POLYFUNCTIONALIZED HEXAHYDRO-1(2H)-PENTALENONES BY REARRANGEMENT OF BICYCLIC 1,2-OXAZINE N-OXIDE DERIVATIVES

G.BARBARELLA,⁺ S.BRÜCKNER,⁺⁺ G.PITACCO⁺⁺⁺ and E.VALENTIN^{+++*}

⁺Laboratorio CNR, 40064 Ozzano Emilia, Bologna, Italy ⁺⁺Dipartimento di Chimica, Politecnico, 20133 Milano, Italy ⁺⁺⁺Istituto di Chimica, Università, 34127 Trieste, Italy

(Received in UK 19 January 1984)

Abstract - The title heterocycles rearrange into a mixture of diastereoisomeric hexahydro-1(2H)-pentalenone derivatives, which undergo nucleophilic eliminative ring fission by methanol to give 1-amino-2-nitroalkylated cyclopentancarboxylic esters. The X-ray structure determination of hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-piperidinyl)-1(2H)-pentalenone $|2S-(2\alpha, 3\alpha, 3a\alpha, 6a\alpha)|$ is also reported.

Cyclic enamines have been shown^{1,2} to react with nitroolefins to give 1,2-oxazine N-oxide derivatives, whose stabilities are related to the nature of the substituents R^1 and R^2 on the heterocyclic ring. Usually they open into the corresponding nitro-alkylated enamines.

 $R^1 = Ph$, $R^2 = Me$; $R^1 = H$, $R^2 = Ph$.

Recently we have found that 1,2-oxazine N-oxide derivatives with a carbonyl group in the fused carbocyclic ring undergo a different fate.³ The heterocyclic systems $\underline{2}$, derived from the cross-conjugated enamines $\underline{1}^+$ and (E)-(2-nitro-1-propenyl)-benzene (R¹= Ph, R²= Me), undergo a rearrangement reaction, instead of giving the expected ring opening products 3 (Scheme 1).

We would like to report here the results of a study of the rearrangement reaction, which proceeds on 2 in aprotic solvents, such as acetonitrile or toluene, and is favoured by heating. In the case of pyrrolidine, the rearrangement occurs also spontaneously at r.t. in the solid state. The resulting products 4 and 5, separated by flash chromatography, show the carbonyl absorption band at 1750 cm⁻¹.

[†]In contrast, the fully conjugated enamines, <u>i.e.</u> the 3-amino-2-cyclohexen-1-one systems, do not react under the same mild conditions. More forcing conditions lead to complicated mixtures of compounds, not further studied.^{4,5} It is interesting to note that the simple 2-cyclohexen-1-one does not react either with the above mentioned nitroolefin under any conditions.

4<u>a</u>, b, c

5 a, b, c

(i) PhCH=C(Me)NO₂, r.t.; (ii) CH₃CN, Δ <u>a</u>: NR₂ = 4-morpholinyl; <u>b</u>: NR₂ = 1-piperidinyl; <u>c</u>: NR₂ = 1-pyrrolidinyl

Scheme 1

which is indicative of its insertion in a five-membered ring, and the asymmetric stretching band of the nitro group at 1545 cm⁻¹. However, neither the ¹H NMR nor the ¹³C NMR data were diagnostic. Therefore the less polar isomer of the piperidino derivatives, that is <u>4b</u>, was examined by X-ray crystallography and was shown to be hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-piperidinyl)-1(2H)-pentalenone $|2S-(2\alpha, 3\alpha, 3a\alpha, 6a\alpha)|^+$ (Fig.1).

An experiment of spin-spin decoupling was carried out on $\underline{4b}$, as the chemical shifts of H-3 and H-3a were rather unusual, the benzylic proton resonating up-field (2.8-3.0 ppm) compared with the bridge proton (3.4-3.7 ppm) (Fig.2).

Irradiation at 3.64 ppm caused the doublet at 2.55 ppm to collapse to a singlet and simplified the multiplet centered at 1.69 ppm. Decoupling the proton doublet at 2.55 ppm reduced the multiplicity of the signal at 3.64 ppm to a doublet and no other changes were observed in the spectrum. Finally, irradiation at 1.69 ppm collapsed the signal at 3.64 ppm to a broad doublet. Therefore H-3a was assigned the lower field signal and its unusual shift is to be ascribed to the effect of the nitro group.

In compounds 5, the range of the benzylic proton resonances was 3.95-4.10 ppm. However, the vicinal coupling constant J_{33a} had the same value for both diastereoisomers, thus proving the antiperiplanar relationship of the proton in question. As a consequence, the configurations around C-3 and C-3a are also the same in both isomers 4 and 5. It then follows that they only differ in the configuration around C-2 (the <u>cis</u> fusion follows from the mechanism of formation of the two pentalenone systems)³ and the $|2R-(2\alpha,3\beta,3a\beta,6a\beta)|$ configuration is assigned to compounds 5.

[†]We are dealing with racemic modifications.

Fig. 1^{\dagger}

Partial 300 MHz ¹H NMR spectrum of <u>4b</u>

Fig. 2

On the other hand, the <u>cis</u> relationship of the methyl group and the phenyl one in compounds 5 is confirmed by the upfield shift (-6 ppm) of the methyl carbon atom compared with that of the corresponding isomers <u>4</u>, resulting from the steric compression of a gauche interaction.

Furthermore, that compounds 5 differed from the corresponding diastereoisomers $\underline{4}$ only in the configuration around C-2 was also proved chemically by means of a ring cleavage reaction. When compounds $\underline{4}$ and $\underline{5}$ were dissolved in methanol at r.t., the underwent nucleophilic eliminative ring fission of the type exo:O=C:C:5⁶ to give the same 1-amino-2-nitroalkylated cyclopentacarboxylic esters <u>6</u>, as products of kinetic control (Scheme 2).

