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ABSTRACT

We have achieved a total synthesis of apratoxin A in which thiazoline formation was accomplished from the moCys containing amide 4 using
PPh3(O)/Tf2O. Deprotection of the Troc and allyl ester in 17, coupling with tripeptide 3, and deprotection of the allyl ester and the Fmoc,
followed by macrolactamization provided apratoxin A (1).

Apratoxin A (1), isolated from the marine cyanobacterium
Lyngbya majuscula, exhibits potent cytotoxic activity.1

Apratoxin A is a 25-membered cyclic depsipeptide consisting
of a proline, three methylated amino acids (N-methylisoleu-
cine,N-methylalanine,O-methyltyrosine), anR,â-unsaturated
modified cysteine residue (moCys), and a dihydroxylated
fatty acid moiety, 3,7-dihydroxy-2,5,8,8-tetramethylnonanoic
acid (Dtena). An elegant total synthesis of1 has been
achieved by Forsyth and Chen.2 They prepared the thiazoline
moiety via a unique intramolecular Staudinger reduction/
aza-Wittig process on anR-azido thioester. The synthesis
of an oxazoline analogue has recently been reported by Ma

et al.3,4 Having described a library synthesis of the cyclic
depsipeptide aurilide and a number of analogues using a
polymer support,5 we became interested in the library
synthesis of apratoxin A analogues. As a part of the effort,
we now wish to report a total synthesis of apratoxin A.

Our synthetic strategy is illustrated in Scheme 1. In
principle, apratoxin A (1) can be synthesized from the
coupling of Fmoc-Pro-Dtena-moCys-OH 2 with the
tripeptide, H-Tyr(O-Me)-N-Me-Ala-N-Me-Ile-OAll (3),
if followed by macrolactamization2 between the proline and
N-methylisoleucine residues. The synthesis of2 is potentially
problematic because the thiazoline ring is labile toward acid
hydrolysis, and there is a risk of epimerization at the chiral
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center attached to the 2-position of a thiazoline.1b,2,6-8 As a
consequence, we therefore planned to effect a dehydrative
thiazoline formation on the moCys-containing amide4.9,10

Amide 4 could potentially be prepared from the coupling of
the moCys residue5 with the Dtena moiety6.

The MPM protection of (S)-5,5-dimethyl-4-hydroxy-2-
hexanone (7), prepared by a proline-catalyzed aldol reaction
of acetone with pivaldehyde,11 was followed by allylation
and acetylation to afford8 (Scheme 2). Palladium(II)-
catalyzed isomerization of allylic acetate (E/Z ) 9:1),

followed by removal of the acetyl group, provided primary
allylic alcohol 9 in 78% yield after separation by silica gel
column chromatography. Ru(OAc)2[(S)-binap]-catalyzed asym-
metric hydrogenation of9 under 100 atm of hydrogen12

afforded 10 in quantitative yield (>95% ds).13 Swern
oxidation of10, followed by a Paterson anti-aldol reaction
with 11,14 and protection of the resultant adduct with TBS
provided12 in 67% overall yield.15 Removal of the MPM
group from 12 was next accomplished with DDQ, and a
subsequent coupling withN-Boc-Pro-OH by the Yamagu-
chi method16 afforded13, which was in good accordance
with Forsyth’s intermediate.2 Removal of the benzoate from
13 and oxidative cleavage of the resultantR-hydroxyketone
provided acid6, as reported previously.2
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Scheme 2Scheme 1. Retrosynthesis of Apratoxin A (1)
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The key intermediate4 was prepared fromN-Boc-D-Cys-
(S-Trt)-OH (14) as follows (Scheme 3): DIBAL reduction
of its Weinreb amide, followed by Wittig olefination,
afforded (E)-15, selectively. Hydrolysis of the ethyl ester,
allyl ester formation, and selective deprotection of theN-Boc
group in the presence ofS-Trt (TMSOTf/2,6-lutidine; MeOH)
provided5.17 Condensation of5 and6 (HATU18/DIEA/CH2-
Cl2) gave16 in 85% yield. Following multistep conversion
of TBS ether16 into the 2,2,2-trichloroethoxycarbonyl (Troc)
ester4, the latter was treated with PPh3(O)/Tf2O in CH2Cl2
at 0 °C to induce thiazoline formation.19,20 The reaction

proceeded cleanly to give the desired thiazoline17.21

Compound17 was then immediately treated with Zn-NH4-
OAc22 to remove its Troc group; this did not adversely affect
the thiazoline ring or the adjacent stereogenic center and gave
18 in 90% yield. Treatment of18 with Pd(PPh3)4/N-
methylaniline3,23 provided2 in 95% yield.24

Tripeptide 3 was prepared by sequential coupling of
N-methylisoleucine allyl ester withN-Boc-N-methylalanine
andN-Fmoc-O-methyltyrosine by repeated treatment with
HATU-DIEA and then finally Et2NH in CH3CN. Coupling
of 2 and3 (HATU/DIEA/CH2Cl2) provided19 in 71% yield

Scheme 3

Scheme 4
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(Scheme 4). Cleavage of theO-allyl ester from19 with Pd-
(PPh3)4/N-methylaniline, followed by removal of the Fmoc
group with Et2NH/CH3CN, afforded the cyclization precursor
20. Finally, the macrolactamization of20was performed with
HATU/DIEA. After purification by silica gel chromatogra-
phy, apratoxin A (1) was isolated in 53% yield. The spectral

data of the synthetic1 were identical to those of the natural
product reported previously.1,2

In summary, a total synthesis of apratoxin A has been
achieved via a convergent strategy involving HATU mac-
rolactamization. Thiazoline formation in2 was also success-
fully accomplished from the moCys amide4 using PPh3(O)/
Tf2O. Further refinement of the synthetic scheme for the
synthesis of a combinatorial library of its analogues is
currently underway in our laboratory.
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