Diastereoselective Synthesis of Enantioenriched, Annulated Tetrahydrofurans by Simultaneous Formation of the O-1–C-5 and the C-5–C-4 Bonds

Seda Ünaldi,^a Mustafa Özlügedik,^{a,b} Roland Fröhlich,^{a,c} Dieter Hoppe^{a,*}

Fax: (+49)-214-30-55970, e-mail: ozlugedik@gmx.de

^c Author to whom correspondence about the X-ray analysis should be addressed

Received: April 6, 2005; Accepted: June 13, 2005

Abstract: Enantiomerically enriched 1-[2-(1-hydroxyalkyl)cycloalkylidene]methyl *N*,*N*-diisopropylcarbamates, which are easily available by an asymmetric homoaldol reaction, condense with aldehydes under the influence of boron trifluoride etherate to form cyclohexano- or cyclopentano-annulated tetrahydrofuran-3-carboxaldehydes, bearing two quaternary carbon

Introduction

Tetrahydrofurans are substructures of numerous natural products,^[1] and a great variety of methods for their synthesis exists.^[2] In 1989 we published a highly efficient and surprisingly simple general method for the synthesis of monocyclic stereohomogeneous, 2,3,4,5-tetrasubstituted tetrahydrofurans **4** (Scheme 1),^[3] from homoaldol products^[1,4] **1** and aldehydes **2**. The assumed decisive in-

Scheme 1. Synthesis of tetrasubstituted tetrahydrofurans.

us natural goes an intramolecular Mukaiyama-type^[5] addition of their syn- the enolic moiety onto the former carbonyl carbon

compounds

complete diastereoselectivity.

atom from the least hindered conformation. Subsequently, the carbamoyl group is extruded. The reaction is also applicable to ketals^[1] and for intramolecular condensations.^[3b] Some mechanistically related syntheses were published later.^[6]

atoms and four adjacent stereogenic centers, with

Keywords: diastereoselective synthesis; enantioen-

riched tetrahydrofurans; α,β -enediolate synthons;

enol carbamates; Mukaiyama reaction; oxabicyclic

termediate is the (E)-oxonium ion **3**, which is formed under the influence of the strong Lewis acid BF₃; it under-

By applying these methods we expected to realise a synthesis of tetrahydrofurans **10** by formal combination of the dianion **C** with two different aldehydes **A** and **B** (Figure 1).

We now report the realization of the above-mentioned pathway to provide a synthesis of highly substituted bicyclic tetrahydrofurans.

Figure 1. Formation of the bicycles 10 in a highly regio- and stereoselective manner.

Adv. Synth. Catal. 2005, 347, 1621-1626

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

^a Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany Fax: (+49)-251-83-36531, e-mail: dhoppe@uni-muenster.de

^b Present address: DyStar Textilfarben GmbH & Co. Deutschland KG, F & F VE, P. O. Box 100 480, 51304 Leverkusen, Germany

FULL PAPERS

Starting materials 7 ee [%] ^[a]	Product 10	Yield [%]	ee [%] ^[b]	Alcohol 11 (yield, %)	<i>p</i> -Nitrobenzoate 12 (yield, %)
7 a [76]	Bu''''CH=O <i>p</i> -Br-C ₆ H ₄ ''''O'''C ₆ H ₄ - <i>p</i> -Br	55	[78]	11a (70)	12a (79)
7b [78]	10a $Bu^{IIIII} CH=O$ $C_6H_5^{IIIII} C_6H_4-\rho-Br$ 10b	54	[81]	11b (72)	12b (81)
7c [86]	<i>p</i> -Br-C ₆ H ₄ ,, O	62	[91]	11c (73)	12c (84)
7d [93]	<i>p</i> -Br-C ₆ H ₄ , <i>p</i> -Br-C ₆ H ₆ , <i>p</i> -Br-C ₆ , <i>p</i> -B	63	[96]	11d (74)	12d (85)

Table 1.	Diastereom	erically pure	bicyclic	tetrahydrofurans	10.

^[a] Enantiomeric excess was determined by ¹H NMR shift experiments.^[7c]

^[b] Enantiomeric excess was determined by chiral HPLC.

Results and Discussion

We recently observed that the carbanionic species, obtained by (-)-sparteine-mediated deprotonation of 1-(2-alkylcycloalk-1-enyl)methyl carbamates of type 5 exhibit considerable configurational stability and, hence, can be converted efficiently to optically active homoaldol products 7 with up to 96% ee (Scheme 2).^[7] The condensation of 7 with aromatic or aliphatic aldehydes^[8] or 2-alkenals in the presence of 1 equivalent of boron trifluoride etherate at 0°C or 20°C proceeds smoothly and, after aqueous work-up, diastereomerically pure tetrahydrofurans 10 can be isolated (Table 1). Further diastereomers could not be detected by ¹H NMR. The enantiomeric ratios of aldehydes 10a, b, and d were determined by chiral HPLC; the analysis of 10c was carried out at the stage of ester **12c**. The ee values, as expected, correspond well with those of the starting homoaldol products 7. For safe assignments, the racemates rac-10 and rac-12 were synthesised from rac-7 and analysed (see Experimental Section). The high diastereoselectivity origins from the (E)-oxonium intermediate 8, being highly favoured over the (Z) diastereomer due to allylic 1,3-strain,^[9] which combines with the enolic double bond with high selectivity from the less shielded upper face and leads to a *cis*-annulation.

