STEREOCHEMICAL STUDIES, 100¹. SATURATED HETEROCYCLES, 104¹

SYNTHESIS, AND NMR AND X-RAY STUDY OF 1-SUBSTITUTED AZETO[2,1-a]ISOQUINOLINE DIASTEREOMERS¹

GÁBOR BERNÁTH,^{+*} JENŐ KÓBOR,[×] FERENC FÜLÖP,⁺ PÁL SOHÁR^O GYULA ARGAY[□] and ALAJOS KÁLMÁN[□]

 ⁺Institute of Pharmaceutical Chemistry, University Medical School, P.O. Box 121, H-6701 Szeged; *Chemical Department, Pedagogical Training College, H-6720 Szeged; *Spectroscopic Department, EGIS Pharmaceuticals, P.O. Box 100, H-1475
 Budapest; ©Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary

(Received in UK 14 July 1986)

<u>Abstract</u> - <u>N</u> \rightarrow <u>0</u> acyl migration of the <u>N</u>-benzoyl derivatives (<u>4</u>) of <u>1</u>-[bis(hydroxymethyl)-methyl] -6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (<u>3a</u>) gave the <u>threo</u>- and <u>erythro</u>-<u>0</u>-benzoyl compounds (<u>6a</u>, <u>6b</u>), which were converted to <u>cis</u>- and <u>trans</u>-<u>1</u>hydroxymethyl-1,4,5,9b-tetrahydro-<u>2H</u>-azeto[2,<u>1-a</u>]isoquinolines (<u>11a</u>, <u>11b</u>). The structures of the compounds prepared were proved by X-ray diffraction and NMR spectroscopic measurements.

Introduction

The wide current interest in small heterocycles such as azetidines and their fused-ring derivatives is due not only to the chemical aspects, but also to their appreciable role as chemotherapeutic agents.² A number of $azeto[2,1-\underline{a}]$ isoquinolines have recently been synthesized (see, e.g.³⁻⁵), mostly by means of cycloaddition to the C=N bond of 3,4-dihydroisoquinoline.⁶ Several such compounds have antibiotic activity characteristic of β -lactams,⁷ while others exhibit analgesic⁸ and anti-inflammatory⁹ action. The synthesis of the title compounds seemed to be of promise, in view of the potential biological activity of the products.

Syntheses

The starting material was $1-[bis(hydroxymethyl)-methyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (<math>\underline{3a}$); a rapid and convenient synthesis of this compound was recently reported.¹⁰ By virtue of the high reactivity¹¹ of the active methyl group in $\underline{1}$, the addition of 2 molecules of formaldehyde and subsequent reduction gave the tetrahydroisoquinolines $\underline{3}$ in excellent yields.

The <u>N</u>-benzoyl derivative $\underline{4}$, prepared by benzoylation of $\underline{3}\underline{a}$, was heated with hydrochloric acid to achieve $\underline{N} \rightarrow \underline{0}$ acyl migration, giving a mixture of the diastereomeric $\underline{0}$ -benzoyl derivatives ($\underline{6}\underline{a}$, $\underline{6}\underline{b}$); the components were separated by frac-

tional crystallization from ethanol. The <u>erythro-threo</u> isomeric structures of the <u>O</u>-benzoyl derivatives produced by acyl migration were proved both by NMR measurements and by chemical conversions. The derivatives <u>§a</u>,<u>b</u> were <u>N</u>-benzoylated to give the <u>N</u>,<u>O</u>-dibenzoyl compounds <u>7a</u>,<u>b</u>; in both stereomers, <u>N</u>-+ <u>O</u> acyl migration furnished the same <u>O</u>,<u>O</u>-dibenzoyl derivative §.

We have made a very thorough study of $\underline{N} \rightarrow \underline{0}$ acyl migration in the 1,2- and 1,3-aminoalcohols,¹²⁻¹⁵ and in our experience, in agreement with the results of other authors,^{16,17} this is usually an intramolecular process. In the acyl migration reaction $\underline{4} \rightarrow \underline{6}$, however, besides the epimers $\underline{6a}, \underline{b}$, the hydrochloride of the bis(hydroxymethyl) derivative $\underline{3a}$ can also be isolated, which is formed by transesterification with the participation of ethanol used as solvent, <u>i.e.</u> through an intermolecular process.

It is noteworthy that the bases can be liberated from the $\underline{0}$ -acyl hydrochlorides ($\underline{6}\underline{a}, \underline{b}, \underline{8}$) under mild conditions, whereas $\underline{0} \longrightarrow \underline{N}$ acyl migration (which occurs very readily in aminoalcohols containing an acyclic nitrogen atom) can be effected only by relatively vigorous treatment in the present case. This can be explained by the lower reactivity of the cyclic secondary nitrogen atom in $\underline{6}\underline{a}, \underline{b}$, which starts the $\underline{0} \longrightarrow \underline{N}$ acyl migration by nucleophilic attack.

Scheme 2

Formation of the two isomers $(\underline{\delta g}, \underline{b})$ in a ratio of 3:1 can be accounted for by the relative stabilities of the 1,3-oxazine-type transition states occurring in the acyl migration.¹⁴ The main component is the <u>threo</u> <u>O</u>-acyl isomer, which is formed from the thermodynamically more stable transition product $\underline{\delta g}$, containing an <u>equatorial</u> hydroxymethyl group; the secondary component, the <u>erythro</u> isomer, arises <u>via</u> the less favoured transition state $\underline{\delta b}$, where the hydroxymethyl group is in the <u>axial</u> position (Fig. 1).

