite (0.1 mg) M₂ was incubated in a volume of 2 mL in potassium phosphate, pH 5.0, buffer (0.2 M) containing 1000 units of β -glucuronidase derived from *Helix pomatia*. The incubation was maintained at 37 °C for 6 h prior to extraction and chromatography under the conditions previously described. Under the conditions of the incubation any sulfatase activity present in the β -glucuronidase would have been inhibited by the high concentration of phosphate present. The deconjugated product was subjected to mass spectral analysis as above.

Acknowledgment. We thank R. L. Dyer and M. D. Gray for the synthesis of $[^{14}C]$ -5d and R. Brownsill and J. Firth for mass spectral analysis. We also express our appreciation to J. Brand for the preparation of the manuscript.

Registry No. 3a, 108836-41-5; **3b**, 108836-42-6; **4a**, 108836-43-7; **4b**, 108836-44-8; **5a**, 108836-45-9; **5b**, 108836-45-9; **5c**, 108836-46-0; **5d**, 108836-47-1; **5e**, 108836-48-2; **5f**, 108836-49-3; **5g**, 108836-50-6; **5h**, 108836-51-7; **5i**, 108836-52-8; **5j**, 108836-53-9; **5k**, 108836-54-0; **5l**, 108836-55-1; **5m**, 108836-56-2; **5n**, 108836-67-3; **5o**, 108836-58-4; **5p**, 108836-59-5; **5q**, 108836-60-8; **5r**, 108836-61-9; **5s**, 108836-62-0; **5t**, 108836-63-1; **5u**, 108836-60-8; **5r**, 108836-65-3; **4**-methoxybenzyl alcohol, 105-13-5; epibromohydrin, 3132-64-7; ethyl 4-(hydroxymethyl)benzoate, 15852-63-8; imidazole, 288-32-4; ethyl (4-(bromomethyl)benzoate, 26496-94-6; 4-(methoxybenzyl chloride, 824-94-2; 4-(methylthio)benzyl chloride, 874-87-3; methyl 4-(bromomethyl)benzoate, 2417-72-3; ethyl 3-(bromomethyl)benzoate, 62290-17-9; 5-(bromomethyl)-1,3-dihydroisobenzofuran-1-one, 63113-10-0.

Novel Inhibitors of Rat Lens Aldose Reductase: N-[[(Substituted amino)phenyl]sulfonyl]glycines

Charles A. Mayfield and Jack DeRuiter*

Division of Medicinal Chemistry, Department of Pharmacal Sciences, School of Pharmacy, Auburn University, Auburn University, Alabama 36849. Received February 9, 1987

A number of N-[[(substituted amino)phenyl]sulfonyl]glycines 3a-n were synthesized as analogues of the simple (phenylsulfonyl)glycines 1a-c with increased lipophilic character and therefore greater aldose reductase inhibitory potential. The 2-benzoylamino derivative 3c was found to be less potent than the corresponding amine 1c as an inhibitor of rat lens aldose reductase, but both the 3- and 4-benzoylamino analogues, 3b and 3a, are substantially more potent than their amines 1b and 1a; compound 3a is the most effective inhibitor of this series, with an $1C_{50}$ of $0.41 \ \mu$ M. The 4-benzoylamino derivative 3a is also significantly more active than the 4-acetylamino analogue 3d and the 4-benzoylamino (3e) and 4-dimethylamino (3f) derivatives, suggesting that both the additional carbonyl moiety and aromatic ring present in this compound may bind to complementary sites present on the enzyme. Furthermore, structure-activity studies reveal that increasing the number of atoms between the carbonyl and aromatic moieties of 3a results in a decrease in inhibitory activity. Kinetic studies demonstrate that 3a, like other known inhibitors of aldose reductase, functions as an uncompetitive inhibitor with respect to the substrate and therefore may interact at the proposed common inhibitor binding site of this enzyme.

