

Tetrahedron 55 (1999) 12059-12068

TETRAHEDRON

Model Studies Related to CP-225,917: Stereocontrolled Generation of the Quaternary Center

Derrick L. J. Clive* and Junhu Zhang

Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received 5 July 1999; accepted 12 August 1999

Abstract The enolate derived from ester 15 reacts with diketone 10 stereoselectively (10:1), and the major isomer can be converted into lactone 21. This rearranges in boiling 1,2-dichlorobenzene to afford the tricyclic lactone 22, a model compound which shares with CP-225,917 (1) the bridgehead double bond, the C(5) quaternary center, a C(5) side chain of correct length, and the γ -lactone subunit. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Aldols; bridgehead chemistry; lactones; oxy-Cope rearrangements

The complex natural product CP-225,917 (1),^{1,2} which is an inhibitor of Ras farnesyl transferase,³ has attracted much attention as a synthetic target, and several model studies have been reported,⁴ as well as one total synthesis⁵ of the racemic compound. Our own approach^{4d,m} is based on oxy-Cope rearrangement, and was

initially illustrated^{4d} by the anionic version $2 \rightarrow 3$. This process turned out not to be general, and did not work when the ethylidene unit of 2 was modified by chain extension. We found, however, that corresponding

*e-mail: derrick.clive@ualberta.ca

siloxy-Cope rearrangements could be accomplished thermally, provided N-methylpyrrolidone was used as the solvent and, under these conditions, even substituted compounds such as 4 rearranged $(4 \rightarrow 5)$,^{4m} the presumed intermediate being hydrolyzed *in situ* so as to afford the ketone directly, as shown in Eq 2. We also found^{4m} that conformational effects engendered by substitution at C(3), as in 6, could speed up the rearrange-

ment, and very significant rate enhancements were obtained with lactones such as 7. In the latter case the presence of the lactone ring imposes some strain on the starting structure.^{4k,m}

Our most advanced model was 8 (Eq 3); it led^{4m} to a rearranged product 9 having a quaternary C(5), which is a feature of the natural product. Unfortunately, the route to 8 was not stereocontrolled, since a key step — reaction of 10 with the dianion derived from 11 (see Eq 4) — gave two isomers (12a,b) of undetermined stereochemistry, and only the major one (39% yield) could be taken further, the minor isomer

(29% yield) being discarded. Here we report a modified approach (Scheme 1) that overcomes this problem, and gives, in the corresponding condensation (see $10 \rightarrow 16a,b$ Scheme 1), a much improved isomer ratio (10:1). Our modified route also has the advantage of providing a side chain of correct length (*cf.* 22 and 1) at C(5).

Diketone 10, which is readily available^{4m} from 13^{4d} (Scheme 1) by α -hydroxylation ($13 \rightarrow 14$, LDA, THF, -23 °C; MoO₅.py.HMPA⁶; 85%, or 91% after correction of recovered 13) and oxidation (Dess-Martin

reagent;⁷ CH₂Cl₂, 95%), was added to the enolate derived (LDA, THF, -78 °C) from the protected ester 15. Reaction occurred smoothly and with much greater stereoselectivity than in the case of the related process 10 \rightarrow 12a,b. Two hydroxy ketones corresponding to 16a,b (major, 80%; minor 8%) were isolated. The stereochemistry of the isomers was not established, and it is not clear why the selectivity is so much higher than that observed with 11, although several contributing factors can be identified. The reagent from 11 is a dianion, while that from 15 is a monoanion and is also bulkier; hence differences in size, in polarity, or in the state of aggregation — each of which could influence the direction of approach to the carbonyl — may play a role. The major hydroxy ketone (16a)⁸ was dehydrated (SOCl₂, pyridine, room temperature) to afford the (Z) keto ester 17 (90%). Reduction⁹ (NaBH₄, CeCl₃.7H₂O, MeOH, 0 °C to room temperature) gave *exo* alcohol