(i) MeOH, r.t.; (ii) MeOH, ∆ <u>a</u>: NR₂ = 4-morpholinyl; <u>b</u>: NR₂ = 1-piperidinyl; <u>c</u>: NR₂ = 1-pyrrolidinyl Scheme 2

<u>7a,b,c</u>

<u>8</u> <u>a</u>, <u>b</u>, <u>c</u>

By moderate heating in methanol, the amino esters <u>6</u> equilibrated into a mixture of <u>6</u> and <u>7</u>, owing to the presence of the easily isomerizable center C-7. The ratios 6:7 varied from 7:3 to 6:4, depending on the amine molety. It is evident that formation of the same adducts <u>6</u> from both ketones <u>4</u> and <u>5</u> presume a common intermediate of type <u>8</u>, whose protonation is influenced by steric hindrance. The question of the configuration assignments to C-7 in <u>6</u> and <u>7</u> is left open.

The pentalenone derivatives $\underline{4}$ could be converted into the corresponding diastereoisomers $\underline{5}$, by the use of an excess of secondary amine such as piperidine or pyrrolidine in refluxing toluene. Simple heating was ineffective even at temperatures higher than 100°.

The mechanism we propose for this isomerization involves the initial attack of the secondary amine to the carbonyl group, followed by cleavage of the C_1-C_2 bond. The resulting carbanion would then collapse onto the carbonyl group with displacement of the base. During this ring closure, the nitro group would preferably assume the anti position with respect to the adjacent phenyl group, to avoid

9

Polyfunctionalized hexahydro-1(2H)-pentalenones

electronic interactions, thus originating the diastereoisomers 5. However, the intermediacy of the tertiary amides 9, although not separated, cannot be excluded, as the corresponding primary amides, which were formed from the pentalenone systems 4 and ammonia by a lethargic reaction at r.t., actually cyclized to give the corresponding pentalenones 5. All the attempts to synthesize the tertiary amides 9 from the corresponding amino esters 6 resulted in the direct formation of the systems 5. In contrast, by heating the amino esters 6 in toluene the corresponding pentalenones 4 were formed. This type of formation of α -nitroketones is reported as rare.⁷

Cleavage of the pentalenone derivatives $\underline{4}$ and $\underline{5}$ with formation of the corresponding amino esters was also accomplished by means of other alcohols, provided they were primary and not hindered. For instance ethanol worked well, as did benzylic alcohol and ethylene glycol, whereas propanols and \underline{t} -butyl alcohol did not react at all.

EXPERIMENTAL

The ¹H NMR spectra were run on either a JNM-60-HL Jeol or on a Varian XL-100 or on a Bruker CXP-300 spectrometer, with tetramethylsilane as internal standard. The ¹³C NMR spectra were run on a Bruker WP-80 spectrometer at 20.1 MHz. The solvent for ¹³C NMR spectra was CDCl₃ with tetramethylsilane as internal reference. IR spectra were recorded on a Perkin-Elmer 297 spectrophotometer. Flash chromatography was performed on Merck Kieselgel (40-63 μ m). M.ps were measured on a Büchi 510 apparatus.

General Procedure for the reaction of 2-amino-cyclohex-2-en-1-ones (1) with (E) - (2-nitro-1-propenyl)-benzene. (E) - (2-nitro-1-propenyl)-benzene (11 mmoles) was added to 1 (11 mmoles) at room temp. and the two reactants mixed thoroughly until the mixture became liquid. Then the mixture was allowed to stand at room temp. until it solidified. The solid 2 (100% yield) was filtered with the aid of a small amount of dry ether.

4a,5,6,7,8,8a-Hexahydro-3-methyl-8a-(4-morpholinyl)-8-oxo-4-phenyl-4H-1,2benzoxazine N-oxide (2a). M.p. 116-7⁰ (Found: C,66.12; H,6.94; N,8.08. Calc for C19H24N2O4: C,66.26; H,7.02; N,8.13%); IR (nujol): 1730 (C=O), 1620 (C=N+), 1120 cm-1 (C-O-C); 1H NMR (CDCl3): δ 7.2 (m,5H,Ph), 3.72 (m,4H,CH2OCH2), 3.4 (dq J₁ 1.5 Hz, J₂ 10.5 Hz, CHPh), 1.7 (d J 1.5 Hz,Me).

 $\begin{array}{c} \underline{4a,5,6,7,8,8a-\text{Hexahydro-3}}_{\text{methyl-8}-\text{oxo-8a-(1-piperidinyl)-4}-phenyl-4H-1,2-benzoxazine N-oxide (2b). M.p. 90-1° (Found: C,70.24; H,7.60; N,8.14. Calc for C20H26N2O3: C,70.15; H,7.65; N,8.18%); IR (nujol): 1730 (C=O), 1620 cm⁻¹ (C=N⁺); 1H NMR (CDCl₃): & 7.4 (m,5H,Ph), 3.45 (dq J₁ 1.5 Hz, J₂ 10.5 Hz, 1H, CHPh), 1.75 (d J 1.5 Hz,Me).$

<u>4a,5,6,7,8,8a-Hexahydro-3-methyl-8-oxo-4-phenyl-8a-(1-pyrrolidinyl)-4H-1,2-benzoxazine N-oxide (2c). M.p. 48-51° (Found: C,69.56; H,7.23; N,8.48. Calc for C19H24N2O3: C,69.49; H,7.37; N,8.53%); IR (nujol): 1730 (C=O), 1615 cm⁻¹ (C=N⁺); ¹H NMR (CDCl3): & 7.5 (m,5H,Ph), 3.7 (dq,1H,CHPh), 3.3 (m,4H,CH₂NCH₂), 2.0 (d J 1.5 Hz,Me).</u>

General Procedure for the formation of 6-amino-hexahydro-2-methyl-3-phenyl-2nitro-1(2H)-pentalenone (4) and (5). Compound 2 was heated in dry acetonitrile, under nitrogen, for 4-8 h. The solvent was eliminated and isopropanol was added. By scratching, the isomer 4 precipitated. The mother liquors, which contained a mixture of 4 and 5, were separated by flash chromatography using light petroleum-EtOAc (4:1) as eluent.