The hydroxy group of isomers $\underline{\delta g}$, \underline{b} can readily be exchanged for chlorine. The resulting $\underline{2}\underline{a}$ requires more vigorous, but $\underline{2}\underline{b}$ only mild alkaline treatment to undergo conversion into the corresponding 1-(benzoyloxymethyl)azetidines ($\underline{1}\underline{2}\underline{a},\underline{b}$). Acid hydrolysis of $\underline{2}\underline{a}$ or $\underline{2}\underline{b}$ furnishes the <u>threo</u> ($\underline{1}\underline{0}\underline{a}$) or <u>erythro</u> ($\underline{1}\underline{0}\underline{b}$) 1-(1¹-hydroxy-

5140

methyl-l¹-chloromethyl-methyl)-6,7-dimethoxy-l,2,3,4-tetrahydroisoquinoline hydrochloride. As is characteristic of γ -chloroamines,¹⁸ <u>10a</u> and <u>10b</u> are cyclized on mild alkaline treatment, to give <u>cis</u>- and <u>trans</u>-l-hydroxymethyl-7,8-dimethoxy-l,4,5,9b-tetrahydro-2<u>H</u>azeto [2,1-<u>a</u>]isoquinolines (<u>11a</u>, <u>11b</u>). Conversions of the hydroxy group of the stereo-

isomeric azetidines 11 lead to potential drugs with different biological actions.¹⁹

Spectroscopic studies

The structure of $\frac{3}{2}$ is unequivocally substantiated, in part by the H-l signal, and in part by the very large chemical shift of the C-l signal (at 168.6 ppm in the spectrum of $\frac{2}{2}$) to the range characteristic of saturated carbon atoms (58.2 ppm).

There is scarcely any difference between the spectral data of the <u>O</u>-benzoyl diastereomers $\underline{6}\underline{a}$ and $\underline{6}\underline{b}$. The presence of the benzoyl group is shown by the IR ester carbonyl band ($\underline{6}\underline{a}$: 1711, $\underline{6}\underline{b}$: 1715 cm⁻¹), and also by the proton and carbon resonance signals of the aromatic ring. The H-1 signal half-bandwidth is a little larger for $\underline{6}\underline{a}$ (~5 Hz) than for $\underline{6}\underline{b}$ (~3.5 Hz); it follows that the open-form rotamer containing H-1 and H- α in the antiperiplanar position has a higher population in the $\underline{6}\underline{a}$ isomer, thereby showing the <u>threo</u> configuration of $\underline{6}\underline{a}$. In this configuration of the rotamer the isoquinoline skeleton and the <u>O</u>-benzoyl group are in the sterically favoured <u>anti</u> position, whereas in the <u>erythro</u> structure their vicinity gives rise to steric hindrance; the occurrence of the latter rotamer is therefore less probable.

11a (R = H) 12a (R = COPh)

120 (R = COPh)

Scheme 3

Table 1. ¹H NMR data ($\delta_{TMS} = 0$ ppm, coupling constants in Hz) on compounds $\frac{2}{2}$, $\frac{2}{2}$, $\frac{6}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ and $\frac{1}{2}$, $\frac{1}{2}$ in CDCl₃ at 250 MHz²⁸.

Com- pound	H-1 <u>s/d^a(1</u> H)	H-3 <u>m</u> (2H)	H-4 <u>m</u> (2H)	H-5 <u>s</u> (1H)	H-8 <u>s</u> (1H)	CH ₃ O(6,7) 2x <u>s</u> (2x3H)	H-∝ <u>m</u> ^b (1H)	H-/> <u>m</u> ^C (2H)	H– ß' <u>m</u> ^C (2H)	OH/NH broad(2H)
<u>2</u> a		3.61	2.62	6.70	7.07	3.90 3.92	3.24	3.95	-4.10 ^d	~4.8
<u>2</u> a	4.49	~2.6 ^e , ~3.2	e~2.9	6	.58 .60	3.81 3.86	2.13	3.65	-3.90 ^d	4.09 ^f
≦₃ ^g	4.41	2.55-2 ~3.0 ^e ,	~3.15 ^e	6.68	6.48	3.78 3.83	~2.7 ^d	4.02 4.10	4.42 4.56	~3.6
60 ⁹	4.45	~2.6 ^e , ~3.2	~2.9, 5 ^e	6.62	6.55	3.82 3.83	2.42	3.70 ^h	4.61 4.87	~4.15
112	4.81	2.4-3.	5 ^{d,i}	6.66	6.59	3.82 3.87		2.4	-3.5 ^{d,i}	
110	4.52	2.3-3.	5 ^d	6.65	6.55	3.81 3.87	2.3	-3.5 ^d	~4.05	4.95 ^e
128 ⁹	4.93	2.42 ^e , 2.85-	2.68 ⁰ 3.2	6.66	6.50	3.84 3.56 ^d	3.22	~3.55 ^d	3.86 3.96	-
120 ⁹	4.62	2.45-3	.10 ^d	5.68	6.48	3.87 3.64	~2.6 ^d	3.31 3.55	4.73 4.80	-

