

Tetrahedron Letters 42 (2001) 3287-3289

TETRAHEDRON LETTERS

Synthesis of (-)-(3S)-1-(3-aminopropyl)-3-methylazacyclodecane, the structure proposed for the marine alkaloid haliclorensin

Markus R. Heinrich and Wolfgang Steglich*

Chemie Department, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13 (F), D-81377 Munich, Germany Received 27 February 2001; accepted 9 March 2001

Abstract—The total synthesis of both enantiomers of the title compound has been achieved in seven steps with 19% overall yield. The synthetic diamine differs in its NMR data and optical rotation from haliclorensin, a marine alkaloid for which the same structure had been proposed. © 2001 Published by Elsevier Science Ltd.

Haliclorensin (1), a diamino alkaloid with an azacyclodecane ring, was isolated from the South African marine sponge *Haliclona tulearensis* by Kashman et al.¹ in 1998. The structure of the alkaloid was determined from its spectroscopic data and the synthesis of various model compounds. Haliclorensin forms part of the structure of halitulin (2), a more complex bisquinolylpyrrole alkaloid from the same organism that exhibits strong cytotoxic activity against mouse leukemia cells.²

In order to apply our biomimetic strategy³ for the synthesis of 3,4-diarylpyrrole alkaloids to halitulin (2) we have prepared both enantiomers of haliclorensin (1) and determined the stereochemistry of the (–)-form as 3S.

The synthetic steps leading to 1 are depicted in Scheme 1. Condensation of 4-pentenylamine $(3)^4$ with *o*-nitrobenzenesulfonyl chloride furnished sulfonamide 4,^{5,6} which was converted to the protected secondary amine 6 by reaction with the optically pure alcohol 5 under Mitsunobu conditions.⁷ (2*S*)-2-Methyl-5-hexen-1-ol (5) was obtained in optically pure form in five steps from commercially available methyl (2*R*)-3-hydroxy-2-methylpropanoate with 73% overall yield.⁸

The ring-closing metathesis of diene 6 to the azacycloalkene 79 was carried out under standard conditions using the Grubbs catalyst in dry dichloromethane.¹⁰ We observed that the formation of dimers and oligomers is the predominant reaction, which can, however, be minimized by using concentrations lower than 0.5 mmol/L. The removal of the protecting group from 7 with PhSH and K₂CO₃ according to Fukuyama⁶ furnished the free amine **8** that was converted to the β -aminonitrile **9**¹¹ by treatment with acrylonitrile. Hydrogenation of 9 over Raney-Ni in MeOH saturated with NH₃ yielded the primary amine, and catalytic hydrogenation over Pd/C in dry MeOH removed the double bond and yielded (-)-(3S)-1-(3-aminopropyl)-3-methylazacyclodecane (1).¹² (–)-1 was obtained from the known compounds 3and 5 in seven steps with 19% overall yield. In the same manner (+)-1, was prepared from (2R)-2-methyl-5hexen-1-ol (5). Compound 1 was completely characterized by its spectroscopic data and the structure was confirmed by NMR experiments (Table 1).

Unfortunately, the ¹³C NMR shifts of the synthetic compound (Table 1) differ considerably from the values given for haliclorensin¹ which makes the proof of identity ambiguous.¹³ Furthermore, the optical rotation

Keywords: haliclorensin; alkaloids; marine metabolites; sponges; synthesis; metathesis.

^{*} Corresponding author. Fax: +49-89-21807756; e-mail: wos@cup.uni-muenchen.de

^{0040-4039/01/\$ -} see front matter @ 2001 Published by Elsevier Science Ltd. PII: S0040-4039(01)00435-X

Scheme 1. Reagents and conditions: (a) o-nitrobenzenesulfonyl chloride (1 equiv.), K_2CO_3 (1 equiv.), CH_2Cl_2 , rt, 2.5 h. (b) (2S)-2-Methyl-5-hexen-1-ol (1.2 equiv.), PPh₃ (1 equiv.), DEAD (1 equiv.), dry THF, rt, 24 h. (c) Grubbs catalyst (0.1 equiv.), CH_2Cl_2 , reflux, 18 h. (d) PhSH (1.2 equiv.), K_2CO_3 (3 equiv.), dry DMF, rt, 1.5 h. (e) Acrylonitrile (1.1 equiv.), dry MeOH, $0^{\circ}C \rightarrow rt$, 12 h. (f) Raney-Ni, 20 bar (290 psi) H₂, NH₃ satd MeOH, rt, 5 h. (g) Pd/C (10% Pd), 10 bar (145 psi) H₂, dry MeOH, rt, 12 h.