Figure 2. Solid-state structure of 12c.^[10]

For the sake of obtaining shelf-stable products, the aldehydes **10** were reduced by LiAlH_4 to produce the alcohols **11** (Table 1) and these converted to *p*-nitrobenzoates **12** in order to enhance the chance for crystalline compounds. Fortunately, ester **12c** gave suitable crystals for an X-ray analysis, applying anomalous dispersion; it proves the assumed relative and absolute configurations (Figure 2).^[10]

Conclusion

Overall, the allyl carbamate **5** was successfully applied as a chiral 1-formylcycloalkane 2,3-dianion **C** which as-

(a) R³CH=O (1.2 equivs.)/BF₃ OEt₂ (1.2 equivs.), 1 h at 0 °C
(b) LiAlH₄ (1 M solution in Et₂O), 30 min at 0 °C
(c) *p*-Nitrobenzoyl chloride/DMAP, 15 h at room temperature

7	n	R^1	R ²	R ³ -CH=O
Α	1	Bu	$4-BrC_6H_4$	4-BrC ₆ H ₄ CH=O
В	1	Bu	C_6H_5	4-BrC ₆ H ₄ CH=O
С	1	Me	4-BrC ₆ H ₄	(E)-CH ₃ CH=CH-CH=O
D	0	Ме	$4-BrC_6H_4$	(CH ₃) ₂ CH-CH=O

Scheme 2. Synthesis of diastereomerically pure tetrahydro-furans **10**.

sembles two different or equal aldehydes **A** and **B** to form the bicyclic species **10** in a highly regio- and stereoselective manner (see Figure 1). The expected relative and absolute configurations of compounds were **10** established vigorously by X-ray analysis. The configuration of all four consecutive stereogenic centres in **10** arises, directly or indirectly, from the chiral induction in the (-)-sparteine-mediated deprotonation step.

Experimental Section

General Remarks

All reactions, which are sensitive to moisture or air, were carried out under Ar using septum and syringe techniques. All solvents were purified by distillation or dried (Et₂O, CH₂Cl₂) prior to use. Flash chromatography was carried out with silica gel ($40-63 \mu m$) using an Ar pressure of 1.2-1.4 bar. Chiral HPLC was carried out with a chiral column chiragrom-1 and chiragrom-2, 60×2 mm, purchased from Grom Analytic and HPLC GmbH, Herrenberg. The solvent systems used for the measurement were hexane:*i*-PrOH (100:1) and (200:1). ¹H and ¹³C NMR spectra were recorded on ARX 300 and AMX 400 Bruker spectrometers. 2D NMR experiments were carried out on a Varian Unity Plus 600. CDCl₃ was used as solvent for

normal NMR measurements, IR absorption spectra were recorded using an IFS 28 purchased from Bruker and a PE 298 purchased from Perkin-Elmer & Co GmbH, Überlingen. The melting point was measured on an SMP3 melting point apparatus purchased from Stuart Scientific, UK. The optical rotations were measured in a 10-cm cuvette on a polarimeter 241 purchased from Perkin-Elmer & Co GmbH, Überlingen. Elemental analysis were performed at the Microanalytical Section of the Organisch-Chemisches Institut, WWU Münster, on a Vario El III purchased from Elementar Analysen Systeme GmbH. Exact mass measurements were carried out on Micro Tof (Bruer Daltronics, Bremen), calibrations were done directly before the measurements of samples with sodium formate clusters.

General Procedure for Synthesis of Aldehydes 10 (GP1)

To a cooled (0 °C) solution of **7** (0.50 mmol) and aldehyde R³CH=O in CH₂Cl₂ (5 mL) under an argon atmosphere, BF₃·OEt₂ (0.60 mmol) was added in small portions with a syringe. After stirring the reaction mixture for a period of 1 h at 0 °C and 30 min at 20 °C, a saturated aqueous solution of NaHCO₃ (10 mL) was added and the mixture was extracted with Et₂O (3 × 20 mL). The combined ether solutions were dried with MgSO₄ and concentrated under vacuum. The crude residue was purified by silica gel flash chromatography (petroleum ether: Et₂O=4:1). Correct microanalyses were obtained at the stage of corresponding *p*-nitrobenzoates **12**.