As described earlier in considerable detail,¹⁻³ there is mounting evidence linking the conversion of glucose to sorbitol by aldose reductase in ocular and nerve tissues to the development of several chronic diabetic pathologies including cataracts, retinopathy, and peripheral neuropa-

- Dvornik, D.; Simard-Duquesne, N.; Krami, M.; Sestanj, K.; Gabbay, K. H.; Varma, S. D.; Merola, L. O. Science (Washington, D.C.) 1973, 182, 1146.
- (2) Lipinski, C. A.; Hutson, N. J. Annu. Rep. Med. Chem. 1984, 19, 169.
- (3) Kador, P. F.; Kinoshita, J. H.; Sharpless, N. E. J. Med. Chem. 1985, 28, 841.

thy.¹⁻³ Thus, one approach currently investigated to prevent or at least delay the onset of diabetic pathologies has involved the development of inhibitors of the enzyme aldose reductase.³⁻⁷ In a previous paper, we described the

- (4) DeRuiter, J.; Brubaker, A. N.; Millen, J.; Riley, T. N. J. Med. Chem. 1986, 29, 627.
- (5) Brubaker, A. N.; DeRuiter, J.; Whitmer, W. L. J. Med. Chem. 1986, 29, 1094.
- (6) DeRuiter, J.; Brubaker, A. N.; Whitmer, W. L.; Stein, J. L. J. Med. Chem. 1986, 29, 2024.
- (7) DeRuiter, J.; Brubaker, A. N.; Garner, M. A.; Barksdale, J. M.; Mayfield, C. A. J. Pharm. Sci. 1987, 76, 149.

1007 American (1)

Scheme I^a

²a, RCOCl, NaHCO₃, THF, H₂O or NaOH, H₂O; b, H₂, Pd/C, EtOH; c, $C_6H_5N=C=X$, CHCl₃ or EtOH.

synthesis and in vitro aldose reductase inhibitory activity of a number of N-(arylsulfonyl)amino acids as compounds that may contain the minimum structural requirements for enzyme inhibition.⁷ Of these compounds, the N-(phenylsulfonyl)glycines were found to display modest inhibitory activity against enzyme obtained from rat lens, with the 4-amino derivative 1a being among the most

potent monosubstituted analogues, with an IC₅₀ of 16 μ M. Also, the α - and β -naphthalene analogues **2a** and **2b**, whihch represent derivatives of 1a in which the benzene ring has been replaced with a moiety of greater lipophilic character, were found to be the most potent compounds of this series, with IC₅₀'s of 1.3 and 0.4 μ M, respectively.⁷ These observations prompted us to prepare a number of derivatives of 1 that contain an additional lipophilic moiety linked to the amino moiety. The (phenylsulfonyl)glycine derivative 1a was selected as the parent compound for these studies since it is one of the most potent monosubstituted glycine derivatives, and it can be easily functionalized by using standard synthetic procedures.

Chemistry

[(4-Aminophenyl)sulfonyl]glycine (1a), which served as a key intermediate for these syntheses, and the corresponding 2- and 3-amino isomers 1c and 1b were prepared by reaction of commercially available nitrobenzenesulfonyl chlorides with glycine in aqueous sodium hydroxide, fol-lowed by catalytic hydrogenation.^{9,10} Treatment of amines **1a**-**c** with acid chlorides in the presence of aqueous base provided the acylamino derivatives 3a-c,g,i,m,n (Scheme I and Table I). Also, catalytic reduction of the cinnamic acid amide 3i prepared by this method gave the phenylpropionamide 3h. The acetylamino derivative 3d was obtained upon chlorosulfonation of acetanilide followed by treatment of the intermediate with glycine in aqueous

- Ghosh, N. N.; Majunmder, M. N. J. Indian Chem. Soc. 1967, (9)44, 115.
- (10)Ghosh, N. N.; Dasgupta, M. J. Indian Chem. Soc. 1966, 43, 545.
- (11) Kador, P. F.; Sharpless, N. E. Mol. Pharmacol. 1983, 24, 521.