^a Broad signal, half-bandwidth \checkmark 5 Hz $(\frac{3}{2}a, \frac{6}{2})$, \underline{d} , $\underline{J}(H-1, H-\alpha)$: 3.5 $(\underline{6}\underline{b})$, \sim 7 $(\underline{1}\underline{1}\underline{2}\underline{a})$, \sim 3 $(\underline{1}\underline{1}\underline{b})$, 7.4 $(\underline{1}\underline{2}\underline{a})$ and 3.3 Hz $(\underline{1}\underline{2}\underline{b})$. ^b Multiplicity: quintet $(\underline{2}\underline{a})$, sextet $(\underline{3}\underline{a}, \underline{6}\underline{b})$, broad \underline{s} $(\underline{1}\underline{2}\underline{a})$. ^c A or B part of an ABX spinsystem $(\underline{d}\underline{d})$ for $\underline{6}\underline{a}$ $(\beta \text{ and } \beta')$, $\underline{6}\underline{b}$ (β') , $\underline{1}\underline{2}\underline{a}$ (β') and $\underline{1}\underline{2}\underline{b}$ $(\beta \text{ and } \beta')$; $\underline{J}(\underline{A},\underline{B})$, $\underline{J}(\underline{A},\underline{X})$ and $\underline{J}(\underline{B},\underline{X})$: 11, 4.2 and 3.2 $(\underline{6}\underline{a}, \beta)$, 11.2, 8.6 and 5.3 $(\underline{6}\underline{a}, \beta')$, 11.4, 7.7 and 6.6 $(\underline{6}\underline{b}, \beta')$, 11.5, 8.0 and 5.3 $(\underline{1}\underline{2}\underline{a}, \beta')$, 8.3, 9.0 and 4.0 $(\underline{1}\underline{2}\underline{b}, \beta)$, and 10.8, 9.2 and 6.5 Hz $(\underline{1}\underline{2}\underline{b}, \beta')$, respectively. β' denotes the methylene protons vicinal to the <u>0</u>-benzoyl group $(\underline{6}\underline{a},\underline{b})$ and $\underline{1}\underline{2}\underline{a},\underline{b}$) or to the hydroxy group $(\underline{1}\underline{1}\underline{a},\underline{b})$. ^d Overlapping signals. ^e Intensity 1H. ^f OH: \underline{d} , $\underline{J}(H-\beta,OH)$: 5.4 Hz, intensity: 2H, NH? ^g The aromatic part in the spectra of $\underline{6}\underline{a},\underline{b}, \underline{1}\underline{2}\underline{a},\underline{b}$: ArH-3',5'($\underline{t}d,2H$) 7.36-7.47; ArH-4'($\underline{t}d,1H$) 7.50-7.66; ArH-2',6'($\underline{d}d,2H$) 7.82-8.10 ppm. ^h $\sim \underline{s}(2H)$; <u>AB</u> spin-system, near to the \underline{A}_2 limiting case $(\underline{\delta}\underline{A} \cong \underline{\delta}\underline{B})$. ⁱ Total intensity of the overlapping multiplets: 10H.

In the conformation of the <u>erythro</u> isomer containing the <u>O</u>-benzoyl group in the <u>anti</u> position relative to the isoquinoline skeleton, the CH₂OH group is subjected to the anisotropic shielding effect of the aromatic ring;^{20a} accordingly, the upfield shift (3.70 ppm) of the corresponding signal (H- β) in the spectrum of <u>ob</u> as compared with that (4.06 ppm) for <u>b</u> affords further evidence in support of the suggested configurations.

In the compounds containing an azetidine ring (112, b) and 122, b), the NMR data prove the configurations unambiguously. The presence of the acyl group in the benzoyl derivatives 122, b is clearly shown by the IR carbonyl bands $(122, 1705, 12b; 1715 \text{ cm}^{-1})$ and by the ¹H and ¹³C NMR signals of the aromatic ring.

The upfield shifts, mainly of the C-1 and C- α signals, but to a lesser extent of the C-4a and C-8a signals too, in <u>lla</u> and <u>l2a</u> relative to those in <u>llb</u> and <u>l2b</u> indicate a more crowded steric structure, <u>i.e</u>. the <u>cis</u> configuration of H-1 and H- α (steric compression shift²¹). A noteworthy feature is the extensive shielding of the methylene carbon in the azetidine ring adjacent to the nitrogen; this is also a consequence of the field effect, and can be explained by the strong steric hindrance between $H-\alpha$ and H-4.

Table 2. ¹³C NMR chemical shifts ($\delta_{TMS} = 0$ ppm) for compounds 2a, 2a, 2a, 6a,b, $\frac{1}{2}a$,b and $\frac{1}{2}a$,b in CDCl₃ solution at 20.15 MHz^{a,28}