(1S,6S,7R,9S)-7,9-*Di*(4-bromophenyl)-6-butyl-8-oxabicyclo[4.3.0]nonane-1-carboxaldehyde (**10a**): According to GP1, **10a** was obtained from allyl carbamate **7a** (240 mg, 0.50 mmol) and *p*-bromobenzaldehyde (111 mg, 0.60 mmol) as a colourless oil; yield: 143 mg (55%); $R_{\rm F}$ =0.71 (petroleum ether:Et₂O=4:1); $[\alpha]_{\rm D}^{20}$: -82.1 (*c*=0.61, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 78% ee, major enantiomer appears at higher retention time.

rac-**10a** was obtained from allyl carbamate *rac*-**7a** (240 mg, 0.50 mmol) and *p*-bromobenzaldehyde (111 mg, 0.60 mmol) as a colourless oil; yield: 137 mg (53%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.84$ (t, 3H, CH₃), 1.13–2.16 (m, 14H, CH₂), 4.57 (s, 1H, CH), 5.03 (s, 1H, CH), 7.08–7.49 (m, 8H, CH), 9.54 (s, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.8$ (CH₃), 20.8 (CH₂), 21.9 (CH₂), 23.0 (CH₂), 26.6 (CH₂), 27.0 (CH₂), 28.6 (CH₂), 30.4 (CH₂), 46.9 (C_q), 61.9 (C_q), 80.8 (CH), 84.8 (CH), 100.9/124.2/125.2/126.3/126.8/127.3/128.0/130.7 (CH and C_q of aryl carbons), 206.4 (C=O); IR (film): v=2958, 2951, 2853 (C_{aliph}-H), 1700 cm⁻¹ (C=O).

(1S,6S,7R,9S)-9-(4-Bromophenyl)-6-butyl-7-phenyl-8-oxabicyclo[4.3.0]nonane-1-carboxaldehyde (10b): According to GP1, 10b was obtained from allyl carbamate 7b (193 mg, 0.50 mmol) and p-bromobenzaldehyde (111 mg, 0.60 mmol) as a colourless oil; yield: 119 mg (54%); $R_{\rm F}$ =0.70 (petroleum ether:Et₂O=4:1); $[\alpha]_{\rm D}^{20}$: -59.3 (c 0.61, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, e.r.=91.5:9.5 (81% ee), major enantiomer appears at lower retention time.

rac-**10b** was obtained from allyl carbamate *rac*-**7b** (193 mg, 0.5 mmol) and *p*-bromobenzaldehyde (111 mg, 0.6 mmol) as a colourless oil; yield: 121 mg (55%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.95$ (t, 3H, CH₃), 1.13–1.86 (m, 14H, CH₂), 4.56 (s, 1H, CH), 5.02 (s, 1H, CH), 7.11–7.46 (m, 9H, CH), 9.53 (s,

Adv. Synth. Catal. 2005, 347, 1621-1626

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Seda Ünaldi et al.

1H, CHO); ¹³C NMR (75 MHz, CDCl₃): δ = 12.3 (CH₃), 20.4 (CH₂), 21.4 (CH₂), 23.3 (CH₂), 28.6 (CH₂), 30.0 (CH₂), 32.1 (CH₂), 33.1 (CH₂), 46.5 (C_q), 60.9 (C_q), 79.8 (CH), 83.8 (CH), 110.9/124.2/125.2/126.3/127.2/128.0/130.7 (CH and C_q of aryl carbons), 206.1 (C=O); IR (film): v = 2958, 2916, 2860 (C_{aliph}-H), 1721 cm⁻¹ (C=O).

(18,68,7R,9S)-7-(4-Bromophenyl)-6-methyl-9-[(E)-prop-1enyl]-8-oxabicyclo[4.3.0]nonane-1-carboxaldehyde (10c): According to GP1, 10c was obtained from allyl carbamate 7c (123 mg, 0.28 mmol) and (E)-2-butenal (28 mg, 0.40 mmol) as a colourless oil; yield: 63 mg (62%); $R_{\rm F}$ =0.70 (petroleum ether:Et₂O=4:1); $[\alpha]_{\rm D}^{20}$: -94.2 (c 0.50, CHCl₃). Chiral HPLC: chiragrom-1, hexane:*i*-PrOH=200:1, 91% ee, major enantiomer appears at higher retention time.

rac-10c was obtained from allyl carbamate 7c (123 mg, 0.28 mmol) and (*E*)-2-butenal (28 mg, 0.40 mmol) as a colourless oil; yield: 66 mg (65%); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.18$ (s, 3H, CH₃), 1.33–2.16 (m, 11H, CH₂ and CH₃), 4.45 (d, 1H, CH), 4.97 (s, 1H, CH), 5.55 (m, 1H, CH), 5.81 (m, 1H, CH), 7.18 (m, 2H, CH), 7.39 (m, 2H, CH), 9.64 (s, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.8$ (CH₃), 19.8 (CH₃), 21.2 (CH₂), 21.4 (CH₂), 26.8 (CH₂), 36.1 (CH₂), 47.7 (C_q), 61.2 (C_q), 85.2 (CH), 86.8 (CH), 121.6 (C_q), 127.3 (CH), 127.8 (CH), 131.3 (CH), 132.2 (CH), 138.4 (C_q), 203.3 (C=O); IR (film): $\nu = 2958$, 2920, 2853 (C_{aliph}-H), 1719 cm⁻¹ (C=O).