Scheme 1

R3SiO = t-BuPh2Si. (a) LDA, THF, -78 °C, 1h; MoO5.py.HMPA, -23 °C, 30 min; 85% or 91% after correction for recovered 13. (b) Dess-Martin reagent, CH₂Cl₂, 30 min; 95%. (c) LDA, THF, -78 °C, compound 15, 1 h; add diketone 10, 15 min; 80% yield of 16a, 8% yield of 16b. (d) SOCl₂, pyridine, 3 h; 90%. (e) NaBH4, MeOH, CeCl₃.7H₂O; 22% yield of 18, 65% yield of 19. (f) Dess-Martin reagent, CH₂Cl₂, 30 min; 98%. (g) PrSLi, HMPA, 2 h; 81%. (h) Et₃N, 2-chloro-1-methylpyridinium iodide, reflux, 36 h; 85%. (i) 1,2-dichlorobenzene, reflux, 20 min; 100%.

19 (65%) and the *endo* isomer 18 (22%). The latter could be oxidized (Dess-Martin reagent, 98%) back to ketone 17. Demethylation (PrSLi,¹⁰ HMPA, room temperature, 2 h; 81%) of ester 19 afforded the corresponding hydroxy acid 20, which was correctly set up for lactonization ($20 \rightarrow 21$). This was accomplished by warming with 2-chloro-1-methylpyridinium iodide¹¹ (CH₂Cl₂, reflux, 36 h; 85%). Finally,

rearrangement was induced by heating the lactone in degassed, refluxing *o*-dichlorobenzene for 20 min. Under these conditions the desired rearrangement product 22 was obtained in quantitative yield.

These experiments illustrate a route, based on siloxy-Cope rearrangement, that affords a tricyclic model that shares with CP-225,917 the bridgehead double bond, the C(5) quaternary center, a C(5) side chain of correct length, and the γ -lactone subunit.

Experimental section

General Procedures.

Unless stated to the contrary, the following conditions apply: Reactions were carried out under a slight static pressure of Ar that had been purified by passage through a column (3.5 x 42 cm) of R-311 catalyst¹² and then through a similar column of Drierite. All solvents for reactions were dried, as described below. Glassware was dried in an oven for at least 3 h before use (120 °C) and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a slight static pressure of Ar. Reaction mixtures were stirred by Teflon-coated magnetic stirring bars.

Solvents used for chromatography was distilled before use.

Products were isolated from solution by evaporation under water aspirator vacuum at room temperature, using a rotary evaporator.

Microliter syringes were washed with water and acetone, using a suction device to draw the solvents through. Then air was sucked through for 1 min. The solution to be dispensed was drawn up and expelled, and this operation was repeated several times before drawing up the sample to be used.

Commercial thin layer chromatography (TLC) plates (silica gel, Merck 60F-254) were used. Spots were detected by spraying the plate with a solution of phosphomolybdic acid,¹³ followed by charring on a hot plate, or by examination under UV light. Silica gel for flash chromatography was Merck type 60 (230-400 mesh).

Dry solvents were prepared under an inert atmosphere and transferred by dry syringes fitted with ovendried needles. Dry THF was distilled from sodium benzophenone ketyl. Dry Et₃N, *i*-Pr₂NH, CH₂Cl₂, and pyridine were distilled from CaH₂. HMPA was distilled from CaH₂ under reduced pressure (oil pump), and kept under an Ar atmosphere over molecular sieves. All other solvents were used as purchased. Commercial (Aldrich) solutions of *n*-BuLi (in hexanes) were assumed to have the stated molarity.

FT-IR measurements were recorded on a Nicolet 7000 FTIR instrument. Measurements were made as casts from the specified solvent using potassium bromide plates.

The symbols s', d', t', and q' used for ¹³C NMR signals indicate 0, 1, 2, or 3 attached hydrogens, respectively, which are assigned based on the APT experiment.

Compounds isolated by flash chromatography were homogeneous by TLC and, unless otherwise stated, were pure as judged by high field ¹H NMR spectra.