 $\begin{array}{l} \underbrace{\text{Hexahydro-2-methyl-6a-(4-morpholinyl)-2-nitro-3-phenyl-1(2H)-pentalenone} \\ 2R-(2\alpha,3\beta,3a\beta,6a\beta) \quad (5a). \\ \hline M.p. 124-5^{\circ}, from isopropanol (Found: C,66.1; H,6.93; \\ \hline N.7.96. Calc for C_{19}H_2H_2O_4: C,66.26; H,7.02; N,8.13%); IR (nujol): 1745 (C=O), \\ 1535 (NO_2), 1595, 1575, 1490, 710, 700 (Ph), 1110 cm^{-1} (C-O-C); ^{1}H NMR (CDCl_3): \\ \hline \delta 7.4 (m,5H,Ph), 4.05 (d J_{33a} 12.0 Hz, 1H,H^{-3}), 3.8 (t,4H,CH_2OCH_2), 3.1 (bdd, \\ J_{33a} 12.0 Hz,1H,H^{-3a}), 2.75 (m,4H,CH_2NCH_2), 1.45 (s,3H,Me); ^{13}C NMR (multiplicity): \\ 135.2 (s), 129.2 (d), 129.1 (d), 128.6 (d), 97.9 (s), 79.6 (s), 67.6 (t), 51.6 (d), \\ \end{array}$

47.8(t), 45.3(d), 30.4(t), 28.6(t), 24.0(t), 16.3 ppm (q).

 $\begin{array}{l} \underline{Hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-piperidinyl)-1(2H)-pentalenone}\\ \underline{2S-(2\alpha,3\alpha,3a\alpha,6a\alpha)} & (4b). \ M.p. \ 133-4^{\circ}, \ from \ isopropanol \ (Found: C,70.28; \ H,7.58; N,8.08. \ Calc \ for \ C_{20}H_{26}N_{2}O_{3}: \ C,70.15; \ H,7.65; \ N,8.18 \ ; \ IR \ (nujol): \ 1750 \ (C=O), \ 1545 \ (NO_{2}), \ 1595, \ 1495, \ 750, \ 700 \ cm^{-1} \ (Ph); \ 300 \ MHz \ ^{1}H \ NMR \ (C_{6}D_{6}): \ \delta \ 3.64 \ (dd) \ J_{33a} \ 11.0 \ Hz, \ J_{34} \ 6.0 \ Hz, 1H,H-3a), \ 3.06 \ (m,2H,CH_{2}N), \ 2.75 \ (m,2H,CH_{2}N), \ 2.55 \ (d) \ J_{33a} \ 11.0 \ Hz, \ H^{-3}), \ 1.45 \ (s,3H,Me); \ ^{3}C \ NMR \ (multiplicity): \ 207.2 \ (s), \ 133.9 \ (s), \ 128.9 \ (d), \ 128.5 \ (d), \ 95.4 \ (s), \ 82.6 \ (s), \ 55.8 \ (d), \ 48.9 \ (t), \ 46.7 \ (d), \ 33.3 \ (t), \ 29.4 \ (t), \ 27.2 \ (t), \ 24.9 \ (t), \ 23.2 \ (t), \ 21.7 \ ppm \ (q). \end{array}$

 $\begin{array}{l} \underline{\text{Hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-piperidinyl)-1(2H)-pentalenone}} \\ \underline{|2R-(2\alpha,3\beta,3a\beta,6a\beta)|} (5b). \text{ M.p. } 85-6^\circ, \text{ from isopropanol (Found: C,70.06; H,7.44; N,8.12. Calc for C_{20}H_{26}N_{2}O_{3}: C,70.15; H,7.65; N,8.18\%); \text{ IR (nujol): 1750 (C=O), 1600, 1585, 705 (Ph), 1545 cm=1 (NO_{2}); 100 MHz ^{1}H NMR (C_{6}D_{6}): \delta 7.1 (m,5H,Ph), 4.05 (d J_{33a} 11.2 Hz,H=3), 2.8 (dd J_{33a} 11.2 Hz, J_{3a4} 5.2 Hz,1H,H=3a), 1.37 (s, Me); ^{13}C NMR (multiplicity): 206.2(s), 133.3(s), 127.8(d), 127.2(d), 97.7(s), 79.3(s), 50.5(d), 47.6(t), 44.0(d), 29.5(t), 28.3(t), 25.6(t), 23.7(t), 22.9(t), 15.3 ppm (q). \end{array}$

 $\begin{array}{l} \\ \underline{Hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-pirrolidinyl)-1(2H)-pentalenone} \\ \underline{IS-(2\alpha,3\alpha,3a\alpha,6a\alpha)} & (4c). & M.p. 128-9°, from isopropanol (Found: C,69.23; H,7.28; N,8.45. Calc for C_{19}H_2AN_2O_3: C,69.49; H,7.37; N,8.53%); IR (nujol); 1740 (C=O), 1600, 1595, 705 (Ph), 1545 cm⁻¹ (NO_2); H NMR (C_6D_6): & 7.1 (m,5H,Ph), 3.75 (bdd, J_{33a} 11.2 Hz,H-3a), 3.2 (m,4H,NCH_2CH_2CH_2), 2.75 (d J_{33a} 11.2 Hz,H-3), 1.5 (s,Me); 13C NMR (multiplicity): 209.6(s), 134.0(s), 129.1(d), 129.0(d), 128.8(d), 95.8(s), 80.4(s), 55.8(d), 48.9(d), 47.6(t), 34.1(t), 28.5(t), 4.4(t), 23.3(t), 21.5 ppm (q). \end{array}$

 $\begin{array}{l} & \frac{\text{Hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-pirrolidinyl)-1(2H)-pentalenone}{(2R-(2\alpha,3\beta,3a\beta,6a\beta))} & (5c). \text{ M.p. } 113-4^{\circ}, \text{ from acetonitrile (Found: C,69.32; H,7.25; N,8.45. Calc for C_{19}H_2M_2O_3: C,69.49; H,7.37; N,8.53%); IR (nujol): 1740 (C=O), 1600, 1580, 700 (Ph), 1530 cm⁻¹ (NO_2); H NMR (CDCl_3): \delta 7.4 (m,5H,Ph), 4.1 (d J_{33a} 11.6 Hz,1H,H-3), 3.35-2.50 (m,5H,H-3a,CH_2NCH_2), 2.5-1.5 (m,10H,CH_2CH_2CH_2, CH_2CH_2N), 1.45 (s,3H,Me); H NMR (CD_3OCD_3): \delta 7.4 (m,5H,Ph), 4.1 (d J_{33a} 11.6 Hz,1H,H-3), 3.4 (dd J_{33a} 11.6 Hz,1H,H-3a), 1.45 (s,3H,Me); I^3C NMR (multiplicity): 209.0(s), 134.9(s), 128.9(d), 128.8(d), 128.2(d), 97.9(s), 78.4(s), 52.2(d), 47.6 (t), 46.6(d), 30.9(t), 29.6(t), 24.1(t), 23.8(t), 16.2 ppm (q). \end{array}$

<u>Reactions of 4 and 5 with methanol.</u> Compounds 4 and 5 were dissolved in methanol at room temp. Elimination of the solvent furnished compounds $\underline{6}$.