(18,28,4R,5S)-4-(4-Bromophenyl)-5-methyl-2-(1-methylethyl)-3-oxabicyclo[3.3.0]octane-1-carboxaldehyde (10d): According to GP1, 10d was obtained from allyl carbamate 7d (106 mg, 0.25 mmol) and 2-methylpropanal (29 mg, 0.40 mmol) as a colourless oil; yield: 55 mg (63%); $R_{\rm F}$ =0.71 (petroleum ether:Et₂O=4:1); $[\alpha]_{\rm D}^{20}$: -119.1 (c 0.51, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 96% ee, major enantiomer appears at lower retention time.

rac-10d was obtained from allyl carbamate *rac*-7d (106 mg, 0.25 mmol) and 2-methylpropanal (29 mg, 0.40 mmol) as a colourless oil; yield: 54 mg (61%); ¹H NMR (300 MHz, CDCl₃): δ =0.95 (s, 3H, CH₃), 1.02 (d, 6H, CH₃), 1.35–2.19 (m, 6H, CH₂), 2.15 (m, 1H, CH), 4.14 (d, *J* = 6.5 Hz, 1H, CH), 4.43 (s, 1H, CH), 7.14 (m, 2H, CH), 7.34 (m, 2H, CH), 9.59 (s, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): δ =17.8 (CH₃), 19.5 (CH₃), 19.6 (CH₃), 21.2 (CH₂), 21.5 (CH₂), 23.6 (CH₂), 27.3 (CH), 47.7 (C_q), 61.5 (C_q), 75.5 (CH), 86.3 (CH), 121.4 (C_q), 131.4 (CH), 132.5 (CH), 138.9 (C_q), 203.5 (C=O); IR (film): ν=2958, 2951, 2853 (C_{aliph}-H), 1721 cm⁻¹ (C=O).

General Procedure for Synthesis of Alcohols 11 (GP2)

To a solution of aldehyde **10** (0.25 mmol) in Et₂O (5 mL), LiAlH₄ (1 M solution in Et₂O; 0.25 mmol) was added in small portions at 0 °C. After stirring at 0 °C for 30 min and subsequently, at room temperature for 3 h, Et₂O (20 mL) and a saturated aqueous solution of NH₄Cl (10 mL) were added. The aqueous phase was extracted (Et₂O, 2×20 mL), the combined solutions were dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was purified by silica gel flash column chromatography (petroleum ether:Et₂O=4:1).

(1R,6S,7R,9S)-{7,9-Di(4-bromophenyl)-6-butyl-8-oxabicyclo[4.3.0]non-1-yl]-methanol (11a): According to GP2, 11a was obtained from 10a (130 mg, 0.25 mmol) as a colourless oil; yield: 91 mg (70%); $R_{\rm F}$ =0.18 (petroleum ether:Et₂O=4:1); [α]_D²⁰: -36.5 (c 0.65, CHCl₃). Chiral HPLC: chiragrom-2, hexane:i-PrOH=200:1, 78% ee, major enantiomer appears at higher retention time.

rac-**11a** was obtained from **10a** (130 mg, 0.25 mmol) as a colourless oil; yield: 94 mg (72%); ¹H NMR (300 MHz, CDCl₃): δ =0.93 (t, 3H, CH₃), 1.16–1.86 (m, 14H, CH₂), 3.54 (d, 1H, *J*=11.7 Hz, CH), 3.69 (d, *J*=11.6 Hz, 1H, CH), 4.54 (s, 1H, CH), 4.58 (s, 1H, CH), 7.12–7.40 (m, 8H, CH); ¹³C NMR (75 MHz, CDCl₃): δ =13.0 (CH₃), 20.4 (CH₂), 21.8 (CH₂), 23.7 (CH₂), 28.5 (CH₂), 30.3 (CH₂), 32.7 (CH₂), 33.9 (CH₂), 46.8 (C_q), 49.4 (C_q), 63.9 (CH₂), 79.6 (CH), 83.8 (CH), 111.5/124.4/125.8/126.6/127.3/128.2/130.4/130.5 (CH and C_q of aryl carbons); IR (film): v=3370 (OH), 2958, 2930, 2867 cm⁻¹ (C_{aliph}-H).