Table I. *N*-[[(Substituted amino)phenyl]sulfonyl]glycines

	3	302111011200	2''		
	4				
	R				
			yield, ^b		
no.	R	mp, ^a °C	%	formula ^c	
1 a	4-NH ₂	169-170 (170) ^d	81	$C_8H_{10}N_2O_4S$	
1 b	$3-NH_2$	149–150 (148) ^e	82	$C_8H_{10}N_2O_4S$	
1c	$2-NH_2$	$145 - 147 (155)^e$	89	$C_8H_{10}N_2O_4S$	
3 a .	$4-(C_6H_5CONH)$	232-235	74	$C_{15}H_{14}N_2O_5S$	
				$^{1}/_{3}H_{2}O$	
3b	$3-(C_6H_5CONH)$	209 - 212	90	$C_{15}H_{14}N_2O_5S$	
3c	$2-(C_6H_5CONH)$	170-174	18	$C_{15}H_{14}N_2O_5S$	
3d	$4-(CH_3CONH)$	230–234 dec	74	$C_{10}H_{12}N_2O_5S$	
3e	$4-(C_6H_5CH_2NH)$	132-138	22	$C_{15}H_{16}N_2O_4S$	
		105 150		$^{1}/_{4}H_{2}O$	
31	$4 - (CH_3)_2 N$	165-173	14	$C_{10}H_{14}N_2O_4S$	
Jg al	$4 - (C_6 H_5 C H_2 C O N H)$	213-217	96	$C_{16}H_{16}N_2O_5S$	
3n or	$4-(C_6H_5CH_2CH_2CONH)$	188-190	63	$C_{17}H_{18}N_2O_5S$	
31	$4 - (C_6 H_5 CH = CHCONH)$	218-220	54	$C_{17}H_{16}N_2O_5S$	
31	4-(C.H.NHCONH)	185	97	CHNOS.	
0)	4-(061151411001411)	100	21	¹ / ₃ H ₀ O	
3k	4-(C _e H ₅ NHCSNH)	135-137	34	$C_{15}H_{15}N_{2}O_{4}S_{2}$	
				H ₂ O	
31	$4-(C_6H_5CH_2OCONH)$	143 - 148	22	$C_{16}H_{16}N_2O_6S$	
3m	$4 - (C_6 H_5 OC H_2 CONH)$	173 - 174	80	$C_{16}H_{16}N_2O_6S$	
				H_2O	
3n	$4-(C_6H_5CH_2OCH_2-$	156 - 158	56	$C_{17}H_{18}N_2O_6S$	
	CONH)				

^aCompounds 1-c were recrystallized from watter, and compounds 3a-c,g,i,k,n were recrystallized from ethanol. Compounds 3d-f,h,j,l,m were recrystallized from mixtures of ethanol and water. ^b Yields given for la-c represent the yields obtained from reduction of the corresponding nitro compounds. Yields for 3a-n represent yields of final acylation or alkylation reaction. ^cAll products exhibited IR and ¹H NMR spectra consistent with the assigned structures and gave satisfactory C, H, N, and S combustion analyses. ^dReference 9. ^eReference 10

sodium hydroxide. The urea and thiourea derivatives 3j and 3k were prepared by reaction of the 4-amino intermediate la with the appropriate isocyanate or isothiocyanate (Scheme I and Table I). N-Alkyl analogues 3e and 3f were prepared by reductive alkylation. Treatment of the intermediate amine 1a with benzaldehyde in the presence of sodium cyanoborohydride afforded the Nbenzylamine analogue 3e. The corresponding reaction with formaldehyde gave the N,N-dimethyl product 3f (Table D.

Results and Discussion

All of the N-[[(acylamino)phenyl]sulfonyl]- and N-[[(alkylamino)phenyl]sulfonyl]glycines 3a-n, as well as the [(aminophenyl)sulfonyl]glycines 1a-c, were tested for their ability to inhibit aldose reductase as described previously.⁶ Those compounds found to produce greater than 50% enzyme inhibition at 100 μ M were tested at additional concentrations to generate log dose-response curves. Inhibitor IC_{50} values were then calculated from the linear portion of the log dose-response curves using the LINEFIT linear regression program of Barlow (Table II).⁸

In the rat lens assay, the simple [(aminophenyl)sulfonyl]glycines 1a-c were found to be relatively weak inhibitors of aldose reductase, with IC_{50} values ranging from 16 to 38 μ M (Table II). In this series the 4-amino derivative 1a is more potent than the 3-amino derivative 1b, which is slightly more active than the 2-amino analogue 1c. The 2-benzoylamino derivative 3c, with an IC_{50} of 78 μ M, displays only $1/_2$ the inhibitory activity of the corresponding 2-amino derivative 1c. Both the 3- (3b) and 4-benzoylamino (3a) analogues, however, are substantially

Barlow, R. B. Biodata Handling with Microcomputers; El-(8) sevier Science: Amsterdam, 1983; p 76.