 $\begin{array}{c} \mbox{Methyl ester of 1-(4-morpholinyl)-2-(1-phenyl-2-nitropropyl)-cyclopentancarbox-ylic acid (6a). M.p. 119-20°, from methanol (Found: C,62.32; H,7.58; N,7.74. Calc for C₁₉H₂₈N₂O₅: C,62.62; H,7.74; N,7.69%); IR (nujol): 1720 (C=O), 1600, 1580, 730, 705 (Ph), 1530 (NO₂), 1120 cm⁻¹ (C-O-C); ¹H NMR (CDCl₃): <math>\delta$ 7.3 (m,5H,Ph), 5.9 (dq J₆₇ 5.0 Hz, J₇₈ 6.5 Hz,1H,H-7), 3.78 (s,3H,OMe), 3.75 (m,4H,CH₂OCH₂), 3.50 (dd J₂₆ 9.0 Hz, J₆₇ 5.0 Hz,H=6), 2.55 (m,5H,CH₂NCH₂,H=2), 1.3 (d J 6.5 Hz,3H,Me). ¹3H NMR (multiplicity): 173.8(s), 137.2(s), 129.8(d), 128.6(d), 127.9(d), 83.8(d), 78.6(s), 67.6(t), 52.0(d), 51.4(q), 48.9(t), 43.3(d), 28.8(t), 26.5(t), 20.9(t), 15.3 ppm (q). \\ \end{array}

By heating in methanol <u>6a</u> equilibrated into a 6:4 mixture of <u>6a</u> and <u>7a</u>. The mixture had m.p. $124-5^{\circ}$. ¹H NMR (CDCl₃): δ 7.3, 7.0 (2m,5H,Ph), 6.3 (dq J₆₇ 2.0 Hz, J₇₈ 7.0 Hz, 0.4H,H-7), 5.9 (dq J₆₇ 5.0 Hz, J₇₈ 6.5 Hz,0.6H,H-7), 3.80, 3.78 (2s,OMe), 1.45 (d J₇₈ 7.0 Hz,1.2H,Me), 1.30 (d J₇₈ 6.5 Hz,1.8H,Me).

 $\begin{array}{c} \mbox{Methyl ester of } 1-(1-piperidinyl)-2-(1-phenyl-2-nitropropyl)-cyclopentacarbox-ylic acid (6b). M.p. 124-4°, from methanol (Found: C,67.5; H,7.92; N,7.46. Calc for C_{21H_{30}N_{2}O_{4}}: C,67.4; H,8.07; N,7.48%); IR (nujol): 1720 (C=O), 1600, 1580, 730, 700 (Ph), 1535 cm^{-1} (NO_{2}); 1H NMR (CDCl_{3}): & 7.20 (m,5H,Ph), 6.25 (dq J_{67} 2.5 Hz, J_{78} 6.5 Hz,1H,H-7), 3.82 (s,3H,OMe), 3.55 (dd J_{26} 11.0 Hz, J_{67} 2.5 Hz,1H,H-6), 1.35 (d J_{78} 6.5 Hz,3H,Me); 1^{3}C NMR (multiplicity): 174.6(s), 137.3(s), 129.3(d), 128.0(d), 127.2(d), 82.6(d), 79.3(s), 53.7(d), 51.3(q), 49.5(t), 43.2(d), 29.1(t), 26.8(t), 26.3(t), 25.0(t), 20.1(t), 14.0 ppm (q). \\ \mbox{Bv heating in methanol. 6b gave a mixture of 6b and 7b in ratio 6:4, m.p.} \end{array}$

By heating in methanol, <u>6b</u> gave a mixture of <u>6b</u> and <u>7b</u> in ratio 6:4, m.p. 114-5°. ¹H NMR (CDCl₃): δ 7.20 (m,5H,Ph), 6.30 (dq J₆₇ 1.5 Hz, J₇₈ 6.5 Hz,H-7), 6.25 (dq J₆₇ 2.5 Hz, J₇₈ 6.5 Hz,H-7), 3.83 (s,1.8H,OMe), 3.75 (s,1.2H,OMe), 1.45, 1.35 (2d J₇₈ 6.5 Hz,Me).

Methyl ester of 1-(1-pyrrolidinyl)-2-(1-phenyl-2-nitropropyl)-cyclopentancarboxylic acid (6c). M.p. 96-8°, from methanol (Found: C,67.1; H,7.72; N,7.75. Calc for C_{20H28N,O4}: C,66.6; H,7.83; N,7.77%); IR (nujol): 1720 (C=0), 1600, 1580, 720, 700 (Ph), 1530 cm⁻¹ (NO₂); ¹H NMR (C₆D₆): δ 7.2 (m,5H,Ph), 5.8 (dq J₆₇ 5.25 Hz, J₇₈ 6.75 Hz,1H,H-7), 3.75 (s,3H,OMe), 3.55 (dd J₂₆ 9.9 Hz, J₆₇ 5.2 Hz,1H,H-6), 2.65 (bm,5H,CH₂NCH₂,H-2), 2.15-1.30 (bm,10H,5CH₂), 1.3 (d J₇₈ 6.75 Hz,Me); ¹3C NMR (multiplicity): 174.8(s), 137.3(s), 130.0(d), 128.5(d), 127.7(d), 84.1(d), 77.3(s), 51.5(d), 51.1(q), 47.9(t), 47.5(d), 29.6(t), 28.4(t), 24.2(t), 22.0(t),15.3 ppm (q). In chloroform <u>6c</u> gave a 3:7 mixture of its diastereoisomer <u>7c</u> and itself, m.p. 102°, from light petroleum. ¹H NMR (CDCl₃): δ 7.2 (m,5H,Ph), 6.0 (dq J₆₇ 2.5 Hz, J₇₈ 6.75 Hz,H-7), 5.8 (dq J₆₇ 5.25 Hz, J₇₈ 6.75 Hz,H-7), 3.74 (s,2.1H,OMe), 3.71 (s,0.9H,OMe), 1.45 (d J₇₈ 6.75 Hz,0.9H,Me), 1.30 (d J₇₈ 6.75 Hz,2.1H,Me).