(IR,6S,7R,9S)- $\{9$ -(4-Bromophenyl)-6-butyl-7-phenyl-8-oxabicyclo[4.3.0]non-1-yl $\}$ methanol (**11b**): According to GP2, **11b** was obtained from **10b** (110 mg, 0.25 mmol) as a colourless oil; yield: 80 mg (72%); R_F =0.18 (petroleum ether:Et₂O = 4:1); $[\alpha]_D^{20}$: +30.1 (c 0.48, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 81% ee, major enantiomer appears at higher retention time.

rac-**11b** was obtained from **10b** (110 mg, 0.25 mmol) as a colourless oil; yield: 77 mg (70%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.93$ (t, 3H, CH₃), 1.14–1.86 (m, 14H, CH₂), 3.58 (d, 1H, *J*=11.7 Hz, CH), 3.71 (d, *J*=11.8 Hz, 1H, CH), 4.84 (s, 1H, CH), 4.99 (s, 1H, CH), 7.11–7.28 (m, 9H, CH); ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.7$ (CH₃), 21.2 (CH₂), 21.9 (CH₂), 23.8 (CH₂), 26.2 (CH₂), 29.6 (CH₂), 31.7 (CH₂), 33.5 (CH₂), 45.4 (C_q), 49.9 (C_q), 64.6 (CH₂), 79.9 (CH), 83.6 (CH), 111.9/124.4/125.7/126.3/127.2/127.6/128.9/130.5 (CH and C_q of aryl carbons); IR (film): v=3426 (OH), 2979, 2923, 2853 cm⁻¹ (C_{aliph}-H).

(IR,6S,7R,9S)- $\{7-(4-Bromophenyl)-6-methyl-9-[(E)-prop-$ 1-enyl]-8-oxabicyclo[4.3.0]non-1-yl]methanol (11c): According to GP2, 11c was obtained from 10c (61 mg, 0.17 mmol) as $a colourless oil; yield: 45 mg (73%); <math>R_F$ =0.16 (petroleum ether:Et₂O=4:1); $[\alpha]_D^{20}$: -80.0 (c 0.25, CHCl₃). Chiral HPLC: chiragrom-1, hexane:*i*-PrOH=200:1, 91% ee, major enantiomer appears at higher retention time.

rac-11c was obtained from 10c (61 mg, 0.17 mmol) as a colourless oil; yield: 45 mg (74%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.40$ (s, 3H, CH₃), 1.16–2.26 (m, 11H, CH₂ and CH₃), 3.56 (d, 1H, J = 11.7 Hz, CH), 3.73 (d, J = 11.7 Hz, 1H, CH), 4.06 (m, 1H, CH), 4.55 (s, 1H, CH), 5.77 (m, 2H, CH), 7.11 (m, 2H, CH), 7.38 (m, 2H, CH); ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.8$ (CH₃), 19.8 (CH₃), 21.8 (CH₂), 21.9 (CH₂), 30.5 (CH₂), 32.1 (CH₂), 45.6 (C_q), 50.5 (C_q), 64.3 (CH₂), 83.0 (CH), 88.5 (CH), 120.8 (C_q); 1R (film): v=3372 (OH), 2956, 2932, 2869 cm⁻¹ (C_{aliph}-H).

 $(1R,2S,4R,5\dot{S})$ -[4-(4-Bromophenyl)-5-methyl-2-(1-methylethyl)-3-oxabicyclo[3.3.0]oct-1-yl]methanol (11d): According to GP2, 11d was obtained from 10d (50 mg, 0.14 mmol) as a colourless oil; yield: 37 mg (74%); $R_F=0.16$ (petroleum ether: $Et_2O=4:1$); $[\alpha]_D^{20}: -42.7$ (c 0.55, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 96% ee, major enantiomer appears at lower retention time.

rac-11d was obtained from 10d (50 mg, 0.14 mmol) as a colourless oil; yield: 38 mg (75%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.43$ (s, 3H, CH₃), 1.04 (d, 6H, CH₃), 1.33–2.16 (m, 6H, CH₂), 2.10 (m, 1H, CH), 3.53 (d, J = 11.7 Hz, 1H, CH), 3.75 (d, J = 1.7 Hz, 1H, CH), 4.13 (d, 1H, CH), 4.46 (s, 1H, CH), 7.13–7.42 (m, 4H, CH); ¹³C NMR (75 MHz, CDCl₃); $\delta = 17.4$ $\begin{array}{l} ({\rm CH}_3), \, 19.8 \,\, ({\rm CH}_3), \, 21.3 \,\, ({\rm CH}_2), \, 21.6 \,\, ({\rm CH}_2), \, 32.8 \,\, ({\rm CH}_2), \, 27.7 \\ ({\rm CH}), \, 47.5 \,\, ({\rm C}_q), \, 61.6 \,\, ({\rm C}_q), \, 64.7 \,\, ({\rm CH}_2), \, 73.1 \,\, ({\rm CH}), \, 88.7 \,\, ({\rm CH}), \\ 128.3 \,\, ({\rm C}_q), \, 129.6 \,\, ({\rm CH}), \, 131.3 \,\, ({\rm CH}), \, 138.2 \,\, ({\rm C}_q); \, {\rm IR} \,\, ({\rm film}): \nu = \\ 3372 \,\, ({\rm OH}), \, 2954, \, 2931, \, 2864 \,\, {\rm cm}^{-1} \,\, ({\rm C}_{\rm aliph}\text{-H}); \, {\rm anal. \ calcd. \ for} \\ {\rm C}_{18}{\rm H}_{25}{\rm O}_2{\rm Br} \,\, (352.29): {\rm C} \,\, 61.19, \, {\rm H} \,\, 7.13; \,\, {\rm found: C} \,\, 61.44, \, {\rm H} \,\, 7.35. \end{array}$

