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Poly(3-chiral methylsulfinyl-1,2-phenyleneoxide) was syn-
thesized, and the regioselective intramolecular ring-closing of
the pendant sulfoxide on the polymer formed the corresponding
helical ladder structure comprising of a fused phenoxathiine
ring. The CD of the ladder polymer gave a Cotton effect which
was caused by the chirality of the pendant group.

A series of helical macromolecules have been studied ex-
pecting their potential applications involving chiral separation
and sensing, and liquid crystalline formation based on their pre-
cisely ordered stereostructure.1–5 Among the helical macromole-
cules, helicenes, which are helical molecules comprising of
fused aromatic rings, have been focused because of their unique
optical activity and stiff structures derived from the aromatic
fused-rings.6–8 However, many synthetic steps and tedious pro-
cedures are often required to obtain their non-racemates. We re-
port in this paper, for the first time, the synthesis of a phenoxa-
thiine-based helical ladder polymer, poly[dioxa-3,6-bis(methyl-
sulfonio)-1,2-phenylene]. The key step to form the ladder struc-
ture comprising of fused phenoxathiine ring is the one-pot
quantitative ring-closing reaction of the pendant alkyl sulfoxide
group on the aromatic polymer, which has been already reported
by us.9 In addition, a crucial factor to synthesize the helical
molecules is how to control the helicity. In this paper, the intra-
molecular ring-closing reaction of the pendant sulfoxide group
was regioselectively examined in order to induce a one-side bias
in the helicity using a chiral hydroxy sulfonium cation, as pre-
sented in Scheme 1. Our attempt to synthetically control the hel-
icity of the ladder polymer is also described.

Along with the molecular designing of the target helical lad-
der structure, the chiral sulfoxide-substituted poly(1,2-phenyl-
eneoxide) was synthesized as the precursor polymer for the fol-
lowing intramolecular ring-closing reaction (Scheme 2). Be-
cause the asymmetric oxidation10 of 4-methoxy-2-(methylthio)-
phenol 1 did not proceed because of the complexation of the
hydroxy group of 1 with titanium tetra(iso-propoxide), the chiral

monomer 4-(R)11 was synthesized by the acetyl protection of 1,
the asymmetric oxidation of 2 to give 3-(R), and the subsequent
deprotection. 4-(S)11 was similarly prepared using (S,S)-diethyl
tertrate.

The oxidative polymerization of 4-(R) was examined, on the
basis of the previous reports regarding the polymerization of
phenol derivatives12,13 using oxidants and oxidative catalysts
such as K3[Fe(CN)6],

13a Ag2O,
13b PbO2,

13c a copper-pyridine
complex,13d and horseradish peroxidase.13e The Cu/pyridine-
catalyzed polymerization of 4-(R) afforded poly(3-(R)-methyl-
sulfinyl-5-methoxy-1,2-phenyleneoxide) (5-(R))14 with the mo-
lecular weight,Mn of 1800 (Mw=Mn ¼ 1:2). The degree of poly-
merization of ca. 10 for 5-(R) as a polymer. It is enough to form
two pitches of the resultant helical ladder polymer (5 benzene
units in 6-(R) for 1 helical pitch).

The regioselective intramolecular ring-closing of the pend-
ant sulfoxide group on 5-(R) proceeded by just the addition of
triflic acid (without any further treatment) to yield the ring-
closed 6-(R) (Scheme 3).15 For the obtained sample of 6-(R),
the 1HNMR signal at 2.99 ppm ascribed to the methylene unit
adjacent to the sulfur atom of the parent polymer 5-(R) com-
pletely disappeared and it was shifted to down-field (3.24 ppm)
due to the electron-withdrawing effect of the formed sulfonio
group. The signal attributed to the phenyl ring was also shifted
to down-field (8.31 ppm) for 6-(R) and the integration value of
the proton (1H) agreed with the calculated one based on the
fused-ring structure of 6-(R). The UV–vis absorption maximum
and shoulder of 6-(R) bathochromically shifted in comparison
with those of the pre-polymer 5-(R) to support the extended �-

O
O

S S

CH3 CH3O O

O
O

S S

CH3 CH3
A

A A
H A

H2O

A

O
O

S S

CH3 CH3HO HO

Intermediate

Scheme 1.