Reactions of isomerization of 4 into 5. Compounds 4 (1.5 mmoles) were added to a solution of piperidine or pyrrolidine (3.0 ml, 30 mmoles) in toluene (30 ml) and the mixture refluxed overnight. Elimination of the solvent left the corresponding isomers 5.

Reaction of 4 with aqueous ammonia. Compounds 4 (1.5 mmoles) in acetonitrile were added to aqueous ammonia (4:1) (8 ml). After one week the solid formed was filtered and identified as a pair of diastereoisomeric 1-amino-2-(1-pheny1-2-nitropropyl)-cyclopentancarboxamides.

<u>1-(4-Morpholinyl)-2-(1-phenyl-2-nitropropyl)-cyclopentancarboxamide</u>. M.p. 208-210⁹, from methanol (Found: C,63.4; H,7.44; N,11.46. Calc for C₁₉H₂₇N₃O₄: C,63.14; H,7.53; N,11.63%); IR (CHCl₃): 3450, 3300 (HN), 1680, 1650 (C=O), 1570, 1540 (NO₂), 1490, 700 (Ph), 1110 cm⁻¹ (C-O-C); ¹H NMR (CDCl₃): δ 7.3 (m,7H,Ph,NH₂), 5.85 (m, 1H,H-7), 3.8 (m,4H,CH₂OCH₂), 3.5 (m,1H,H-6), 3.1 (m,1H,H-2), 2.6 (m,4H,CH₂NCH₂), 1.36, 1.35 (2d J₇₈ 6.75 Hz,3H,Me).

 $\frac{1-(1-\text{Piperidinyl})-2-(1-\text{phenyl}-2-\text{nitropropyl})-\text{cyclopentancarboxamide}}{\text{from methanol}} \text{ M.p. 182-184°, from methanol} (Found: C,66.7; H,7.97; N,11.50. Calc for <math>C_{20}H_{20}N_{3}O_{3}$: C,66.83; H,8.13; N,11.69%); IR (CHCl₃): 3495, 3330 (NH), 1670 (C=O), 1540 (NO₂), 1490, 700 cm⁻¹ (Ph); ¹H NMR (CDCl₃): 3 7.4 (m,6H,Ph,NH), 6.7 (bd,1H,NH), 5.75 (m,1H,H-7), 3.8 (dd J₂₆ 10.5 Hz, J₆₇ 3.0 Hz,1H,H-6), 3.45-2.35 (m,5H,CH₂NCH₂,H-2), 1.5, 1.4 (2d J₇₈ 6.75 Hz,Me).

 $\begin{array}{c} 1-(1-\text{PyrrolHinyl})-2-(1-\text{phenyl}-2-\text{nitropropyl})-\text{cyclopentancarboxamide}. M.p. 174-175'', from methanol (Found: C,66.2; H,7.72; N,12.25. Calc for C₁₉H₂₇N₃O₃: C,66.06; H,7,88; N,12.16%); IR (CDCl₃): 3500, 3340. (NH), 1670 (C=0), 1540 (NO₂), 1490, 700 cm⁻¹ (Ph); ¹H NMR (CDCl₃): <math>\delta^{7}$.4 (m,6H,Ph,NH), 6.3 (bd,1H,NH), 5.7 (m,1H,H-7), 3.8 (dd J₂₆ 9.75 Hz, J₆₇ 3.75 Hz,1H,H-6), 3.6-2.6 (m,5H,CH₂NCH₂,H-2), 1.8 (m,10H, CH₂CH₂CH₂,NCH₂CH₂CH₂), 1.5, 1.4 (2d J₇₈ 6.75 Hz,Me). \end{array}

X-Ray structure determination of hexahydro-2-methyl-2-nitro-3-phenyl-6a-(1-piperidinyl)-1(2H)-pentalenone $2S-(2\alpha,3\alpha,3a\alpha,6a\alpha)$ (4b). Crystal data. Formula $C_{20}H_{21}N_{2}O_{3}$; M = 337.4. The crystals are monoclinic, they belong to the space group P_{21}/C , Z = 8 (two crystallographically independent mole-cules A and B in the asymmetric unit), with a = 9.024(2), b = 16.754(3), c = 24.036(4) Å, β = 91.46(4)°, V = 3632.8(9) Å³.

Intensity measurements. Mo-K_{α} radiation, $\lambda = 0.71069$ Å, μ (Mo-K_{α}) = 0.40 cm⁻¹. 5654 reflections were collected in the range $3^{\circ} < \theta < 24^{\circ}$ with $\theta/2\theta$ scan using a scan width of 1.1° and a speed of $0.05^{\circ} s^{-1}$, Lorentz and polarization effects were taken into account, while neither absorption or extinction corrections were applied. During data collection, the intensities of two reference reflections, monitored every two hours, indicated no significant decay of the sample.

Structure determination and refinement. The structure was solved with Multan 80⁸ giving the sign to 400 reflections with the aid of 4247 phase relationships. Both molecules A and B appeared quite clearly on the E-map. Refinement was carried out with SHELX 76? The last cycles were carried out assigning anisotropic thermal parameters to all non hydrogen atoms, while hydrogens were located at calculated po-sitions. The final R factor was 0.054 and it was obtained with a weighting funct-ion of the form $1/w = \sigma^2(F_0) + 0.0266 F_0^2$. Positional parameters, bond lengths, bond angles and some torsion angles are set out in the Tables 1-4.

Acknowledgement - We thank C.N.R. (Rome) for the financial support.