Com- pound ^b	C-1	C-3	C-4	C-4a	C-8a	C-5,8	C-6,7	OCH3(6,7)	C _{øk}	Cم	Cթ
2 <u>a</u>	168.6	46.1	25.6	121.3	131.7	109.5 110.9	147.9 151.5	55.9	56.4	45.1	62.7	7 ^C
≩₽	58.2	42.4	29.4	128.2 ^d	128.4 ^d	108.9 112.0	147.6 ^C	55.9	56.1	45.6	62.3 ^e	64.3 ^e
≨₫	57.6	42.4	29.4	128.1 ^d	128.8 ^d	109.8 112.8	147.9 148.0	56.0	56.3	44.0	62.4 ^e	63.6 ^e
ĕ₽ ^ſ	56.7	42.0	29.3	128.2 ^d	128.9 ^d	110.1 112.7	147.9 148.1	56.0	56.3	44.2	61.7 ^e	64.4 ^e
<u>11</u> 2	61.5 ^g	43.4	21.9	125.9	127.2	110.6 111.6	147.3 147.4	55.45	55.53	38.5	61.5 ^g	49.2 ^h
<u>11</u>	61.5	44.8	22.5	126.1	129.5	109.3 111.7	147.4 148.1	55.67	55.72	43.5	64.3	48.7 ^h
l2ªt	61.7	43.6	21.8	125.7	127.4	110.3 111.8	147.5 147.6	55.2	55.4	35.6	63.5	48.7 ^h
125 ^f	62.2	45.1	22.7	126.7	129.8	109.1 112.0	147.6 148.3	55.6	55.9	40.6	67.3	48.6 ^h

a At 62.89 MHz for 2a and 2a. ^b Assignments were proved in all cases by DEPT measurements. ^C Two overlapping lines. ^{d,e} Assignment may be reversed. ^f Aromatic C-1'—C-6' lines ($\underline{6a}, \underline{b}, \underline{12a}, \underline{b}$) 127.8-133.1 ppm. ^g Two overlapping lines, proved by proton-coupled spectrum. ^h Methylene (C₆') carbon of the azetidine.

The proton resonance spectra also support the configurations. The H-l,H- α vicinal coupling constants for <u>lla</u> and <u>l2</u> are larger than 7 Hz, while for the isomers <u>llb</u> and <u>l2b</u> they are about 3 Hz. Corresponding to the dihedral angle of 0° and in accordance with the Karplus relation²² for four-membered cycles,^{20b} <u>jcis > jtrans</u>. Thus, the <u>cis</u> position of H-l and H- α relative to the azetidine ring in <u>lla</u> and <u>l2a</u> also follows from these data.

Definitive evidence is provided by the signals of the hydrogen of the exocyclic methylene group attached to the benzoyloxy group (in 122 an upfield shift of almost 1 ppm is observed as compared with the isomeric counterpart), and also by the H- \ll signal, which changes in the opposite sense (in 12b a shielding greater by about 0.6 ppm was observed). This is due to the anisotropic effect of the fused benzene ring, acting on the methylene group situated above the plane of the ring in the <u>cis</u> isomer 12a, and on the H- \ll atom in the similar position in 12b.

X-Ray analysis of llg and llb

X-Ray analysis of diastereomers $\underline{l}\underline{l}\underline{a}$ and $\underline{l}\underline{b}$ was undertaken not only to distinguish between them, $\underline{i} \cdot \underline{e}$. to determine the relative configurations at the chiral centres, C(9b) and C(1), but also to clarify the effects of the different orientations of the 1-CH₂OH group on the conformation of the four-membered azetidine ring, fused to the isoquinoline heterocycle by the common nitrogen atom [N(3)] and the adjacent carbon atom [C(9b)]. A perspective view of the molecules $\underline{l}\underline{l}\underline{a}$ and $\underline{l}\underline{l}\underline{b}$ (Figure 2), computed from the final fractional atomic coordinates given with their e.s.d.'s in Table 3, 2^3 reveals a <u>cis</u> relative configuration in $\underline{l}\underline{l}\underline{a}$ and a <u>trans</u> configuration in $\underline{l}\underline{l}\underline{b}$ (the torsional angles of H(1) and H(9b) about the C(1)-C(9b)bond are -10.5 and 92.6°, respectively). As shown by the exocyclic torsional angles $[\underline{l}\underline{l}\underline{a}/\underline{l}\underline{l}\underline{b}$: C(10)-C(1)-C(2)-N(3): 133.7(3)/-99.3(3)°; C(10)-C(1)-C(9b)-N(3): -130.9(3)/100.4(3)°], the 1-CH₂OH group is <u>pseudo-equatorially</u> oriented to the azetidine ring in $\underline{l}\underline{l}\underline{a}$, whereas it is <u>pseudo-axial</u> in $\underline{l}\underline{l}\underline{b}$. This is accompanied by a somewhat larger puckering of the four-membered ring in $\underline{l}\underline{l}\underline{b}$ [the mean torsional angle being 16.2(2)°] than in $\underline{l}\underline{l}\underline{a}$ [11.2(2)°], which, through the <u>cis</u> B/C ring junction compels the distorted ${}^{5}H_4({}^{5}S_4)$ half-chair shape of ring B ($\underline{l}\underline{l}\underline{a}$) to change towards an E_4 -envelope conformation ($\underline{l}\underline{l}\underline{b}$). The puckering²⁴ parameters of the B rings are as follows:

ring B	<u>11</u>	<u>11</u>
Q(Å)	0.458(3)	0.403(3)
8(⁰)	61.3(4)	54.9(4)
ų(°)	82.6(4)	71.4(4)

Table 3. Fractional coordinates for non-hydrogen atoms, with their e.s.d.'s in parentheses, in 120 and 120