Table II. Aldose Reductase Inhibitory Activity

		% inhibn at	
compd	R	(SEM) ^{<i>a</i>}	IC_{50} , ^b $\mu\mathbf{M}$
1a	4-NH ₂	76 (2)	16
1b	3-NH2	73 (2)	29
1c	2-NH.	74 (4)	38
3a	4-(CeH ₅ CONH)	81 (2)	0.41
3b	3-(C,H,CONH)	79 (3)	7.12
3c	2-(CeH_CONH)	52 (3)	78
3d	4-(CH ₂ CONH)	88 (5)	4.22
3e	4-(C _e H _e CH ₂ NH)	71(1)	7.04
3f	4-(CH _a) _a N	80 (3)	10.9
3g	4-(C ₄ H ₂ CH ₂ CONH)	100 (1)	2.17
3h	4-(C.H.CH,CH,CONH)	86 (1)	11.5
31	4-(C ₄ H ₅ CH=CHCONH)	72 (2)	0.69
31	4-(CeHENHCONH)	83 (2)	2.75
3k	4-(C _e H _e NHCSNH)	65 (1)	8.42
31	4-(C _e H _e CH _o OCONH)	82 (1)	6.03
3m	4-(C _e H _e OCH ₂ CONH)	87 (3)	2.64
3n	4-(C _e H _e CH _o OCH _o CONH)	79 (2)	3.50
sorbinil	. (~,,,,,-,-,-,,-,,-,,-,,-,,-,,-,,-,,-,	ND°	0.073 ^d

^a Percent inhibition at an inhibitor concentration of 100 μ M followed by the standard error of the mean (SEM). ^bIC₅₀ values represent the concentration required to produce 50% enzyme inhibition. The significance level for the least-squares fit of the log dose-response curves was <0.01. ^cNot determined. ^dThe literature IC₅₀ value for sorbinil is 0.07 μ M.¹¹

more potent than their corresponding amino derivatives **1b** and **1a**. For example, the 4-benzoylamino derivative **3a** is 40 times as potent as **1a**, while the 3-benzoylamino analogue **3b** is ca. 4 times as active as **1b**. Also, the 4acetylamino compound **3d**, with an IC₅₀ of 4.22 μ M, is nearly 4 times as potent as the 4-amino derivative **1a**.

The increased inhibitory activity observed for compounds 3a, 3b, and 3d suggests that addition of a carbonyl moiety to the amino group of **1a** or **1b** may provide an additional site for interaction with the enzyme. Also, since the 4-benzovlamino derivative 3a is 10 times more active than the 4-acetylamino derivative 3d, it appears that the additional lipophilic ring of 3a may also contribute toward inhibitory potency, perhaps through direct interactions with complementary binding sites prsent on aldose reductase. Additional support for these hypotheses is derived from consideration of the inhibitory data obtained with both the 4-benzylamino derivative 3e and the 4-dimethylamino compound **3f**. These compounds, with IC_{50} values of about 7 and 11 μ M, respectively, are somewhat more potent than the parent 4-amino compound 1a, but since they lack the amide carbonyl moiety, they are not as potent as the corresponding benzoylamino derivative 3a. Therefore both the additional carbonyl moiety and, to a lesser extent, the added aromatic ring present in 3a appear to contribute toward the enhanced inhibitory activity of this compound. Furthermore, the significant differences in potency observed for 3a-c demonstrate the importance of the position of these moieties relative to the (phenylsulfonyl)glycine fragment for activity.

The high level of inhibitory activity observed for the 4-benzoylamino derivative **3a** prompted an investigation of the influence of varying the number and nature of atoms between the amide carbonyl and the additional aromatic ring present in this compound. The importance of the number of carbon atoms between these functional groups is demonstrated by comparison of the inhibitory data obtained with the 4-benzoylamino **3a**, 4-phenylacetylamino **3g**, and 4-phenylpropionylamino **3h** derivatives where as the number of atoms is increased, inhibitory activity steadily decreases from 0.41 to 11.5 μ M (Table II). One exception to this trend is the cinnamoylamino analogue **3i**, which displays inhibitory potency comparable to that

[mM DL-Glyceraldehyde]

Figure 1. Double-reciprocal plot of initial enzyme velocity vs. concentration of substrate (DL-glyceraldehyde) with and without added inhibitor **3a**: no inhibitor (\oplus); 0.5 μ M inhibitor (\square).

of the 4-benzoylamino derivative 3a. The greater inhibitory activity of this compound compared to the 4-phenylpropionyl derivative 3h may be a result of the ability of its vinylic moiety to partially mimic the aromatic ring of 3a in the inhibitor-enzyme interaction.

