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Peptide sequencing through N-terminal
phosphonylation and electrospray ionization mass
spectrometry
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Peptides were phosphonylated at their N-termini by reacting with ethoxyphenylphosphinate in the
presence of triethylamine and tetrachloromethane under mild conditions. The phosphonylated peptides
were analyzed by tandem electrospray ionization mass spectrometry. N-Terminal phosphonylation
selectively increased the intensities of bn-type ions relative to other ion types. The resulting simplified
mass spectra clearly show the sequential loss of amino acid residues from the C-termini of peptides,
providing a convenient and rapid method for peptide sequencing. Copyright  2005 John Wiley & Sons,
Ltd.
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INTRODUCTION

Primary sequences of proteins are traditionally determined
by cleaving a protein into smaller peptide fragments and
sequencing the peptides using a variety of methods.1 The
most widely practiced method has been the Edman method,2

which degrades a peptide sequentially from its N-terminus
to release phenylthiohydantoin derivatives which are sub-
sequently analyzed by HPLC. The advent of soft ionization
techniques such as fast atom bombardment (FAB),3 matrix-
assisted laser desorption/ionization (MALDI)4,5 and electro-
spray ionization (ESI),6 which make it possible to generate
intact macromolecular ions in the gas phase, has led to the
development of numerous mass spectrometric approaches
to obtain sequence and structural information of biolog-
ical molecules. For example, Chait et al.7 have developed
a modified Edman degradation method to convert a pep-
tide to be sequenced into a series of progressively shorter
peptides, which are analyzed by MALDI-MS to obtain the
sequence of the original peptide (peptide ladder sequenc-
ing). Boyd et al. developed a C-terminal peptide sequencing
method analogous to Edman degradation by converting the
C-terminal amino acid of a peptide into a thiohydantoin
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using a carboxyl-group activating reagent and thiocyanate
anion.8,9 C-Terminal sequencing of peptides has also been
achieved through enzymatic digestion of peptides with car-
boxypeptidase Y followed by MALDI-MS analysis.10,11 These
methods, however, require pure peptide samples and chem-
ical or enzymatic degradation prior to mass spectrometry,
making them inconvenient for small amounts of peptides
especially peptide mixtures.

Tandem MS equipped with soft ionization methods
provides an increasingly popular alternative approach
for peptide characterization. A peptide mixture can be
separated during the first stage of mass spectrometry; during
the next stages, the selected peptide ion is fragmented
by either collision-induced dissociation (CID) or surface-
induced dissociation (SID).12 The resulting MS/MS spectrum
can be used to deduce the amino acid sequence of the original
peptide. Unfortunately, a protonated peptide is typically
dissociated into a wide variety of fragment ions including
the an, bn, and cn ions that correspond to the N-terminal
fragments and the xn, yn, and zn ions that represent the C-
terminal fragments.13,14 In general, it is difficult to predict
which type of fragment ions will be formed for a given
peptide, and the MS/MS spectra are often so complicated
that de novo sequence determination is impossible. It has
previously been shown that alkali-cationized peptides can
be successively dissociated from their C-termini in magnetic
sector mass spectrometers,15 – 22 providing opportunities for
peptide sequencing. The alkali-cationized peptides can also
be cleaved sequentially from their C-termini to yield a series
of [bn C Na C OH]C ions in ion-trap instruments using low
collision energies.23,24 This method is analogous to Edman
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degradation, except that the cleavage occurs from the C-
terminus instead of the N-terminus, making it suitable
for sequencing N-terminally blocked peptides. However,
some drawbacks such as the lower sensitivity of cationized
peptides and the still-very-complex dissociation pathways
render this method impractical.23 – 28

Many efforts have been made to simplify the mass
spectra by modifying peptides with either positively or
negatively charged groups. For positive derivatization, a
positively charged group such as trimethylammoniumacetyl
or tris[(2,4,6-trimethoxypheny)phosphonium]acetyl is intro-
duced to the N-terminus of a peptide.29,30 Similarly, a
negatively charged group such as the sulfonyl group and
the 4-aminonaphthalenesulfonyl group has been added to
the N- and C-termini of peptides, respectively.31,32 We have
previously found that the ionization efficiency of peptides
can be greatly improved by introducing a neutral dialky-
loxyphosphoryl group to their N-termini in positive-ion
ESI-MS33 and FAB-MS.34 The dissociation efficiency also
seemed to be higher; unfortunately, a variety of dissoci-
ation pathways of the phosphoryl group complicated the
mass spectra and sequence interpretation. We reasoned that,
since the P-C bond in phosphonamidate is relatively stable
under low-collision activation conditions, an N-terminally
phosphonamidylated peptide should have less fragmenta-
tion and therefore simpler MS/MS spectra. In this work, we
show that peptides can be phosphonylated at their N-termini
and their sequences can be unambiguously determined by
ESI-MS/MS.