		<u>11</u>			<u>11</u> 5	
Atom	x/a	y/b	z/c	x/a	y/b	z/c
0(7)	-0.0142(1)	-0.1350(2)	-0.2158(2)	0.9420(1)	0.3775(2)	0.2878(2)
0(8)	0.0930(1)	-0.0422(2)	-0.3637(2)	0.8804(1)	0.5443(2)	0.0591(2)
0(10)	0.3798(1)	0.3402(2)	0.2033(2)	0.5707(1)	0,6585(2)	0.0378(2)
N(3)	0.4257(1)	-0.0784(2)	0.2465(2)	0.6281(1)	0.5322(2)	0.5204(2)
C(1)	0.4167(1)	0.1146(2)	0.1512(2)	0.6044(1)	0.4836(2)	0.2643(3)
C(2)	0.4384(2)	0.0579(3)	0.3076(3)	0.5870(1)	0.4078(3)	0.4298(3)
C(4)	0.3642(2)	-0.1682(3)	0.2992(3)	0.6733(1)	0.4867(3)	0.6629(3)
C(5)	0.2597(2)	-0.1214(3)	0.2626(3)	0.7305(1)	0.3690(3)	0.6208(3)
C(5a)	0.2169(1)	-0.0974(2)	0.0959(2)	0.7691(1)	0.4218(2)	0.4722(2)
C(6)	0.1190(1)	-0.1260(2)	0.0206(3)	0.8390(1)	0.3750(2)	0.4540(2)
C(7)	0.0797(1)	-0.1068(2)	-0.1317(3)	0.8745(1)	0.4172(2)	0.3170(3)
C(8)	0.1388(1)	-0.0565(2)	-0.2127(2)	0.8408(1)	0.5102(2)	0.1911(2)
C(9)	0.2352(1)	-0.0295(2)	-0.1393(2)	0.7728(1)	0.5580(2)	0.2096(2)
C(9a)	0.2753(1)	-0.0501(2)	0.0157(2)	0.7366(1)	0.5150(2)	0.3503(2)
С(9ь)	0.3833(1)	-0.0252(2)	0.0908(2)	0.6625(1)	0.5742(2)	0.3641(2)
C(10)	0.3467(2)	0.2283(2)	0.1104(3)	0.5480(1)	0.5872(3)	0.1854(3)
C(11)	-0.0716(2)	-0.2066(3)	-0.1454(3)	0.9783(1)	0.2818(4)	0.4082(4)
C(12)	0.1525(2)	-0.0146(3)	-0.4545(3)	0.8508(1)	0.6429(3)	-0.0681(3)

Within experimental error (36 criterion), the corresponding bond lengths and angles agree well showing the excellent internal consistency of the two structure determinations. There is only one angle [C(10)-C(1)-C(9b)] which differs significantly. The larger angle $[120.0(3)^{\circ}]$ in \underline{lla} vs. 114.3(3)^{\circ} in \underline{llb} can be attributed to the unfavourable promixity of the protons of C(10) and C(9a) [the C(10)-C(1)-C(9b)-C(9b)-C(9a) angle of -11.5(3)^{\circ} indicates almost eclipsed C(10) and C(9a) and C(9a) atoms], which opens the angle accordingly.

5144

Figure 2. A perspective view of the molecular structures of $\underline{l}\underline{l}\underline{s}$ and $\underline{l}\underline{l}\underline{b}$ with atomic numbering. The bare numbers are for carbon atoms unless indicated otherwise. The hydrogen atoms are shown but not labelled. For structure $\underline{l}\underline{l}\underline{b}$, only the rings and the differently oriented CH₂-OH moiety are numbered.

In each structure the hydroxy group forms an intermolecular hydrogen-bond with the acceptor N(3), which has pronounced pyramidality.

			DA	ΗΑ	DHA
llą	O(10)-H(10)N(3)	$(1-x,\frac{1}{2}+y,\frac{1}{2}-z)$	2.826(2) 🎗	1.893(2) 🖁	176.0(2) ⁰
<u>11</u>	0(10)-H(10)N(3)	$(x, \frac{3}{2}-y, \frac{1}{2}+z)$	2.850(2) A	1.838(2) A	164.2(2) ⁰

EXPERIMENTAL

IR spectra were run in KBr discs on a Specord-75 (JENA) grating spectrometer (12a,b) or on a Bruker IFS-113v FT spectrometer (all other compounds) equipped with an Aspect 2000 computer.

an Aspect 2000 computer. The NMR spectra were recorded in 5 or 10 mm tubes at room temperature on a Bruker WM-250 FT (¹H spectra and, for 2a and 3a, ¹³C spectra) or a WP-80 SY FT spectrometer (¹C spectra for 6a,b, 11a,b and 12a,b), controlled by an Aspect 2000 computer, at 250.13 MHz (⁴H) and 62.89 or 20.14 MHz (¹³C) in CDC13 solution, using the deuterium signal of the solvent as the lock and TMS as internal reference. The most important measuring parameters for the ¹H and ¹³C NMR spectra were as follows: sweep width: 5 and 16 or 5 kHz, pulse width: 1 (¹H) and 7 or 3.5 (¹³C) μ s (ca. 20⁰ and 30^o flip angle), acquisition time 1.64 and 1.05 or 1.64 s, number of scans: 16 and 1-8 K, computer memory: 16 K. Lorentzian exponential multiplication for signalto-noise enhancement (LB 0.7 and 1.0 Hz) and complete proton noise decoupling (ca. 1.5 or 3 W) for ¹³C measurements were applied.