General Procedure for *p*-Nitrobenzoates 12 (GP3)

A solution of alcohol **11** (0.20 mmol), *p*-nitrobenzoyl chloride (0.30 mmol) and DMAP (0.08 mmol) in CH₂Cl₂ (5 mL) was stirred for 15 h at room temperature. Aqueous saturated solution of NaHCO₃ (10 mL) and Et₂O (20 mL) were added, the phases separated and the aqueous phase extracted twice with Et₂O (20 mL, each). The combined organic extracts were concentrated under vacuum and the residue purified by flash column chromatography on silica gel (petroleum ether: $Et_2O = 4:1$).

(1R,6S,7R,9S)-{7,9-Di(4-bromophenyl)-6-butyl-8-oxabicyclo[4.3.0]non-1-yl]methyl 4-Nitrobenzoate (12a): According to GP3, 12a was obtained from 11a (90 mg, 0.17 mmol) as a colourless solid; yield: 91 mg (79%); $R_{\rm F}$ =0.30 (petroleum ether: Et₂O=4:1); [α]_D²⁰: -41.1 (*c* 0.59, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 78% ee, major enantiomer appears at lower retention time.

rac-**12a** was obtained from **11a** (90 mg, 0.17 mmol) as a colourless solid; yield: 94 mg (81%); ¹H NMR (300 MHz, CDCl₃): δ =0.94 (t, 3H, CH₃), 1.16–1.64 (m, 14H, CH₂), 3.66 (d, *J*= 11.5 Hz, 1H, CH), 3.72 (d, *J*=11.6 Hz, 1H, CH), 4.34 (s, 1H, CH), 5.19 (s, 1H, CH), 7.19–7.36 (m, 8H, CH), 8.13–8.24 (m, 4H, CH); ¹³C NMR (75 MHz, CDCl₃): δ =14.2 (CH₃), 21.0 (CH₂), 21.6 (CH₂), 26.2 (CH₂), 28.8 (CH₂), 29.4 (CH₂), 30.8 (CH₂), 31.5 (CH₂), 52.3 (C_q), 56.6 (C_q), 64.8 (CH₂), 80.3 (CH), 83.2 (CH), 121.5/123.7/125.6/126.2/127.2/127.6/129.4/ 130.9/130.7/131.8/132.3/135.7 (CH and C_q of aryl carbons), 166.0 (C=O); IR (KBr): v=3021, 2958, 2853 (C_{aliph}-H), 1703 cm⁻¹ (C=O); anal. calcd. for C₃₂H₃₃Br₂NO₅ (671.42): C 57.24, H 4.95, N 2.09; found: C 57.52, H 4.80, N 2.19.

(1R,6S,7R,9S)- $\{9$ -(4-Bromophenyl)-6-butyl-7-phenyl-8-oxabicyclo[4.3.0]non-1-yl]methyl 4-Nitrobenzoate (**12b**): According to GP3, **12b** was obtained from **11b** (75 mg, 0.17 mmol) as a colourless oil; yield: 81 mg (81%); $R_{\rm F}$ =0.30 (petroleum ether:Et₂O=4:1); $[\alpha]_{\rm D}^{20}$: -72.2 (*c* 0.52, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 81% ee, major enantiomer appears at higher retention time.

rac-**12b** was obtained from **11b** (75 mg, 0.17 mmol) as a colourless oil; yield: 80 mg (80%); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.98$ (t, 3H, CH₃), 1.16–1.66 (m, 14H, CH₂), 3.53 (d, J = 11.6 Hz, 1H, CH), 3.72 (d, J = 11.7 Hz, 1H, CH), 4.98 (s, 1H, CH), 5.11 (s, 1H, CH), 7.11–7.28 (m, 9H, CH), 8.12–8.27 (m, 4H, CH); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.2$ (CH₃), 21.0 (CH₂), 21.8 (CH₂), 26.4 (CH₂), 26.2 (CH₂), 26.4 (CH₂), 28.6 (CH₂), 32.0 (CH₂), 52.1 (C_q), 56.4 (C_q), 64.8 (CH₂), 80.6 (CH), 83.8 (CH), 122.2/123.4/124.5/125.9/126.8/127.9/129.2/ 130.4/130.6/131.5/132.4/135.6, (CH and C_q of aryl carbons), 166.0 (C=O); IR (KBr): $\nu = 3014$, 2951, 2853 (C_{aliph}-H), 1707 cm⁻¹ (C=O); anal. calcd. for C₃₂H₃₄NO₅Br (592.52): C 64.87, H 5.78, N 2.36; found: C 64.60, H 5.56, N 2.31.

