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Intermolecular cycloaddition reactions are powerful methods for
the convergent construction of cyclic materials from relatively
simple organic fragments, and achieving such transformations by
the use of transition-metal catalysts is highly desirable in view of
efficiency of the process and mildness of the reaction conditions.
For the construction of six-membered cyclic compounds, [4+ 2]
cycloadditions (e.g., the Diels-Alder reactions) are most widely
used in the literature.1 An alternative approach is the use of [2+
2 + 2] cycloaddition reactions as often used in the preparation of
aromatic ring systems.2 Although a [3+ 3] cycloaddition strategy
is another legitimate approach toward the formation of six-
membered rings, it has been much less studied3 and only a few
examples of transition-metal-catalyzed [3+ 3] cycloadditions have
been reported to date.4,5 Here we describe the development of a
new palladium-catalyzed [3+ 3] cycloaddition of trimethylene-
methane (TMM) with azomethine imines to produce highly
functionalized hexahydropyridazine derivatives under simple and
mild conditions (eq 1).

In 1979, Trost reported the use of Pd-TMM complexes in the
context of [3+ 2] cycloaddition reactions.6 Since then, he has made
a significant contribution to the development of this attractive
chemistry, showing the high utility of Pd-TMM complexes as a
source of a three-carbon unit in a cyclic framework.7,8 On the other
hand, their use in [3+ 3] cycloadditions is very limited. To the
best of our knowledge, they have only been used in the couplings
with aziridines to furnish piperidine derivatives so far.5

1-Alkylidene-3-oxopyrazolidin-1-ium-2-ides (e.g.,2 in eq 1),
developed by Dorn and Otto in 1968,9 are isolable and stable
azomethine imines and have been used as 1,3-dipoles in the context
of [3 + 2] cycloadditions, giving five-membered nitrogen-contain-
ing heterocycles.10,11 Unfortunately, however, these useful 1,3-
dipoles have never been engaged in a single-step formation of six-
membered rings to date.12

Initially, we examined the reaction of (2-(acetoxymethyl)-2-
propenyl)trimethylsilane (1) with azomethine imine2a in the
presence of a catalytic amount of Pd(PPh3)4 at 40°C (Table 1) and
found that the choice of solvent has a significant impact on the
reaction progress. Thus, desired [3+ 3] cycloadduct3a was
obtained in high yield by the use of dichloromethane (82% yield;
entry 5) in contrast to any other solvents we employed (entries 1-4).
We also found that the use of Pd(OAc)2/PPh3 or CpPd(η3-C3H5)/
PPh3 as a catalyst in dichloromethane produced cycloadduct3a in
comparably high yield (77-82% yield; entries 6 and 7).

We have subsequently determined that the scope of the azome-
thine imine is fairly broad. Thus, with respect to the substituent on

the alkylidene portion, a variety of aryl groups (Table 2, entries
1-6) as well as heteroaryl and alkenyl groups (entries 7 and 8)
can be tolerated, furnishing [3+ 3] cycloadducts in high yield
(70-92% yield). Unfortunately, substrates with an alkyl substituent
are less effective for this [3+ 3] cycloaddition (entry 9).

Azomethine imines bearing substituents on the pyrazolidinone
ring can also be used in the present [3+ 3] cycloaddition reaction
with high efficiency. For example, 4,4-dimethyl-substituted dipole
2j provides corresponding cycloadduct3j in 94% yield (eq 2). In
addition, 5-methyl-substituted dipole2k is converted to the six-
membered heterocycle3k not only in high yield (87%) but also
with high diastereoselectivity (dr) 96/4; eq 3). The relative
configuration of the major diastereomer was determined by X-ray
crystallographic analysis, as shown in Figure 1.

We have also examined the reactions using substituted TMM
precursors in combination with azomethine imine2a. Thus,

Table 1. [3 + 3] Cycloaddition of (2-(Acetoxymethyl)-2-propenyl)-
trimethylsilane (1) with Azomethine Imine 2a

entry Pd catalyst solvent yield (%)a

1 Pd(PPh3)4 toluene <2
2 Pd(PPh3)4 MeOH <2
3 Pd(PPh3)4 THF 14
4 Pd(PPh3)4 ClCH2CH2Cl 57
5 Pd(PPh3)4 CH2Cl2 82 (81)b
6 Pd(OAc)2/4 PPh3 CH2Cl2 82
7 CpPd(η3-C3H5)/4 PPh3 CH2Cl2 77

a Determined by1H NMR against an internal standard (MeNO2).
b Isolated yield in parentheses.

Table 2. Palladium-Catalyzed [3 + 3] Cycloaddition: Scope of
Azomethine Imines

entry R product yield (%)a

1 Ph (2a) 3a 81
2 4-MeC6H4 (2b) 3b 74
3 4-CF3C6H4 (2c) 3c 92
4 3-ClC6H4 (2d) 3d 90
5 2-FC6H4 (2e) 3e 88
6 2-MeC6H4 (2f) 3f 70
7 3-pyridyl (2g) 3g 75
8 1-cyclohexenyl (2h) 3h 71
9 t-Bu (2i) 3i 20

a Isolated yield.
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compound4 mainly furnished two different products,3l and3m,
along with a minute amount of product3n (3l/3m/3n ) 77/20/3;
eq 4). In contrast, the use of structural isomer5 generated3n as
the major product with a small amount of3l (3l/3m/3n ) 12/1/87;
eq 5). These results show that the substitution pattern of the TMM
precursor is reflected in the product distribution in the present [3
+ 3] cycloaddition with azomethine imine2a, indicating that the
cycloaddition occurs without significant equilibration between
intermediates6 and 7 (Scheme 1). This observation strikingly
contrasts to the palladium-catalyzed [3+ 2] cycloadditions of4 or
5 with electron-deficient olefins described by Trost, which pref-
erentially afford five-membered cyclic compounds derived from
intermediate7 regardless of the starting TMM precursor (4 or 5)
due to the fast equilibration between6 and 7 prior to the
cycloaddition.13

These [3+ 3] cycloaddition reactions can be extended to the
couplings with nitrones, as well. For example, a reaction of nitrone

8 with TMM precursor1 provides corresponding cycloadduct9 in
91% yield (eq 6).

In summary, we have developed a palladium-catalyzed [3+ 3]
cycloaddition of trimethylenemethane with azomethine imines to
produce hexahydropyridazine derivatives under mild conditions. The
use of substituted TMM precursors highlights the difference of this
system from previously reported [3+ 2] cycloaddition of TMMs
under palladium catalysis. We have also described that the present
[3 + 3] cycloadditions are applicable to couplings with nitrones.
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Figure 1. ORTEP illustration of3k with thermal ellipsoids drawn at the
50% probability level (hydrogen atoms on the methyl and phenyl groups
are omitted for clarity).

Scheme 1
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