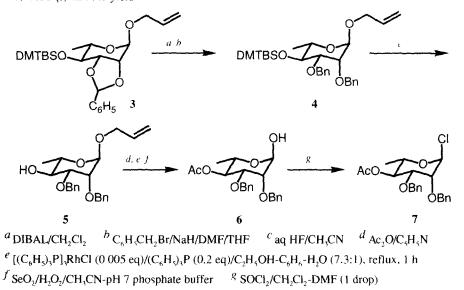
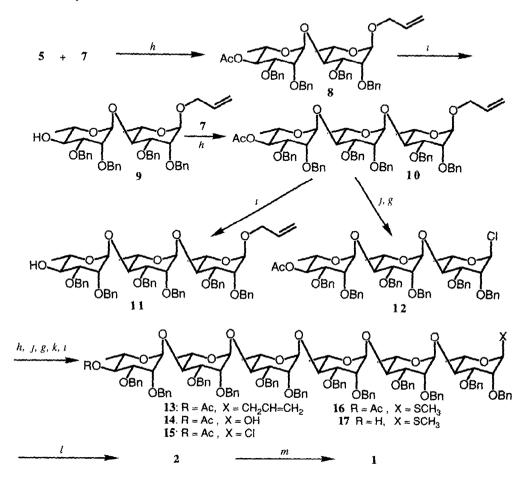
TOTAL SYNTHESIS OF CYCLO-L-RHAMNOHEXAOSE BY A STEREOSELECTIVE THERMAL GLYCOSYLATION

Mugio NISHIZAWA,* Hiroshi IMAGAWA, Yukiko KAN, and Hidetoshi YAMADA


Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima 770, Japan

Abstract: The first cyclooligosaccharide of L series, cyclo-L-rhamnohexaose, have been synthesized from L-rhamnose by α -selective thermal glycosylation and PhSeOTf promoted cycloglycosylation.

Significant attentions have been focused on the inclusion chemistry of cyclodextrins and the related compounds,¹ and synthetic studies of cyclooligosaccharides are continued intensively. For example, Ogawa and co-workers reported the total synthesis of cyclodextrins^{2,4} and a manno isomer of cyclodextrins^{5,7} by means of phenylselenyl triflate promoted cycloglycosylations. Synthesis of 1-3 β linked cycloglucohexaose was reported by Collins' group.⁸ Modification of α -cyclodextrin into trimethyl,⁹ 1,3-anhydro,¹⁰ and a chimera analog¹¹ have also reported recently. However, cyclooligosaccharides available today are only limited to D series. As we have developed a novel thermal glycosylation procedure,^{12,13} which can be applied to rhamnosylation with high α -selectivity,¹⁴ we designed the synthesis of cyclo-L-rhamnohexaose (1), the first cyclooligosaccharide of L series. Herein described is the total synthesis of 1, which would open a new dimension of the inclusion chemistry.


L-Rhamnose monohydrate was successively protected by allyl alcohol (1-OH), ¹⁵ benzaldehyde dimethylacetal (2,3-OH), and *tert*-butyldimethylsilyl chloride (4-OH), to give **3** in 54% overall yield. DIBAL reduction of **3**¹⁶ in dichloromethane afforded a mixture of 2- and 3-benzylethers in a ratio of 5:3, which was then

benzylated by benzyl bromide and NaH in DMF-THF (1·3) to give allyl 2.3-*O*-benzyl-4-*O*-tert-butyldimethyl-silyl- α -L-rhamnopyranoside (4), $[\alpha]_D^{23}$ -44 6° (ϵ 1.5, CHCl₄), in 88% yield. The silyl group of 4 was cleaved by aqueous hydrogen fluoride in acetonitrile to give the alcohol 5, $[\alpha]_D^{23}$ -2 6° (ϵ 2 1, CHCl₃), in 92% yield After acetylation, allyl group was removed in two steps to the hemiacetal 6 in 97% yield Rhodium complex catalyzed isomerization of double bond into 1,2-position followed by an oxidative hydrolysis using H₂O₂-SeO₂ in acetonitrile and phosphate buffer. The chlorination of 6 with SOCl₂ afforded the rhamnosyl chloride 7, $[\alpha]_D^{17}$ -75.6° (ϵ 4 8, CHCl₃), in 97% yield