Examination of the inhibitory data obtained for compounds 3j-n reveals that varying the nature of the atoms in the 4-aroylamino side chain does not dramatically alter activity (Table II). For example, the phenylurea derivative 3j is essentially equipotent with the isoelectronic 4phenylacetylamino compound 3g, while the thiourea analogue 3k is 4 times less active. The oxygen isosteres of the phenylpropionyl compound, 3l and 3m, are ca. 2 and 5 times more potent, respectively, than 3h. All of these derivatives (3j-n), however, are significantly less active as inhibitors of aldose reductase than the 4-benzoylamino derivative 3a.

Therefore, modification of [(4-aminophenyl)sulfonyl]glycine (1a) and, to a lesser extent, the 3-amino derivative 1b by N-benzoylation, as in 3a and 3b, results in a significant increase in aldose reductase inhibitory activity. Also, while 3a is as potent as the (β -naphthalenylsulfonyl)glycine derivative 2b (IC₅₀ = 0.40 μ M), its enhanced inhibitory potency appears to be a result of the presence of both the additional carbonyl and lipophilic moieties.

Other known inhibitors of aldose reductase have been shown to produce uncompetitive inhibition with respect to the substrte (glyceraldehyde), and this observation, along with data obtained from competition studies, has led to the postulte that these compounds bind to a common site on the enzyme which is distinct from the substrate binding site; this common site of interaction has been designated as the "inhibitor binding site".³ Enzyme kinetic studies with 3a reveal that it produces uncompetitive inhibition relative to the substrate (Figure 1), suggesting that this compound may also interact at the distinct inhibitor binding site. Therefore 3a may serve as a valuable lead structure for the design of additional analogues to probe the inhibitor binding site of aldose reductase and further determine the steric and electronic requirements for optimal inhibitory activity.

Experimental Section

Melting points were determined in open capillary tubes with a Thomas-Hoover melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Varian T-60A NMR spectrometer in CDCl₃ or Me₂SO-d₆ solutions, with Me₄Si as an internal standard. IR spectra were recorded on a Beckman 4230 infrared spectrophotometer as Nujol mulls. UV spectra and enzyme reaction rates were measured with a Shimadzu UV-160 spectrophotometer. Elemental analyses were performed by Atlantic Microlab, Inc., Atlanta, GA, and are within 0.4 of theoretical percentages. Common reagent grade chemicals were purchased from commercial sources and were used as received. DL-

Mayfield and DeRuiter

Glyceraldehyde and NADPH (type 1) were purchased from Sigma Chemical Co.

[(Aminophenyl)sulfonyl]glycines 1a-c. Nitrobenzenesulfonyl chloride (5.2 g, 20 mmol) was added portionwise over a period of 0.5 h to a warm (60–70 °C), stirred solution of glycine (1.5 g, 20 mmol) and NaOH (1.6 g, 40 mmol) in H_2O (20 mL). After addition was complete, the reaction mixture was stirred for an additional 0.5 h at 60-70 °C and then cooled to room temperature followed by further cooling in an ice bath. Upon acidification (pH 1) of the reaction mixture with concentrated HCl, the crude products formed as thick precipitates. The products were isolated by filtration and recrystallized from aqueous ethanol to give the [(nitrophenyl)sulfonyl]amino acids 5a-c (31-58%). Solutions of the intermediate nitro compounds (10 mmol) in ethanol (100 mL) containing 5% Pd/C (200 mg) were shaken under an H₂ atmosphere (initially at 50 psi) on a Parr apparatus until consumption of H_2 ceased (within 2 h). The reaction mixture was then filtered and the filtrate evaporated under vacuum to yield a yellow solid. Recrystallization from aqueous ethanol gave the [(aminophenyl)sulfonyl]glycines 1a-c (Table I).

N-[[(Acylamino)phenyl]sulfonyl]glycines 3a-c,g,i,m,n. A solution of the acid chloride (5.5 mmol) in THF (10 mL) was added dropwise over a period of 0.5 h to a stirred solution of 1a-c (10 mmol) in THF (10 mL) and H_2O (20 mL) containing NaHCO₃ (0.84 g). After addition was complete, the reaction mixture was stirred at reflux overnight and then allowed to cool to room temperature. The mixture was evaporated in vacuo to yield a solid or oil, which was suspended in H_2O (35 mL). The resultant solution was cooled (ice bath) and acidified (to pH 1) with concentrated HCl to yield the crude product as a thick precipitate. Recrystallization gave the N-[[(acylamino)phenyl]sulfonyl]glycines (Table I).