EXPERIMENTAL

Materials
All peptides include Ala-Gly-Phe-Leu-ValOH (MW 505),
Leu-Gly-Phe-Ala-ValOH (MW 505), Gly-Leu-Val-Ala-
PheOH (MW 505), Phe-Phe-Phe-Phe-PheOH (MW 753), Phe-
Ala-Ser-Asp-LeuOH (MW 551), Val-Ala-Ser-Phe-LeuOH
(MW 535), Val-Glu-Gln-HisOH (MW 511), Leu-Glu-His-
GlnOH (MW 525) and Val-Arg-Leu-Asp-Ser-PheOH (MW
735) were commercially available from Shanghai Glsyn-
thesis Company (¾80% pure). The peptides were used in
phosphonylation and ESI-MS/MS analysis without further
purification. Dichloro(phenyl)phosphine (DCPP) was pur-
chased from Beijing Chemical Factory (Beijing). Ethanol was
rendered anhydrous by refluxing with Mg.

Chemistry
31P NMR chemical shifts were reported in ppm downfield
(C) or upfield (–) from external H3PO4 (85%) reference.
Ethoxyphenylphosphinyl and phosphonamidyl peptides
were prepared as previously described.35

Synthesis of ethoxyphenylphosphinate (EPP)
Ethanol (5 mmol) was added dropwise to 2 mmol of
dichloro(phenyl)phosphine dissolved in 4 mL of ethyl ether
at room temperature under nitrogen atmosphere. The
reaction completed within 30 min, and 31P NMR spectrum
showed that DCPP was almost quantitatively converted
intoEPP. The crude product was obtained after removal
of HCl, ethyl ether, and ethanol by distillation and was used
without further purification (1H NMR shows that its purity
is more than 95%). 31P NMR of EPP: 26.99 ppm.

General procedure for synthesis of phosphonamidate
peptides
Peptide (¾1 mg) was dissolved in 100 µL of triethylamine,
800 µL of ethanol and 100 µL of tetrachloromethane and
was treated with 1.2–1.5 equiv of EPP (¾20 µL) at �5 °C.
The resulting solution was stirred for 45 min and directly
analyzed by ESI-MS/MS.

Mass spectrometric conditions
Mass spectra were recorded on a Bruker ESQUIRE ¾LC
ion-trap spectrometer equipped with a gas nebulizer probe.
Nitrogen gas was used for drying at a flow rate of 4 L/min.
The nebulizer gas fore-pressure was 7 psi. The electrospray
capillary was typically held at 4 kV. Samples were dissolved
in ethanol and ionized by electrospray ionization. The scan
range was from m/z 100 to 1000 in positive-ion. The selected
ions [M C H]C were analyzed by multistage tandem mass
spectrometry through collision with helium.

RESULTS AND DISCUSSION

N-terminally ethoxyphenylphosphinylated peptides were
prepared by treating the free peptides with 1.2 to 1.5
equiv of EPP in a mixed solvent containing triethylamine,
tetrachloromethane and ethanol (Scheme 1).35 The resulting
solution was directly analyzed by ESI-MS/MS.

The mass spectra of the modified peptides showed
intense molecular ions (M C HC� usually as the base
peaks. The protonated molecular ions were selected as
precursor ions for CID fragmentation. ESI-MS/MS showed