<u>Benzoylation of isoquinolines 3a, 6a and 6a (Method A)</u>

The isoquinoline derivative 3a, 6a or 6b (0.02 mol) was acylated with benzoyl chloride (0.11 mol) in the presence of sodium hydroxide (0.15 mol for 3a, and 0.25 mol for 6a, b) by the Schotten-Baumann method. After drying and concentration of the benzene extract, trituration of the residue with ether gave 7a and 7b, respectively, as crystalline compounds.

<u>N $\rightarrow 0$ acyl migration in N-benzoyl derivative</u> 4 (Method B)

Compound 4 (7.45 g; 0.02 mol) was suspended in ethanol (50 ml), and ethanol containing 20% dry hydrogen chloride (10 ml) was added. Refluxing of the mixture for about 15 min gave a clear solution, which was refluxed for 1 h and then allowed to stand at room temperature. The product (<u>6a</u>) which deposited was filtered off and

washed with ethanol. The mother liquor was concentrated to 15 ml and stored at room temperature overnight. The precipitated product <u>6b</u> was collected by filtration. After evaporation of the mother liquor and recrystallization of the residue from a mixture of ethanol and ether, compound <u>3a</u>.HCl, formed by intermolecular transesterification was isolated, m.p. 212-214 °C.

$OH \rightarrow C1$ exchange in §a and §b (Method C)

The hydrochloride <u>6a</u> or <u>6b</u> (4.08 g; 0.01 mol) was mixed with thionyl chloride (5 ml) during cooling in an ice-bath. The reaction mixture was left to stand for 4 h at room temperature with occasional shaking. It was then concentrated under reduced pressure, and the evaporation was repeated several times with the addition of benzene. Trituration of the residue with acetone gave crystalline <u>2a</u> and <u>2b</u>, respectively.

Com-	М.р., ^о С	M.p. of HCl	Mathod	Yield	Formula	Calcd./Found %			
pound	Solvent	salt ^a , ^o C	methou	×	М.w.	C	н	N	
4	163-164 methanol	-	A	95	C ₂₁ H ₂₅ NO ₅ 371.42	67.90 67.78	6.78 6.91	3.77 3.93	
§₽	103-104 ether	215-216	В	64	C ₂₁ H ₂₆ C1NO ₅ 407.89	61.83 61.78	6.43 6.55	3.43 3.60	
₫₫	102-103 ether	182-184	В	22	C ₂₁ H ₂₆ C1NO ₅ 407.89	61.83 61.22	6.43 6.74	3.43 3.63	
<u>7</u> a	136-137 benzene	-	A	90	^C 28 ^H 29 ^{NO} 6 475.52	70.72 70.90	6.15 6.25	2.95 2.98	
<u>7</u> ₽	142-143 benzene	-	Α	89	^C 28 ^H 29 ND 6 475.52	70.72 70.90	6.15 6.33	2.95 3.02	
₿		172-174	В	96 ⁰ 92 ^d	C ₂₈ H ₃₀ C1NO ₆ 511.99	65.68 65.43	5.91 6.14	2.74 2.63	
2a	118-120 ether	198-199	С	97	C ₂₁ H ₂₅ C1 ₂ NO ₄ 426.33	59.16 59.34	5.91 6.18	3.29 3.44	
2₽	e	135-137	С	89	^C 21 ^H 25 ^{C1} 2 ^{NO} 4 426.33	59.16 59.29	5.91 5.99	3.29 3.49	
<u>10a</u>	-	216-217	D	96	C ₁₄ H ₂₁ C1 ₂ NO ₃ 322.23	52.18 52.68	6.57 6.56	4.35 4.48	
<u>10</u> 5	-	205-206	D	85	C ₁₄ H ₂₁ Cl ₂ NO ₃ 322.23	52.18 52.68	6.57 6.64	4.35 4.23	
<u>11a</u>	140-142 benzene	216-218	E	93	C ₁₄ H ₂₀ C1NO ₃ 285.77	58.84 58.59	7.05 7.27	4.90 4.67	
<u>11</u>	123 ether	174	E	86	C ₁₄ H ₂₀ C1NO ₄ 285.77	58.84 58.39	7.05 6.78	4.90 4.72	
<u>12</u>	78-81 ether	172-174	E	86	C ₂₁ H ₂₄ C1NO ₄ 389.87	64.69 64.45	6.20 6.41	3.59 3.65	
120	96-98 ether	179-101	Ε	91	C ₂₁ H ₂₄ C1NO ₄ 389.87	64.69 64.50	6.20 6.62	3.59 3.47	

Table 4. Analytical data on isoquinolines $\frac{4}{2}$ and $\frac{6}{2}$

^a All HCl salts were recrystallized from ethanol-ether. ^b Analyses are given for HCl salts. The bases, obtained from the hydrochlorides with Na₂CO₃, also gave satisfactory microanalyses. ^C From <u>7a</u>. ^d From <u>7b</u>.
 ^e When the free base was formed from <u>2b</u>.HCl, it underwent conversion to the corresponding azetidine <u>12b</u>.