Thermal glycosylation of **5** with chloride **7** (1.4 equiv) was achieved by heating the mixture at 70°C for 15 h in the presence of α -methylstyrene (3 equiv), the acid scavenger, giving rise to a single stereoisomer of the α -1,4-disaccharide **8**, $[\alpha]_0^{18}$ -15 7° (ϵ 2.6, CHCl₃), in 60% yield ^{17 18} Hydrolysis of the acetyl group in **8** yielded the alcohol **9**, $[\alpha]_0^{17}$ -5 1° (ϵ 1.7, CHCl₃), which was again subjected to the thermal rhamnosylation with **7** (1.4 equiv) under the similar conditions (40 h),¹⁷ to give the trimer **10**, $[\alpha]_0^{18}$ -8 1° (ϵ 2.9, CHCl₃), in 52% yield. While methanolysis of **10** afforded the trimer alcohol **11**, $[\alpha]_0^{17}$ +4.0° (ϵ 1.2, CHCl₃), in 78% yield, the PdCl₂ catalyzed hydrolysis and subsequent chlorination of **10** yielded the trimer chloride **12**, $[\alpha]_0^{18}$ -25.1° (ϵ 0.7, CHCl₃), in 80% yield. The thermal coupling of **11** and **12** (1.2 equiv) for 24 h at 70°C and an additional 1.5 h at 90°C in the presence of α -methylstyrene (3 equiv) afforded the hexamer **13**, $[\alpha]_0^{18}$ +2 5° (ϵ 0.6, CHCl₃), in 60% yield. The hexamer **13** was successively subjected to the deprotection at the anomeric center by PdCl₂/aq AcOH (to **14** in 76% yield), chlorination [to **15**, $[\alpha]_0^{22}$ -7.4° (ϵ 0.5, CHCl₃), in 73% yield], *S*-methylation [to **16** (α/β 2:3) in 88% yield], and hydrolysis of acetyl group to give hexamer alcohol **17** $[\alpha]_0^{18}$ +20.3° (ϵ 1.1,

CHCl₃), in 79% yield.

^h α-methylstyrene (3 equiv) 70°C, 15-40h $^{-1}$ CH₃ONa/CH₃OH $^{-J}$ PdCl₂ (1.2 eq)/AcOH-H₂O, (20:1) room temp, 9h. $^{-k}$ (C₄H₉)₃SnSCH₂/BF₃/molecular sieves AW-300/CH₂Cl₂, 0°C, 1 h. $^{-J}$ C₆H₃SeOTf/molecular sieves-4A/(CH₂Cl)₂. $^{-m}$ H₂/Pd(OH)₂/CH₃OH-CH₃CO₂C₂H₃-H₂O (12:1:1).

The hexamer alcohol 17 was treated at -20°C for overnight with phenylselenyl triflate in 1,2-dichloroethane in the presence of molecular sieves 4A,6 and the cyclization product 2, $\{\alpha\}_D^{22} + 30.3^{\circ}(c\ 0.15, CHCl_3)$, was isolated as colorless crystals, mp 139-141°C, in 23% yield after silica gel column chromatography. This product exhibited sharp monomer-like ¹H and ¹³C NMR spectra in CDCl₃. ¹⁹ Upon hydrogenolysis of 2 in the presence of 20%Pd(OH)₂-C, the first cyclooligosaccharide of L-series, α -cyclo-L-rhamnohexaose (1) $\{\alpha\}_D^{23}$ -18.5° ($c\ 0.085$, CH₃OH), was obtained in 72% yield as amorphous solid. The structure of 1 was verified on

the basis of FAB mass spectrum of m/z 899 (M + Na)⁴ and 915 (M + K)² as well as ³H and ¹³C NMR spectra in D_2O^{20} . Studies including the detailed characterization of **I** and its possibility as a host compound of inclusion chemistry are in progress.²¹

Acknowledgement: The authors thank Dr N. Hamanaka and Mr. S. Takaoka of Ono Pharmaceutical Co. Ltd for the determination of FAB mass spectrum of 1.