REFERENCES

- 1. S.Daneo, G.Pitacco, A.Risaliti and E.Valentin, <u>Tetrahedron</u> <u>38</u>, 1499(1982).
- 2. P.Bradamante, G.Pitacco, A.Risaliti and E.Valentin, Tetrahedron Letters, 2683 (1982).
- 3. G.Barbarella, G.Pitacco, C.Russo and E.Valentin, Tetrahedron Letters, 1621 (1983).
- A.T.Nielsen and T.G.Archibald, <u>Tetrahedron</u> 25, 2393 (1969).
 T.Yanami, A.Ballatore, M.Miyashita, M.Kato and A.Yoshikashi, <u>J.Chem.Soc.Perkin</u>1 1144 (1978).
- J.C.M.Stirling, <u>Chem.Revs</u> 78, 517 (1978).
 R.H.Fischer and <u>H.M.Weitz</u>, <u>Synthesis</u>, 261 (1980).
- 8. P.Main, S.J.Fiske, S.E.Hull, L.Lessinger, G.Germain, J.-P. Declercq and M.M.Woolfson, MULTAN 80. A system of Computer Programs for the Automatic Solu-tion of Crystal Structures from X-Ray Diffraction Data, University of York and Louwain, 1980.
- 9. G.M.Sheldrick, SHELX. A Program for X-Ray Crystal Structure Determination, University of Cambridge, 1976.

Table 1. Positional parameters $(x10^4)$ and equivalent isotropic temperature factors (A^2) for 4b with E.S.D.S. in brackets.

	x	У	z	в
O(1) O(2) O(3) N(1) N(2) C(2) C(2) C(3a) C(3a) C(4) C(5) C(6a) C(7) C(6a) C(7) C(6a) C(10) C(11) C(12) C(11) C(12) C(14) C(15) C(15)	x 4092 (3) 6390 (4) 5433 (3) 4221 (3) 6093 (3) 5212 (3) 6575 (3) 7760 (3) 6925 (3) 7812 (4) 7550 (4) 6225 (4) 5558 (3) 7027 (4) 3593 (3) 2033 (4) 2035 (4) 2073 (4) 4322 (4) 8913 (3) 10186 (4) 11280 (4) 11111 (5)	y 1988 (2) 204 (2) 1000 (2) 3204 (1) 867 (1) 2149 (2) 1581 (2) 2054 (2) 2680 (2) 3453 (2) 3510 (2) 2900 (2) 1306 (2) 2657 (2) 2919 (2) 3767 (2) 4307 (2) 4307 (2) 4307 (2) 4308 (2) 1560 (2) 1319 (2) 882 (2) 679 (2)	z 6006 (1) 6466 (1) 7048 (1) 6852 (1) 6228 (1) 6288 (1) 6285 (1) 6967 (1) 7029 (2) 6477 (2) 6181 (1) 6593 (1) 5714 (1) 7261 (2) 7399 (2) 7628 (3) 7220 (2) 7090 (1) 6946 (1) 6688 (1) 6956 (2) 7506 (2)	$\begin{array}{c} B\\ 5.1 (2)\\ 6.8 (3)\\ 5.3 (2)\\ 3.3 (2)\\ 3.3 (2)\\ 3.1 (2)\\ 2.9 (2)\\ 2.9 (2)\\ 2.9 (2)\\ 4.0 (3)\\ 4.7 (3)\\ 3.7 (2)\\ 3.0 (2)\\ 4.5 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.3 (3)\\ 5.9 (4)\\ 5.$
C(17)	9866(4)	914 (2)	7778 (2)	5.4(3)
Molec	3764(3) ule B	1550(2)	/499(1)	4.1(3)
	x	У	z	в
O(1) O(2) O(3) N(1) N(2) C(1) C(2) C(3) C(3a) C(3a) C(3a) C(4) C(5) C(6a) C(5) C(6a) C(7) C(7) C(8) C(7) C(10) C(11) C(12) C(12)	8992 (2) 11426 (3) 9093 (3) 10971 (3) 10093 (3) 11439 (3) 12629 (3) 11773 (3) 12653 (3) 12653 (3) 12441 (4) 11178 (3) 10446 (3) 11916 (4) 8498 (4) 6930 (4) 6824 (4) 7532 (4) 9103 (4) 13796 (3)	1997 (1) 232 (1) 1057 (1) 3269 (1) 2155 (2) 1580 (2) 2084 (2) 2727 (2) 3501 (2) 3933 (2) 3503 (2) 1258 (2) 2796 (2) 3051 (2) 3929 (2) 4401 (2) 4119 (2)	$\begin{array}{c} 229(1)\\ -322(1)\\ -815(1)\\ -574(1)\\ -416(1)\\ -21(1)\\ -41(1)\\ -345(1)\\ -684(1)\\ -730(1)\\ -174(1)\\ 120(1)\\ -174(1)\\ 120(1)\\ -315(1)\\ 524(1)\\ -1043(2)\\ -1191(2)\\ -1326(2)\\ -850(1)\\ -729(1)\\ -652(1)\\ \end{array}$	$\begin{array}{c} 4.9(2) \\ 6.3(3) \\ 5.7(2) \\ 3.5(2) \\ 3.9(2) \\ 3.4(2) \\ 3.4(2) \\ 3.1(2) \\ 3.2(2) \\ 4.1(2) \\ 4.7(3) \\ 3.7(2) \\ 3.7(2) \\ 3.7(2) \\ 3.5(3) \\ 4.5(3) \\ 5.2(3) \\ 5.2(3) \\ 5.2(3) \\ 5.2(3) \\ 3.3(2) \end{array}$
C(14) C(15) C(16) C(17)	15066 (3) 16195 (4) 16053 (4) 14799 (4)	1380 (2) 969 (2) 803 (2) 1035 (2)	-365 (2) -623 (2) -1181 (2) -1478 (2)	4.6(3) 5.4(3) 5.3(3) 4.9(3)
C(18)	13672(4)	1436(2)	-1214(1)	4.1(2)

Table 2. Bond lengths (\AA) with E.S.D.S. in brackets.

	molecule A	molecule B
0(1)-C(1)	1.208(4)	1.204(4)
O(2) - N(2)	1.206(4)	1.206(3)
O(3) - N(2)	1.217(4)	1.220(4)
N(1) - C(6a)	1.463(4)	1.469(3)
N(1)-C(8)	1.468(4)	1.468(4)