5146

Hydrolysis of benzyloxy derivatives 2g and 2b (Method D)

Compound <u>2a</u> or <u>2b</u> (4.26 g; 0.01 mol) was refluxed in a mixture of 15% aqueous hydrochloric acid (30 ml) and ethanol (20 ml) for 6 h. Water (100 ml) was added and the reaction mixture was concentrated to 50 ml, whereupon benzoic acid sublimed in needles. Product <u>10a</u> or <u>10b</u> crystallized from the residue when this was left to stand at room temperature.

Conversion of 2a and 10 into azeto [2,1-a] isoquinolines (11 and 12) (Method E)

Compound 2a or the hydrochloride of 10a or 10b (3.2 g; 0.01 mol) was refluxed in methanol (50 ml) containing sodium hydroxide (0.4 g; 0.01 mol) for 3 h. After evaporation to dryness, the residue was dissolved in boiling ethanol (100 ml) and the solution was filtered. When the filtrate was left to stand for a few hours, the hydrochloride of 11a,b or 12a,b separated out.

X-Ray crystal structure determination of 11a

Crystal data: Cy Hg NO3, M = 249.31, monoclinic, a = 14.480(1), b = 10.090(1), c = 9.387(1) Å, β = 108.53(1), U = 1300.4(4) Å³, D = 1.273 g.cm⁻³, ζ = 4, F(000) = 536, space group P24/c, μ = 6.9 cm⁻¹ for Cu-K_a radiation (λ = 1.54184 Å). Intensities of 2440 unique reflections were collected on an Enraf-Nonius CAD-4 diffractometer in the range 1.5 < 0 < 75.0 by an ω -20 scan, using graphite mono-chromated Cu-Ka radiation. Cell constants were determined by least squares refinechromated Lu-Kw radiation. Leli constants were determined by least squares refine-ment of 25 reflections. Three standard reflections were monitored in every hour and showed no significant decrease during the exposure. After data reduction, 2080 reflections with I-3.06(I) were taken as observed. The phase problems were solved by direct methods using the MULTAN 82 program.¹⁵ In the course of the isotropic least squares refinement of the positional parameters of non-hydrogen atoms, an empirical absorption correction was calculated with the DIFAB5⁶⁶ program. The minimum and maximum corrections were 0.8142 and 1.2975. The fractional coordinates of H atoms bound to corbon atoms were dependent from assumed geometries while that minimum and maximum corrections were 0.8142 and 1.29/5. The fractional coordinates of H atoms bound to carbon atoms were generated from assumed geometries, while that of the 0H group was located in a difference Fourier map. The hydrogen positions were only included with a mean isotropic temperature factor (fixed as the Bee of the adjacent atom +1 Å²) in the structure factor calculation. Final R = 0.053, $R_W = 0.062$, $R_{LeC} = 0.062$, S = 5.46, $w = [6^2 (F_o) + 0.25 (pF_o)^2]^{-1}$, where p = 0.01. The highest peak in the final difference Fourier map was 0.39 e.Å³. Scattering factors were taken from standard tables.⁴ All calculations were performed on a PDP 11/34 minimum standard tables.⁴ All calculations were performed on a PDP 11/34 minicomputer with the use of the SDP system of Enraf-Nonius with local modifications.

Crystal structure determination of 11b

<u>Crystal data</u>: C44 HasND₃, M_P = 249.31, monoclinic, <u>a</u> = 19.142(1), <u>b</u> = 8.482(1), <u>c</u> = 8.029(1) A, <u>o</u> = 92.70(1), U = 1302.2(4) A³, D_c = 1.272 g.cm⁻³, Z = 4, F(000) = 536, space group P2₁/c, μ = 6.9 cm⁻⁴ for Cu-K_{cc} radiation.

by the space group F2/(C, $\mu = 6.9$ cm⁻¹ for CU-K₀ radiation. Data collection, structure determination and refinement were basically similar to those for 11a. Of 2572 unique reflections, 2461 were taken as observed with I>3.06(I). MULTAN 82, minimum and maximum absorption corrections: 0.0278, 1.4967. H positions were only included with a mean isotropic temperature factor in the SF calculations. Full matrix refinement, $\leq w(AF)$ minimized for 163 parameters. Final R = 0.054, R_w = 0.056, R_{tot} = 0.056, S = 13.48, w = $\{1+[(F_0-5)/43]^{4}\}^{2}$. The highest peak in the final difference Fourier map was 0.28 e.A⁻³.

REFERENCES AND NOTES

- Part 99/103: A. Kálmán, Gy. Argay, P. Sohár, J. Szabó, L. Fodor, G. Bernáth, J. Mol. Struct., submitted for publication. Part of this work was presented in a lecture by G. Bernáth, F. Fülöp, J. Kóbor, J. Lázár, G. Motika, P. Sohár, Gy. Argay, A. Kálmán at "The Third International Kyoto Conference on New Aspects of Organic Chemistry", November 18-22, 1985, Kyoto, Japan. See: Abstract p. 208.
 A. Kleman, J. Engel, "Pharmazeutishce Wirkstoffe", 2. Aufl. Georg Thieme Verlag, Stuttgart, 1982.
 F. Schaumann, U. Wride, G. Adjwidiaja, Chem. Ber. 117, 2205 (1984)

- 3. E. Schaumann, U. Wride, G. Adiwidjaja, <u>Chem. Ber</u>., <u>117</u>, 2205 (1984). 4. D. R. Shridhar, B. Ram, V. L. Narayana, A. K. Awasthi, G. J. Reddy, <u>Synthesis</u>, 1984, 846. 5. M. Miyake, N. Tokutake, M. Kirisawa, <u>Synth. Comm., 14</u>, 353 (1984). 6. A. K. Bose, J. C. Kapur, S. D. Sharma, M. S. Manhas, <u>Tetrahedron Letters, 1978</u>,
- 6. A. K. 2319.