Table 1. ¹³C and ¹H NMR data of synthetic 1 (600 MHz, DMSO-d₆)

С	$\delta_{ m c}$	Н	$\delta_{\rm H}$ (mult, J in Hz)	COSY	HMBC (H→C)
2	60.5	2a	2.31 (dd, $J = 12.5, 12.1$)	2b, 3	3, 4, 10, 11, 1'
		2b	2.06 (m)	2a, 3	3, 4, 10, 11, 1'
3	29.6	3	1.87 (m)	2a, 2b, 4a, 11	2, 4, 5, 11
4	31.8	4a	1.53 (m)	3, 4b, 5b	2, 3, 5, 6, 11
		4b	1.30 (m)	4a	5, 6
5	21.9	5a	1.81 (m)		
		5b	1.35 (m)		
6	26.3	6	1.36 (m)		
7	24.4	7a	1.74 (m)		
		7b	1.36 (m)		
8	24.1	8a	1.53 (m)		
		8b	1.44 (m)		6
9	25.6	9a	1.63 (m)	9b, 10a, 10b	7
		9b	1.35 (m)	9a, 10a, 10b	
10	53.0	10a	2.68 (ddd, $J = 13.2$, 10.6, 4.0)	9a, 9b, 10b	2, 8, 9, 1'
		10b	2.15 (ddd, $J = 13.2, 4.7, 4.4$)	9a, 9b, 10a	2, 8, 9, 1'
11	19.5	11	0.77 (d, $J = 6.8$)	3	2, 3, 4
1′	52.6	1′a	2.50 (m)	1'b, 2'	2, 10, 2', 3'
		1′b	2.07 (m)	1'a, 2'	2, 10, 2', 3'
2′	31.0	2′	1.50 (quin, $J=7.2$)	1'a, 1'b, 3'	1', 3'
3′	40.5	3'	2.54 (m)	2'	1', 2'

given for the natural product { $[\alpha]_D^{20}$ -2.2 (c 1.3, MeOH)} is much lower than that of synthetic (-)-1 { $[\alpha]_D$ -70 (c 0.9, MeOH)}.

Acknowledgements

We thank the Fonds der Chemischen Industrie for financial support and Mrs. Sabine Voß for technical assistance.

References

- Koren-Goldshlager, G.; Kashman, Y.; Schleyer, M. J. Nat. Prod. 1998, 61, 282–284.
- Kashman, Y.; Koren-Goldshlager, G.; Gravalos, M. D. G.; Schleyer, M. *Tetrahedron Lett.* **1999**, 40, 997–1000.
- Heim, A.; Terpin, A.; Steglich, W. Angew. Chem. 1997, 109, 158–159; Angew. Chem., Int. Ed. Engl. 1997, 36, 155–156.
- (a) Frank, K. E.; Aube, J. J. Org. Chem. 2000, 65, 655–666; (b) Toshimitsu, A.; Terao, K.; Uemura, S. J.

Org. Chem. 1986, 51, 1724–1729.

- Beckwith, A. L. J.; Meijs, G. F. J. Org. Chem. 1987, 52, 1922–1930.
- Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373–6374.
- Xiong, Y.; Moore, H. W. J. Org. Chem. 1996, 61, 9168– 9177.
- Hori, K.; Hikage, N.; Inagaki, A.; Mori, S.; Nomura, K.; Yoshii, E. J. Org. Chem. 1992, 57, 2888–2902.
- Compound 7: pale yellow solid, mp 101–103°C. ¹H NMR (600 MHz, CDCl₃): δ 0.82 (d, 3H, J=6.7 Hz), 1.43–1.49 (m, 1H), 1.54–1.58 (m, 2H), 1.88–1.95 (m, 2H), 1.97–2.03 (m, 1H), 2.14–2.20 (m, 1H), 2.53 (dd, 1H, J=3.6 and 13.0 Hz), 2.73–2.80 (m, 1H), 2.95–2.99 (m, 2H), 3.02 (dd, 1H, J=4.7 and 13.0 Hz), 3.11 (ddd, 1H, J=1.7, 5.0 and 14.4 Hz), 3.42 (dd, 1H, J=9.7 and 13.1 Hz), 5.44–5.46 (m, 2H), 7.54 (dd, 1H, J=1.9 and 7.2 Hz), 7.67–7.72 (m, 2H), 7.89 (dd, 1H, J=1.9 and 7.2 Hz). ¹³C NMR (75.5 MHz, CDCl₃): δ 20.7, 23.2, 24.7, 26.7, 27.2, 35.0, 45.5, 57.9,

123.8, 128.5, 129.9, 131.0, 131.1, 131.9, 133.5, 149.0. HRMS calcd for $C_{16}H_{22}N_2O_4S$ (M⁺) 338.1300. Found 338.1300. Anal. calcd C, 56.78; H, 6.55; N, 8.28; S, 9.48. Found C, 56.73; H, 6.51; N, 8.01; S, 9.02. $[\alpha]_D$ –88 (*c* 0.9, MeOH).

- (a) Grubbs, R. H.; Chang, S. *Tetrahedron* 1998, 54, 4413–4450;
 (b) Fink, B. E.; Kym, P. R.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1998, 120, 4334–4344.
- Roufos, I.; Hays, S.; Schwarz, R. D. J. Med. Chem. 1996, 39, 1514–1520.
- Compound 1: colorless oil. (-)-1, [α]_D -70 (c 0.9, MeOH); (+)-1, [α]_D²⁰ +71 (c 0.6, MeOH). NMR data (see Table 1). HRMS calcd for C₁₃H₂₈N₂ (M⁺) 212.2253. Found 212.2247. GC–MS *m/z* (rel. int.): 212 (7, M⁺), 182 (6, M⁺–CH₂NH₂), 168 (100, M⁺–C₂H₄NH₂), 154 (28), 140 (8), 126 (38).
- 13. Professor Yoel Kashman, Tel Aviv, kindly informed us about a current re-isolation of haliclorensin which will allow a direct comparison.