$\begin{array}{c} N(1) - C(12) \\ C(1) - C(2) \\ C(1) - C(6a) \\ C(2) - N(2) \\ C(2) - C(3) \\ C(2) - C(3) \\ C(3) - C(3a) \\ C(3) - C(13) \\ C(3a) - C(4) \\ C(3a) - C(6a) \\ C(4) - C(5) \\ C(5) - C(6) \\ C(6) - C(6a) \\ C(6) - C(6a) \\ C(8) - C(9) \\ C(10) - C(11) \\ C(11) - C(12) \\ C(13) - C(14) \\ C(13) - C(14) \\ C(13) - C(16) \\ C(15) - C(16) \\ C(16) - C(17) \\ C(17) - C(18) \\ \end{array}$	$1.464 (4) \\ 1.555 (4) \\ 1.510 (4) \\ 1.511 (4) \\ 1.545 (4) \\ 1.545 (4) \\ 1.525 (4) \\ 1.527 (4) \\ 1.527 (4) \\ 1.527 (4) \\ 1.551 (4) \\ 1.556 (4) \\ 1.556 (4) \\ 1.552 (5) \\ 1.504 (5) \\ 1.525 (5) \\ 1.388 (4) \\ 1.381 (4) \\ 1.384 (5) \\ 1.377 (6) \\ 1.397 (5) \\ 1.397 (5) \\ 1.397 (5) \\ 1.397 (5) \\ 1.555 (5) \\ 1.397 (5) \\ 1.597 (5) \\ 1.397 (5) \\ 1.597 (5) \\ 1.397 (5) \\ 1.59$	1.473(4) 1.552(4) 1.518(4) 1.510(4) 1.515(4) 1.546(4) 1.546(4) 1.526(4) 1.537(5) 1.537(5) 1.537(5) 1.553(4) 1.512(5) 1.519(5) 1.519(5) 1.519(5) 1.519(5) 1.388(4) 1.388(5) 1.373(6) 1.379(5) 1.386(5)
Table 3. Bond in brackets.	angles (°)	with E.S.D.S.
	molecule A	molecule B
C(6a) - N(1) - C(8)	113.8(2)	113.6(2)
C(6a) = N(1) = C(12) C(8) = N(1) = C(12)	116.3(2)	118.0(2)
O(2) - N(2) - O(3)	123.2(3)	122.9(3)
O(2)-N(2)-C(2)	119.6(3)	120.0(2)
O(3) - N(2) - C(2)	117.1(2)	117.0(2)
O(1) = C(1) = C(2) O(1) = C(1) = C(6a)	122.0(3)	122.4(3)
C(2) - C(1) - C(6a)	110.0(2)	110.1(2)
N(2)-C(2)-C(3)	109.3(2)	108,5(2)
N(2) - C(2) - C(7)	109.3(2)	109.5(2)
C(1) - C(2) - N(2) C(1) - C(2) - C(3)	105.2(2)	106.4(2)
C(1) - C(2) - C(3)	112.9(3)	113.4(2)
C(3)-C(2)-C(7)	115.7(3)	115.4(2)
C(2) - C(3) - C(3a)	106.7(2)	106.4(2)
C(3a) - C(3) - C(4)	110.2(2)	112.1(2)
C(3)-C(3a)-C(6a)	104.2(2)	103.6(2)
C(3) - C(3a) - C(13)	115.9(2)	116.4(2)
C(4) = C(3a) = C(6a) C(3a) = C(4) = C(5)	105.3(2)	105.3(2)
C(4)-C(5)-C(6)	106.4(3)	106.8(3)
C(5)-C(6)-C(6a)	107.6(3)	106.6(2)
N(1) - C(6a) - C(1) C(1) - C(6a) - C(6)	110.4(2)	110.2(2)
C(3a) - C(6a) - C(6)	107.1(2)	101.6(2)
N(1)-C(8)-C(9)	110.0(3)	110.5(3)
C(8) - C(9) - C(10)	110.8(3)	112.3(3)
C(10)-C(11)-C(12)	110.0(3)	110.8(3)
N(1)-C(12)-C(11)	109.5(3)	109.7(3)
C(3) - C(13) - C(14)	119.1(3)	118.9(3)
C(14)-C(13)-C(18)	118.2(3)	117.9(3)
C(13)-C(14)-C(15)	121.5(3)	122.0(3)
C(14) - C(15) - C(16)	119.6(4)	119.0(3)
C(15)-C(16)-C(17) C(16)-C(17)-C(18)	119.9(4) 120.3(4)	120.2(3)
C(13)-C(18)-C(17)	120.5(3)	120.7(3)

Molecule A

Table 4. Anisotropic thermal parameters with E.S.D.S. in brackets.