Scheme 1. Synthetic route of phosphonamidate peptides.
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much simpler fragmentation pattern relative to those of
unmodified peptides. The spectra are usually dominated
by the bn ions, corresponding to the modified N-terminal
fragments. This made sequence interpretation trivial and
unambiguous in most cases. For example, Fig. 1 shows
the ESI-MS2 mass spectrum of peptide EPP-Ala-Gly-Phe-
Leu-Val-OH. The spectrum consists of the [M C H]C ion
at m/z 674, the [M C H � H2O]C ion at m/z 656, b4 ion
([M-Val-16]C) at m/z 557, b3 ion ([M C H � LeuValOH]C)
at m/z 444, and b2 ion ([M C H � PheLeuValOH]C) at
m/z 297. The spectrum is essentially devoid of any other
peaks and therefore the peptide sequence Phe-Leu-Val-
OH is unambiguously assigned on the basis of the mass
differences between adjacent bn ions. Next, the b2 ion
at m/z 297 ([M C H � PheLeuValOH]C) was selected for
further fragmentation to obtain the ESI-MS3 spectrum, which
displayed an intense peak at m/z 240 (data not shown). This
indicates the loss of a glycyl residue and the remaining
fragment ion corresponds to [EPP-Ala]C. Two small satellite
peaks at m/z 416 and 269 were most likely due to loss
of ethylene (from the phosphonyl group) or CO (from
amide) from b3 and b2 ions, respectively (Fig. 1). Therefore,
the complete amino acid sequence of the phosphonylated
pentapeptide was determined as EPP-Ala-Gly-Phe-Leu-Val-
OH.

We also determined the sequences of other peptides con-
taining special amino acid residues, for example, EPP-Phe-
Ala-Ser-Asp-LeuOH and EPP-Val-Glu-Gln-HisOH. Figure 2
shows the ESI-MS2 spectrum of peptide EPP-Phe-Ala-Ser-
Asp-LeuOH. A series of fragment ions resulting from sequen-
tial loss of C-terminal amino acid residues were observed
at m/z 702, 589, 474, 387, and 316, corresponding to loss

of LeuOH, AspLeuOH, SerAspLeuOH, and Ala-Ser-Asp-
LeuOH from the original peptide, respectively. We also
observed intense peaks corresponding to [b3 C 1]C at m/z
475 and [b2 C 1]C at m/z 388, although their mechanism
of formation is currently unknown. More impressively, the
ESI-MS2 spectrum of peptide EPP-Val-Glu-Gln-HisOH pro-
duced a complete set of the bn fragment ions at m/z 680, 525,
397, and 268 (corresponding to [M C H]C , b3, b2, and b1 ion,
respectively), but was still relatively free of other fragment
ions (Fig. 3). In addition, an intense ion [EPP C Val � CO]C

at m/z 240 was observed.
Mass spectra of arginine-containing peptides often show

peculiar results due to the presence of a guanidino group
on its side chain.36 In addition, some investigators reported
that peptides with Asp usually displayed strong signals
resulting from cleavage at the carboxy-side of Asp in mass
spectrometry.24,37 We chose to determine the sequence of
peptide Val-Arg-Leu-Asp-Ser-PheOH, which contains both
arginyl and aspartyl residues. The peptide was N-terminally
phosphonylated and then analyzed by ESI-MS/MS. The ESI-
MS2 spectrum (Figure 4) shows [M C H]C at m/z 904, b5

at m/z 739, b4 at m/z 652, b3 at m/z 537, and b2 at m/z
424. In addition, ions corresponding to [b3-17]C (m/z 520)
and [b2-17]C (m/z 407) were observed, which are formed
due to loss of NH3 from the arginine guanidino group. The
b4 ion (m/z 652) was the base peak, which is in agreement
with the previous reports by other investigators.24,36 The ESI-
MS3 spectrum of the b4 ion (m/z 652) displayed the similar
fragment ions to ESI-MS of the original molecule (Figure 5),
which allowed the entire peptide sequence to be determined.
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Figure 1. ESI-MS2 spectrum of the protonated molecule [M C H]C at m/z 674 of EPP-Ala-Gly-Phe-Leu-ValOH.
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Figure 2. ESI-MS2 spectrum of the protonated molecule [M C H]C at m/z 720 of EPP-Phe-Ala-Ser-Asp-LeuOH.
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Figure 3. ESI-MS2 of the protonated molecule [M C H]C at m/z 680 of EPP-Val-Glu-Gln-HisOH.
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Figure 4. ESI-MS2 of the protonated molecule at m/z 904 of EPP-Val-Arg-Leu-Asp-Ser-PheOH.
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Figure 5. ESI-MS3 spectrum of b4 ion at m/z 652 in Fig. 4.

CONCLUSION

Peptides with free N-termini were readily converted into the
corresponding N-terminally phosphonamidylated peptides
by treatment with EPP under mild conditions. MS/MS of
the resulting peptide derivatives produced predominantly
the bn-type ions and much simplified spectra that allow
ready sequence determination of the original peptide. This
provides a rapid, convenient, and general method for peptide
sequence determination.
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