(i) Ac2O, pyridine, rt, 12 h. (ii) t-BuOOH, Ti(O-i-Pr)4, (R,R)-diethyl
tartrate, CH2Cl2, H2O,    –20 °C, 24 h. (iii) t-BuOOH, Ti(O-i-Pr)4, (S,S)-
diethyl tartrate, CH2Cl2, H2O, –20 °C, 24 h. (iv) Na2CO3, CH3OH, H2O, rt,
12 h. (v) Cu(I)Cl, pyridine, nitrobenzene, rt., 24 h.

O

CH3O

SCH3

n(R)
*

O

CH3O

SCH3

n(S)
*

O

O

5-(R)

5-(S)

OR

CH3O

SCH3

(R)
*

OR

CH3O

SCH3

(S)
*

O

O

OR

CH3O

SCH3

(ii)

(iii)

(v)

(v)(i)1  R: H
2  R: Ac

(iv)3-(R)  R: Ac
4-(R)  R: H

(iv)3-(S)  R: Ac
4-(S)  R: H

Scheme 2.

164 Chemistry Letters Vol.34, No.2 (2005)

Copyright � 2005 The Chemical Society of Japan



conjugation or the ladder structure of 6-(R). The (S)-enantiom-
ers, 5-(S)14 and 6-(S),15 were also synthesized according to the
same procedure of the corresponding 5-(R) and 6-(R), respec-
tively.

Circular dichroism (CD) of the monomer, 4-(R) and 4-(S),
exhibited the peak at 239 nm ascribed to the chirality of the
pendant sulfoxide, which also appeared in the CD of the precur-
sors, 5-(R) and 5-(S). However, no Cotton effect was observed
beyond the wavelength of 270 nm. On the other hand, 6-(R)
and 6-(S) showed the CD extremum at 246 nm and the Cotton
effect between 278–350 nm (Figure 1). The former CD extrem-
um was attributed to the chiral sulfonio bridge and the latter
broad one corresponded to the �–�� transition in the UV–vis ab-
sorption, suggesting the formation of a helical structure. 6-(R)
and 6-(S) had a symmetrical CD profile in the positive and neg-
ative sides, which was not influenced by the temperature in the
range of 20–50 �C. These results indicated that the helicity of
the ladder polymer was caused by the chirality of the monomer.
In other words, the helicity of the ladder polymer 6 could be con-
trolled by the enantiotropy of the diethyl tartrate during the
asymmetric oxidation of the monomer.

In summary, a novel helical ladder polymer comprising of
fused phenoxathiine ring 6 was synthesized through the regiose-
lective intramolecular ring-closing of the pendant chiral sulfox-
ide in the poly(1,2-phenyleneoxide) derivative. The mechanism
of the helical formation with one-sided bias could be described
as follows (Scheme 1). The pendant chiral sulfoxide of 5 was
protonated by the superacid to generate the chiral hydroxy sulfo-
nium cation as an intermediate. The cation electrophilically at-

tacked oneside of the neighboring phenylene ring. The bridged
chiral sulfonio group located on the oneside of the phenylene
ring to yield the helical ladder structure with one-sided bias. This
synthetic route is expected to be applicable for the preparation of
other sulfur-containing helical ladder polymers.
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14 5-(R): Yield 72%. Mn ¼ 1800 (Mw=Mn ¼ 1:2). ½��20D
+128� (c 1.00, CHCl3). UV–vis (CH3CN, 0.1mM):
�max ¼ 307 nm, � shoulder ¼ 372 nm). 5-(S): Yield 77%.
Mn ¼ 1800 (Mw=Mn ¼ 1:2). ½��20D �124� (c 1.00, CHCl3).

15 6-(R) and 6-(S): Yield: 97%. 1HNMR (DMSO-d6, 500MHz;
ppm): � 8.31 (s, 1H), 3.91 (s, 3H), 3.24 (s, 3H). IR (KBr,
cm�1): 1268, 774 (�C-F), 1259 (�C-O-C), 1304, 1148 (�SO2

).
UV–vis (CH3CN, 0.1mM): �max ¼ 321 nm, � shoulder ¼
406 nm.

Figure 1. UV–vis and CD spectra of 0.1mM 6-(R) (solid line)
and 6-(S) (dashed line) CH3CN solution.
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