- 7. J. Finkelstein, K. G. Holden, C. D. Perchonock, Tetrahedron Letters, 1978, 1629.

- 1629.
 8. Bristol Myers Co. Fr. Pat., 1,580,899; Chem. Abstr., 73, 14718 (1970).
 9. A. J. Bose, U.S. Pat., 3,546,211; Chem. Abstr., 74, 125468 (1971).
 10. J. Kóbor, F. Fülöp, G. Bernáth, Heterocycles, accepted for publication; G. Bernáth, J. Kóbor, F. Fülöp, E. Ezer, Gy. Hajós, E. Pálosi, L. Dénes, L. Szporny, Eur. Pat., EP 143,333; Chem. Abstr., 103, 215202 (1985).
 11. L. Grethe, Isoquinolines, Part 1. In series of the Chemistry of Heterocyclic Compounds, Vol. 38 (Eds. A. Weissberger, E. C. Taylor), John Wiley, New York, 1981 p. 120 1981. p. 120.
- Bernáth, K. Kovács, K. L. Láng, <u>Tetrahedron Letters</u>, <u>1968</u>, 2713.
 G. Bernáth, K. L. Láng, Gy. Göndös, P. Márai, K. Kovács, <u>Tetrahedron</u> <u>Letters</u>,
- <u>1968,</u> 4441. 14. G. Bernáth, K. Kovács, K. L. Láng, <u>Acta Chim. Acad. Sci</u>. <u>Hung</u>., <u>65</u>, 347 (1970)

- L. V. Pavlova, F. Yu. Rachinskii, <u>Usp. Khim.</u>, <u>37</u>, 1369 (1968).
 L. V. Pavlova, F. Yu. Rachinskii, <u>Usp. Khim.</u>, <u>37</u>, 1369 (1968).
 M. D. Rozwadowska, Przegrupowiani a zwiazane z migracyj grupy acylowey. Universitet im Adama Miczkiewicza w Poznanin. Seria Chemia NR 24, Poznan, 1977.
 G. Bernáth, K. L. Láng, Gy. Göndös, P. Márai, K. Kovács, <u>Acta Chim</u>. (Budapest), <u>74</u>, 479 (1972).
 J. Kóbor, <u>Szegedi</u> <u>Tanárképző Főisk</u>. <u>Tud. Közl.</u>, <u>1973</u>, 119; <u>Chem</u>. <u>Abstr.</u>, <u>103</u>, 47808 (1974).
- Bernáth, J. Kóbor, F. Fülöp, A. Kálmán, P. Sohár, E. Ezer, Gy. Hajós, L. Dénes, L. Szporny, É. Pálosi, <u>Ger</u>. <u>Pat</u>., DE 3,439,157; <u>Chem</u>. <u>Abstr</u>., <u>103</u>, 160404 (1985).
- P. Sohár, Nuclear Magnetic Resonance Spectroscopy, CRC Press, Boca Raton, Florida, 1983-84. a) Vol. 1, pp. 35-38, b) Vol. 2, pp. 19, 20.
 D. M. Grant, B. V. Cheney, J. Am. Chem. Soc., 82, 5315 (1967).
 M. Karplus, J. Chem. Phys., 30, 11 (1959).
 H atom coordinates, together with the anisotropic vibrational parameters for

- both structures, have been deposited at the Cambridge Crystallographic Data Centre.
- D. Cremer, J. A. Pople, J. Am. Chem. Soc., <u>97</u>, 1354 (1975).
 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, M. M. Woolfson, MULTAN 82. A System of Computer Programs for the Automatic Solution of Crystal Structure from X-ray Diffraction Data. Univs of York,
- Solution of Crystal Structure from X-ray Diffraction Data. Univs of York, England and Louvain, Belgium (Adapted for use on the PDP-11/34 minicomputer).
 26. N. Walker, D. Stuart, <u>Acta Cryst.</u>, <u>A39</u>, 158 (1983).
 27. International Tables for X-ray Crystallography, Vol. III. Birmingham: Kynoch Press (1962) (Present distributor: D. Reidel, Dordrecht).
 28. In Tables 1 and 2 the isoquinoline numbering (see: 3 in Scheme 1) is used for the azeto/2,1-a/isoquinoline derivatives 11a,b and 12a,b in order to allow easier comparison of the corresponding 'H and 'C lines in the two series, <u>i.e.</u> H-9b, H-4, H-5, H-6 and H-9 in the azeto/2,1-a/isoquinolines <u>11-12</u> correspond to the H-1, H-3, H-4, H-5 and H-8 signals of the isoquinolines <u>2a</u>, <u>3a</u>, <u>6a</u> and <u>6b</u>. As concerns the X-ray investigations, the IUPAC numbering of azeto/2,1-<u>a</u>/-isoquinolines (Fig. 2) is applied for <u>11a</u> and <u>12b</u>.