Molecule	Molecule A						
	^B 11	B22	^B 33	^B 12	^B 13	^B 23	
O(1) O(2) O(3) N(1) N(2) C(1) C(2) C(3) C(3a) C(4) C(5) C(6a) C(7) C(6a) C(7) C(6a) C(7) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18)	$\begin{array}{c} 4.6(2)\\ 9.8(3)\\ 5.6(2)\\ 3.4(2)\\ 3.8(2)\\ 3.6(2)\\ 3.6(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.2(2)\\ 3.4(3)\\ 4.6(3)\\ 4.4(3)\\ 4.4(3)\\ 5.2(3)\\ 4.4(3)\\ 5.2(3)\\ 4.8(3)\\ 6.1(4)\\ 5.9(3)\\ 3.6(3)\\ \end{array}$	$\begin{array}{c} 4.7(1)\\ 3.0(1)\\ 4.6(1)\\ 2.8(1)\\ 2.9(1)\\ 3.4(1)\\ 2.7(1)\\ 2.7(1)\\ 3.6(1)\\ 3.6(1)\\ 3.8(2)\\ 3.4(1)\\ 2.9(1)\\ 4.8(2)\\ 3.6(1)\\ 4.4(2)\\ 5.6(2)\\ 3.9(2)\\ 3.3(1)\\ 2.8(1)\\ 4.8(2)\\ 5.2(2)\\ 3.6(2)\\ 4.8(2)\\ 5.2(2)\\ 3.6(2)\\ 4.8(2)\\ 5.4(2)\\$	5.7(1) 7.6(2) 5.7(1) 3.6(1) 2.8(1) 3.0(1) 2.9(1) 2.7(1) 4.5(2) 5.2(2) 3.2(1) 2.7(1) 3.4(1) 6.1(2) 7.3(2) 5.0(2) 5.3(2) 4.9(2) 3.4(1) 4.3(2) 6.8(2) 7.7(3) 5.3(2) 4.2(2)	$\begin{array}{c} 1.5(1) \\ -0.5(2) \\ 0.6(1) \\ 0.6(1) \\ 0.1(2) \\ 0.3(1) \\ 0.1(1) \\ 0.0(1) \\ -0.3(2) \\ -2.0(2) \\ 0.8(2) \\ 0.1(1) \\ 0.4(2) \\ 0.3(2) \\ 0.1(2) \\ 1.5(2) \\ 1.7(2) \\ 0.5(2) \\ -0.2(1) \\ 2.5(2) \\ 4.1(2) \\ 1.8(2) \\ -1.6(2) \\ -0.7(2) \end{array}$	$\begin{array}{c} -4.5(1)\\ 2.6(2)\\ 3.6(2)\\ 0.1(1)\\ -0.1(1)\\ -1.1(2)\\ 0.1(1)\\ 0.0(1)\\ -0.3(1)\\ -1.2(2)\\ 1.4(2)\\ 0.5(2)\\ -0.6(1)\\ 0.4(2)\\ 2.7(2)\\ 2.9(2)\\ 1.8(2)\\ 1.7(2)\\ 1.2(2)\\ -0.8(1)\\ -0.2(2)\\ -2.5(2)\\ -4.9(3)\\ -2.8(2)\\ -0.8(2)\end{array}$	$\begin{array}{c} -3.1(1)\\ -1.1(2)\\ 1.9(1)\\ -0.9(1)\\ -0.3(1)\\ -0.3(1)\\ -0.4(1)\\ 0.1(1)\\ -0.4(1)\\ -1.8(2)\\ -0.7(2)\\ 0.7(2)\\ -0.3(2)\\ -1.8(2)\\ -1.8(2)\\ -2.0(2)\\ -0.3(1)\\ -2.1(2)\\ -3.1(2)\\ 0.8(2)\\ 3.7(2)\\ 1.8(2)\\ \end{array}$	
Molecule	в						
O(1) O(2) O(3) N(1) N(2) C(1) C(2) C(3) C(3a) C(4) C(5) C(6) C(6a) C(7) C(6) C(6a) C(7) C(8) C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(17) C(18)	$\begin{array}{c} 4.6(2) \\ 7.9(2) \\ 6.8(2) \\ 3.8(2) \\ 4.0(2) \\ 3.7(2) \\ 3.9(2) \\ 3.2(2) \\ 3.2(2) \\ 3.4(2) \\ 4.3(2) \\ 4.3(3) \\ 4.4(2) \\ 4.5(3) \\ 4.5(3) \\ 4.5(3) \\ 4.5(3) \\ 5.2(3) \\ 6.5(3) \\ 5.7(3) \\ 3.5(2) \\ 4.0(3) \\ 4.3(3) \\ 5.7(3) \\ 4.3(3) \\ 5.7(3) \\ 4.4(2) \end{array}$	$\begin{array}{c} 4.5(1)\\ 3.1(1)\\ 5.1(1)\\ 3.2(1)\\ 3.3(1)\\ 3.6(1)\\ 3.2(1)\\ 3.2(1)\\ 3.2(1)\\ 3.3(1)\\ 3.6(1)\\ 3.7(1)\\ 3.5(1)\\ 3.5(1)\\ 3.4(1)\\ 4.6(2)\\ 4.1(2)\\ 5.7(2)\\ 5.6(2)\\ 4.6(2)\\ 3.4(1)\\ 3.0(1)\\ 5.0(2)\\ 4.8(2)\\ 4.7(2)\\ 4.6(2)\\ 4.2(1)\\ \end{array}$	5.8(1) 7.8(2) 5.2(1) 3.4(1) 4.5(1) 2.7(1) 3.1(1) 2.9(1) 4.3(1) 4.9(2) 3.1(1) 2.6(1) 3.8(1) 5.3(2) 7.4(2) 4.3(2) 4.3(2) 3.6(1) 4.8(2) 7.1(2) 6.9(2) 3.6(1) 3.6(1)	$\begin{array}{c} 0.8(1)\\ 0.7(1)\\ 0.7(1)\\ 0.6(1)\\ -0.1(1)\\ -0.3(1)\\ -0.2(1)\\ -0.4(1)\\ 0.0(1)\\ -1.1(2)\\ -1.3(2)\\ 0.6(2)\\ 0.5(1)\\ 1.2(2)\\ 1.2(2)\\ 1.2(2)\\ 2.5(2)\\ 3.7(2)\\ 0.7(2)\\ -0.2(1)\\ 2.0(2)\\ 2.2(2)\\ 0.9(2)\\ 0.7(2)\\ $	$\begin{array}{c} 3.9(1) \\ -1.5(2) \\ -3.5(1) \\ 0.1(1) \\ 0.9(1) \\ 1.3(1) \\ 0.7(1) \\ 0.3(1) \\ 0.8(1) \\ 2.2(2) \\ 0.1(2) \\ 0.1(2) \\ 0.5(1) \\ 0.5(1) \\ 0.5(2) \\ -2.3(2) \\ -3.6(2) \\ -1.5(2) \\ -1.6(2) \\ 0.8(1) \\ -0.9(2) \\ 0.1(2) \\ 3.2(2) \\ 2.6(2) \\ 0.9(2) \end{array}$	$\begin{array}{c} 2.3(1) \\ -0.1(1) \\ -1.9(1) \\ 0.2(1) \\ 0.1(1) \\ -0.2(1) \\ 0.1(1) \\ -0.1(1) \\ 0.4(1) \\ 0.6(2) \\ -0.1(2) \\ -0.7(1) \\ -0.1(1) \\ 2.5(2) \\ -1.7(2) \\ 0.8(2) \\ 0.5(2) \\ 0.5(2) \\ 0.5(2) \\ -0.5(1) \\ -0.5(2) \\ -0.5(2) \\ -0.6(2) \\ -1.7(2) \\ -2.0(2) \\ -1.2(2) \end{array}$	