REFERENCES AND NOTES

- 1. Bender, M. L; Komiyama, M, "Cyclodextrin Chemistry, Reactivity and Structure", Concepts in Organic Chemistry 6, Springer-Verlag, 1978.
- 2. Ogawa, T.; Takahashi, Y. Carbohydr Rev., 1985, 138, C5
- 3 Takahashi, Y., Ogawa, T. Carbohydr Res., 1987, 169, 127
- 4 Takahashi, Y., Ogawa, T. Carbohydr Rev., 1987, 164, 277
- 5 Mori, M., Ito, Y., Ogawa, T. Ictrahedi on Lett., 1989, 30, 1273.
- 6 Mori, M., Ito, Y., Ogawa, T. Tetrahedron Lett. 1990, 31, 3029
- 7 Mori, M., Ito, Y., Uzawa, J. Ogawa, T. Tetrahedron Lett., 1990, 31, 3191
- 8 Collins, P. M., Ali, M. H., Tetrahedron Lett., 1990, 31, 4517
- 9. Cottaz, S; Driguez, H. J. Chem. Soc., Chem. Commun., 1989, 1088.
- 10 Ashton, P. R.; Ellwood, P; Staton, L., Stoddart, J. F, Angew. Chem. Int. Ed. Engl., 1991, 30, 80
- 11 Sakairi, N., Wang, L.X., Kuzuhara, H. I. Chem. Soc., Chem. Commun., 1991, 289.
- 12 Nishizawa, M., Kan, Y., Yamada, H. Tetrahedron Lett., 1988, 29, 4597
- 13 Nishizawa, M., Kan, Y., Yamada, H. Chem. Pharm. Bull., 1989, 37, 565
- 14 Nishizawa, M., Kan, Y., Shimomoto, W.; Yamada, H. Tetrahedron Lett., 1990, 31, 2431
- 15. Lee, R. T., Lee, Y. C. Carbohydr. Res., 1974, 37, 193.
- 16 Mikami, T.; Asano, H., Mitsunobu, O., Chem Lett., 1987, 2033.
- 17 Thermal coupling of 5 and 7 at 120°C for 2 h with or without α -MS sometimes afforded much higher yield, however those conditions were not effective for larger scales (2 \sim 3 mmol)
- 18. NMR chemical shifts along with coupling constants in parenthesis (Hz) of anomeric protons and carbons in CDCl, are as follows: 5, 8 4 86 (1 64) and 8 97 0 (167 3), 7, 8 6 09 (br s) and 8 91 3 (181.7); 8, 8 4 83 (1.65), 5.31 (1 65), and 8 96 8 (168 4), 99.8 (172.1); 9, 8 4.84 (1 1), 5 23 (br s), and 8 97.0 (165 8), 99 8 (170 2); 10, 8 4.85 (1 65), 5 28 (1 65), 5 30 (1 65), and 8 99.08 (168.8), 99 59 (176 1), 99.84 (171.7); 11, 8 97 0 (170 2), 99 6 (170 2), 99.7 (170.2), 12, 8 5.29 (2H. bt s), 6 06 (1 64), and 8 91 4 (183 1), 99 6 (172 8), 99 7 (172 8), 13, 8 4.86 (br s), 5 27-5 31 (5H. complex), and 8 97.0, 99.2, 99.3, 99.4, 99 7, 15, 8 5 26 (2H. br s), 5.29 (1H. br s), 5.31 (2H. br s), 6 07 (1 47), and 8 91 5, 99 3, 99.4, 99 8, 99.8; 16, 8 84 8 (137 8), 85 7 (149.6), 99 4 (176.1), 99.4 (176.1), 99 6 (173.1), 99.8 (176 1), 17, 8 84.8 (135.5), 85 7 (149.6), 99 4 (170.0), 99.4 (170.0), 99 7 (172.0), 99 7 (172.0).
- 19 1 H (400 MHz) and 13 C (100 MHz) NMR spectrum of 2 m CDCl₃ 3 8 1.44 (18H, d, J = 6 1 Hz), 3 56 (6H, t, J = 8 8 Hz), 3 76 (6H, dd, J = 8 8, 2.4 Hz), 3.81 (12H, m), 4.25 (6H, d, J = 12 1 Hz), 4 31 (6H, d, J = 12.1 Hz), 4 48 (6H, d, J = 12 1 Hz), 4.53 (6H, d, J = 12.1 Hz), 4.92 (6H, s), 7.15-7.26 (60H, m), and 818.4q, 68.5d, 71 5t, 72 5t, 76 7d, 78 4d, 100 9d ($J_{CP} = 163.8$ Hz), 127 0d, 127 4d, 127 5d, 127 6d, 127.6d, 128.0d, 128.1d, 128.3d, 138.3s, 138.4s
- 20. 1 H (600 MHz) and 13 C (150 MHz) NMR spectrum of 1 in D₂O (*tert*-butyl alcohol as internal standard at δ 1.25 and δ 32.25, respectively). δ 1 39 (18H, d, J = 6.4 Hz), 3 48 (6H, t, J = 9.0 Hz), 3 88 (6H, m), 3.89 (6H dd, J = 9.0, 2 6 Hz), 4 01 (6H t, J = 2.6 Hz), 4.91 (6H, d, J = 2.6 Hz), and δ 20 0q, 70 9d, 72 5d, 73 0d, 104.8d
- 21. We propose the common name " α -cycloawaodorin" to 1, the first cyclooligosaccharide of L-series, in connection with the area where the compound has been prepared