(1R,6S,7R,9S)- $\{7$ -(4-Bromophenyl)-6-methyl-9-[(E)-propenyl]-8-oxabicyclo[4.3.0]non-1-yl $\}$ methyl 4-Nitrobenzoate (**12c**): According to GP3, **12c** was obtained from **11c** (40 mg, 0.11 mmol) as a colourless solid; yield: 47 mg (84%); $R_{\rm F}$ =

0.30 (petroleum ether:Et₂O=4:1), mp 214.5 °C (petroleum ether:Et₂O=4:1); $[\alpha]_{D}^{20}$: -62.2 (*c* 0.59, CHCl₃). Chiral HPLC: chiragrom-2, hexane:*i*-PrOH=200:1, 91% ee, major enantiomer appears at higher retention time.

rac-12c was obtained from 11c (40 mg, 0.11 mmol) as a colourless solid; yield: 48 mg (85%); ¹H NMR (300 MHz, CDCl₃): δ =0.53 (s, 3H, CH₃), 1.06–2.15 (m, 11H, CH₂ and CH₃), 3.52 (d, *J*=11.5 Hz, 1H, CH), 3.72 (d, *J*=11.5 Hz, 1H, CH), 4.10 (m, 1H, CH), 4.58 (s, 1H, CH), 5.78 (m, 1H, CH), 5.58 (m, 1H, CH), 7.11 (m, 2H, CH), 7.39 (m, 2H, CH), 8.13 (m, 2H, CH), 8.24 (m, 2H, CH); ¹³C NMR (75 MHz, CDCl₃): δ =17.9 (CH₃), 20.2 (CH₃), 21.8 (CH₂), 22.12 (CH₂), 31.8 (CH₂), 32.5 (CH₂), 46.1 (C_q), 49.1 (C_q), 64.6 (CH₂), 83.3 (CH), 88.2 (CH), 121.5 (C_q), 123.7 (CH), 128.4 (CH), 129.6 (CH), 130.3 (CH), 130.6 (CH), 131.0 (CH), 135.5 (C_q), 137.8 (C_q), 150.7 (C_q), 164.5 (C=O); IR (KBr): v=3024, 2954, 2857 (C_{aliph}-H), 1708 cm⁻¹ (C=O); anal. calcd. for C₂₆H₂₈BrNO₅ (514.41): C 60.71, H 5.49, N 2.72; found: C 60.99, H 5.39, N 2.67.

(1R,2S,4R,5S)-[4-(4-Bromophenyl)-5-methyl-2-(1-methylethyl)-3-oxabicyclo[3.3.0]oct-1-yl]methyl 4-Nitrobenzoate (12d): According to GP3, 12d was obtained from 11d (35 mg, 0.10 mmol) as a colourless oil; yield: 30 mg (85%) $R_{\rm F}$ = 0.29 (petroleum ether:Et₂O = 4:1); $[\alpha]_{\rm D}^{20}$: -111.1 (c 0.50, CHCl₃). Chiral HPLC: chiragrom-1, hexane:*i*-PrOH = 200:1, 96% ee, major enantiomer appears at higher retention time.

rac-12d was obtained from 11d (35 mg, 0.10 mmol) as a colourless oil; yield: 29 mg (83%); ¹H NMR (300 MHz, CDCl₃): δ =0.56 (s, 3H, CH₃), 1.03 (d, 6H, CH₃), 1.10–2.16 (m, 6H, CH₂), 2.13 (m, 1H, CH), 3.53 (d, *J*=11.7 Hz, 1H, CH), 3.75 (d, *J*=11.7 Hz, 1H, CH), 4.56 (d, 1H, CH), 5.04 (s, 1H, CH), 7.17 (m, 2H, CH), 7.49 (m, 2H, CH), 8.12 (m, 2H, CH), 8.25 (m, 2H, CH); ¹³C NMR (75 MHz, CDCl₃): δ =17.5 (CH₃), 19.2 (CH₃), 21.1 (CH₂), 21.2 (CH₂), 23.8 (CH₂), 27.2 (CH), 47.4 (C_q), 61.3 (C_q), 64.7 (CH₂), 73.4 (CH), 88.9 (CH), 121.1 (C_q), 123.3 (C_q), 128.6 (CH), 130.3 (CH), 130.2 (CH), 131.4 (CH), 137.3 (C_q), 150.8 (C_q), 164.2 (C=O); IR (film): v= 3023, 2962, 2852 (C_{aliph}-H), 1706 cm⁻¹ (C=O); anal. calcd. for C₂₅H₂₉BrO₅N (502.40): C 59.77, H 5.62, N 2.79; found: C 60.09, H 5.71, N 2.86; exact mass for C₂₅H₃₀BrO₅N: calcd.: 502.1236; found: 502.1230.