N-[[4-[[(Benzyloxy)carbonyl]amino]phenyl]sulfonyl]glycine (31). Benzyl chloroformate (0.62 mL, 4.3 mmol) was added dropwise to a warm (60–70 °C), stirred solution of 1a (1.0 g, 4.3 mmol) and NaOH (0.35 g, 8.7 mmol) in H₂O (20 mL) and the reaction mixture stirred at 60–70 °C for 0.5 h. Upon cooling (ice bath) and acidification (pH 1) with concentrated HCl, the crude product formed as a thick white precipitate. Recrystallization from aqueous ethanol gave 31 (0.35 g, 22%) as white crystals (Table I).

N-[[4-(Acetylamino)phenyl]sulfonyl]glycine (3d). Chlorosulfonic acid (50 mL, 772 mmol) was added dropwise with stirring to dry acetanilide (20 g, 0.145 mmol). After addition was complete, the reaction mixture was heated at reflux for 1 h, then allowed to cool to room temperature, and poured into a stirred slurry of ice water (300 g). The resulting suspension of white solid was stirred for several minutes to obtain an even suspension, and then filtered to yield the intermediate 4-acetamidobenzenesulfonyl chloride, which was added portionwise (1.13 g, 4.8 mmol) with stirring to a warm (80-90 °C) solution of glycine (0.36 g, 4.8 mmol) and NaOH (0.40 g) in H₂O (20 mL). After addition was complete, the reaction mixture was stirred for 0.5 h at 80-90 °C and then cooled to room temperature followed by further cooling (ice bath). Upon acidification (pH 1) with concentrted HCl, the crude product formed as a thick white precipitate. Isolation by vacuum filtration followed by recrystallization from aqueous ethanol provided the product 3d as feathery white crystals (0.97 g, 74%) (Table I).

N-[[4-[(Phenylpropionyl)amino]phenyl]sulfonyl]glycine (3h). A solution of 3i (1.0 g, 2.8 mmol) in EtOH (100 mL) containing 5% Pd/C (500 mg) was shaken under an H₂ atmosphere (initially at 50 psi) on a Parr apparatus for 16 h. The reaction mixture was filtered and the filtrate evaporated under vacuum to yield an off-white solid. Recrystallization from aqueous ethanol gave 3h (0.64 g, 63%) as shiny silver crystals (Table I).

N-Phenyl-N'-[4-(N-glycinylsulfonyl)phenyl]urea (3j). A solution of 1a (1.73 g, 7.5 mmol) and phenyl isocyanate (1.1 mL, 10 mmol) in CHCl₃ (25 mL) was stirred at room temperature for 2 h. Water (10 mL) and concentrated HCl (3 drops) were then added, and the mixture was stirred for 0.5 h followed by evaporation under vacuum to yield a peach colored solid. The solid was dissolved in H₂O (30 mL) and the pH adjusted to 1-2 with concentrated HCl (30 mL). CHCl₃ was added, and the resulting suspension was isolated by vacuum filtration. The solid was dissolved in saturated NaHCO₃ (75 mL) and the solution filtered. The filtrate volume was reduced, then cooled (ice bath), and

acidified to pH 1 with concentrated HCl to yield the crude product as a yellow precipitate. Recrystallization from aqueous ethanol gave **3j** (0.70 g, 26.7%) as tan crystals (Table I).

N-Phenyl-N'[4-(N-glycinylsulfonyl)phenyl]thiourea (3k). A solution of phenyl isothiocyanate (1.2 mL, 10 mmol) and 1a (2.30 g, 10 mmol) in EtOH (20 mL) was stirred at reflux for 0.5 h. Water was then added dropwise to the hot solution until a permanent cloudiness resulted. The mixture was allowed to cool to room temperature followed by further cooling in an ice bath. The resulting white solid was collected by filtration and washed with hexane. Recrystallization from ethanol gave **3k** (1.25 g, 34%) as granular yellow crystals (Table I).