X-Ray Crystallographic Study^[10]

X-ray crystal structure analysis HOP1432: formula C₂₆H₂₈NO₅ Br, M = 514.40, colourless crystal $0.40 \times 0.35 \times 0.25$ mm, a = 10.353(3), b = 12.682(2), c = 18.842(5) Å, a = 98.57(1), $\beta = 93.55(1)$, $\gamma = 102.88(1)^{\circ}$, V = 2373.1(10) Å³, $\varrho_{calc} = 1.440$ g cm⁻³, $\mu = 17.70$ cm⁻¹, empirical absorption correction ($0.538 \le T \le 0.666$), Z = 4, triclinic, space group $P\overline{1}$ (No. 2), ? = 0.71073 Å, T = 198 K, ω and φ scans, 15773 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ/λ]=0.59 E⁻¹, 7394 independent ($R_{int} = 0.075$) and 3613 observed reflections [$I \ge 2 \sigma(I)$], 599 refined parameters, R = 0.068, $wR^2 = 0.168$, max. residual electron density 0.43 (-0.42) e Å⁻³, contains two almost identical molecules in the asymmetric unit, hydrogen atoms calculated and refined as riding atoms.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, (SFB 424) and the Fonds der Chemischen Industrie.

References and Notes

- Review: X. L. Hou, Z. Yang, H. N. C. Wong, Progress in Heterocyclic Chemistry 2002, 14, 139–179.
- [2] Review: T. L. B. Boivin, *Tetrahedron* 1997, 43, 3309– 3362.
- [3] a) D. Hoppe, T. Krämer, C. Freire Erdbrügger, E. Egert, *Tetrahedron Lett.* 1989, 30, 1233–1236; b) H. Paulsen, C. Graeve, D. Hoppe, *Synthesis* 1996, 141–144.
- [4] Reviews: a) D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376–2410; Angew. Chem. Int. Ed. Engl. 1997, 36, 2282–2316; b) D. Hoppe, F. Marr, M. Brüggemann, Organolithiums in Enantioselective Synthesis, Topics in Organometallic Chemistry, Vol 5, (Ed.: D. M. Hodgson), Springer-Verlag, Berlin, 2003, 5, 61–138; c) D. Hoppe, G. Christoph, The Chemistry of Organolithium Compounds, Vol 2, (Eds.: Z. Rappoport, I. Marek), John Wiley & Sons, Chichester, 2004, 1055–1164.
- [5] a) T. Mukaiyama, S. Kobayashi, Organic Reactions 1994, 46, 1–104; b) T. Mukaiyama, Tetrahedron 1999, 55, 8609–8670; c) T. Mukaiyama, Angew. Chem. Int. Ed. Engl. 2004, 43, 5590–5614; Angew. Chem. Engl. 2004, 116, 5708–5733.
- [6] For related approaches see: a) R. W. Hoffmann, V. Giesen, M. Fuest, *Liebigs Ann. Chem.* 1993, 629–639; b) P. Mohr, *Tetrahedron Lett.* 1993, 34, 6251–6254; c) N. Ha-

naki, J. T. Link, D. W. C. McMillan, L. E. Overman, W. G. Trankle, J. A. Wurster, *Org. Lett.* **2000**, *2*, 223–226.

- [7] a) M. Özlügedik, J. Kristensen, B. Wibbeling, R. Fröhlich, D. Hoppe, *Eur. J. Org. Chem.* 2002, 414–427, b)
 M. Özlügedik, J. Kristensen, J. Reuber, R. Fröhlich, D. Hoppe, *Synthesis* 2004, 14, 2303–2316; c) S. Ünaldi, R. Fröhlich, D. Hoppe, *Synthesis* 2005, in press.
- [8] p-Bromobenzaldehyde in most cases was used for R²CH=O or R³CH=O in order to improve the crystallization tendency and for introduction of a heavy atom for applying anomalous X-ray dispersion.
- [9] Review: R. W. Hoffmann, Chem. Rev. 1989, 89, 1841– 1860.
- [10] Data set was collected with a Nonius Kappa CCD diffractometer, equipped with a rotating anode generator. Programs used: data collection COLLECT (Nonius B. V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods in Enzymology, 1997, 276, 307-326), absorption correction SORTAV (R. H. Blessing, Acta Cryst. 1995, A51, 33-37; R. H. Blessing, J. Appl. Cryst. 1997, 30, 421-426), structure solution SHELXS-97 (G. M. Sheldrick, Acta Cryst. 1990, A46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Universität Göttingen, 1997), graphics MO-PICT 3.2 (M. Brüggemann, Universitat Münster, 2001). CCDC 182785 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].