N-[[4-(Alkylamino)phenyl]sulfonyl]glycines 3e and 3f. A mixture of aldehyde (7.0 mmol), [(4-aminophenyl)sulfonyl]glycine (1a) (1.61 g, 7.0 mmol), and sodium cyanoborohydride (1.33 g, 21 mmol) in acetonitrile (50 mL) was stirred at room temperature for 4.5 h. The reaction mixture was then evaporated to dryness in vacuo and the residue dissolved in H₂O (35 mL) and then acidified to pH 5 with glacial acetic acid. The acidified solution was extracted with CHCl₃ (2 × 75 mL), and the combined CHCl₃ extracts were washed with H₂O (100 mL) and evaporated in vacuo to yield the crude products. Recrystallization from aqueous ethanol gave 3e and 3f (Table I).

Enzyme Assay. Frozen rat eyes were purchased from Charles River Breeding Labs., Inc., and the lenses were dissected from the partially thawed eyes and were then kept at -6 °C until used for the assay. Crude enzyme supernatant was prepared by homogenizing 50 lenses in distilled water (10 mL) and then centrifuging the crude homogenate at 10000 rpm for 10 min while an ambient temperature of 0-5 °C was maintained.

Aldose reductase activity of the freshly prepared supernatant was assayed spectrophotometrically by determining the decrease in NADPH concentration at 340 nm with a Shimadzu UV-160 double-beam spectrophotometer. The reaction mixture contained 0.1 M phosphate buffer, pH 6.2; 0.104 mM NaDPH; 10 mM DL-glyceraldehyde; and 0.2 mL of the enzyme supernatant in a total volume of 2.0 mL. The reference blank contained all of the above reagents except glyceraldehyde, to correct for nonspecific reduction by NADPH. The reaction was initiated by the addition of glyceraldehyde, and it was monitored spectrophotometrically for 3.0 min. Enzyme activity was adjusted by diluting the supernatant with distilled water so that 0.2 mL of enzyme supernatant gave an average reaction rate for the control sample of 0.010 ± 0.002 absorbance units/min. The inhibitory activity of compounds 1a-c and 3a-n was determined by including 0.2 mL of each inhibitor solution at the desired concentration in the enzyme reaction mixture. The percent inhibition for each compound at each concentration (tested at four concentrations with three determinations at each concentration) was calculated by comparing the reaction rate of the solution containing both substrate and inhibitor with that of control solutions containing only the substrate. Inhibitor IC_{50} values were then calculated from the inhibitory data from least-squares analysis of the log doseresponse curves using the LINEFIT program of Barlow.⁸ Enzyme kinetic studies were performed with 3a by using five concentrations of substrate (1.0, 0.5, 0.25, 0.125, and 0.0625 mM) and approximately the IC₅₀ concentration of **3a** (0.5 μ M). The type of inhibition produced by 3a was determined by analysis of the plots of reciprocal initial velocities vs. reciprocal substrate concentrations with and without inhibitor 3a present (Figure 1). These plots were generated by least-squares fit of the data, and the effect of 3a on K_m and V_{max} was verified by using the nonlinear least-squares HYPMIC program of Barlow.⁸

Registry No. 1a, 5616-30-8; 1b, 109065-68-1; 1c, 13514-59-5; 3a, 109065-69-2; 3b, 109065-70-5; 3c, 109086-31-9; 3d, 23776-98-9; 3e, 109065-71-6; 3f, 109065-72-7; 3g, 109065-73-8; 3h, 109065-74-9; 3i, 109065-78-3; 3n, 109065-79-4; 5a, 15054-44-1; 5b, 1215-64-1; 5c, 15054-42-9; 4- $O_2NC_6H_4SO_2Cl$, 98-74-8; 3- $O_2NC_6H_4SO_2Cl$, 121-51-7; 2- $O_2NC_6H_4SO_2Cl$, 1694-92-4; H-Gly-OH, 56-40-6; PhCOCl, 98-88-4; PhCH₂COCl, 103-80-0; PhCH=CHCOCl, 102-92-1; PhOCH₂COCl, 701-99-5; PhCH₂OCCl, 19810-31-2; PhCH₂OCOCl, 501-53-1; PhNHAc, 103-84-4; 4-AcNHC₆H_4SO_2Cl, 121-60-8; PhCOO, 103-71-9; PhNCS, 103-72-0; PhCHO, 100-52-7; HCHO, 50-00-0; aldose reductase, 9028-31-3.