(1a,3β,4a,7R*)-7-Ethenyl-3-hydroxy-7-[(triethylsilyl)oxy]bicyclo[2.2.1]heptan-2-

one (14). A solution of ketone 13^{4d} (500.8 mg, 1.880 mmol) in THF (10 mL, plus 2 x 0.6 mL as a rinse) was added dropwise to a stirred and cooled (-78 °C) solution of LDA [prepared by addition of *n*-BuLi (2.5 M in hexane, 1.0 mL, 2.5 mmol) to a stirred and cooled (0 °C) solution of (i-Pr)₂NH (330 µL, 2.52 mmol) in THF

(5 mL), followed by stirring at 0 °C for 15 min]. The mixture was stirred at -78 °C for 1 h and then transferred to a dry ice/CCl₄ bath at -23 °C. Freshly prepared solid MoO₅.py.HMPA (1.464 g, 3.370 mmol) was added in one portion with vigorous stirring. Stirring at -23 °C was continued for 0.5 h, and the mixture was quenched with saturated aqueous Na₂SO₃ solution (10 mL). The coldbath was removed and, after ca. 10 min, the mixture was diluted with brine (20 mL), and extracted with Et₂O (2 x 50 mL). The combined organic extracts were washed with aqueous 5% HCl (10 mL) and brine (10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 x 28 cm), using 10% EtOAc-hexane, gave 14 [453.4 mg, 85% or 91% after correction for recovered starting material (35 mg)] as a colorless oil: FTIR (CH₂Cl₂ cast) 3428, 1758 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.58-0.65 (m, 6 H), 0.95 (t, *J* = 7.9 Hz, 9 H), 1.43-1.51 (m, 1 H), 1.89-2.02 (m, 2 H), 2.22-2.32 (m, 1 H), 2.42-2.48 (m, 1 H), 2.66 (d, *J* = 5.1 Hz, 1 H), 3.23 (br s, 1 H), 4.00 (dd, *J* = 4.8, 0.9 Hz, 1 H), 5.20 (dd, *J* = 17.7, 0.5 Hz, 1 H), 5.24 (dd, *J* = 10.7, 0.5 Hz, 1 H), 6.14 (dd, *J* = 17.7, 10.7 Hz, 1 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.7 (t'), 7.0 (q'), 18.6 (t'), 25.8 (t'), 50.1 (d'), 56.8 (d'), 75.4 (d'), 82.5 (s'), 118.7 (t'), 138.6 (d'), 217.5 (s'); exact mass (electrospray) *m*/z calcd for C₁₅H₂₆NaO₃Si (M + Na) 305.1549, found 305.1543. The stereochemistry was assigned by analogy to reference compounds having *exo* or *endo* hydroxyl groups.¹⁴

(Anti)-7-Ethenyl-7-[(triethylsilyl)oxy]bicyclo[2.2.1]heptan-2,3-dione (10). A solution of 14 (360.0 mg, 1.277 mmol) in CH₂Cl₂ (7 mL, plus 3 x 0.5 mL as a rinse) was added dropwise to a stirred solution of Dess-Martin reagent⁷ (700.0 mg, 1.660 mmol) in CH₂Cl₂ (8 mL). Stirring was continued for 0.5 h, and Et₂O (40 mL) was added, followed by saturated aqueous NaHCO₃ (20 mL) containing Na₂S₂O₃ (2.520 g). The mixture was stirred for 5 min, and extracted with Et₂O (100 mL). The organic extract was washed with saturated aqueous NaHCO₃ (10 mL), water (10 mL) and brine (10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 x 26 cm), using 5% EtOAc-hexane, gave 10 (339.6 mg, 95%) as a yellow solid: mp 38-41 °C; FTIR (CH₂Cl₂ cast) 1782, 1758 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.60-0.67 (m, 6 H), 0.96 (t, J = 7.9 Hz, 9 H), 1.68-1.75 (m, 2 H), 2.35-2.44 (m, 2 H), 3.01 (dd, J = 3.2, 2.5 Hz, 2 H), 5.24 (d, J = 17.7 Hz, 1 H), 5.32 (d, J = 10.8 Hz, 1 H), 6.13 (dd, J = 17.7, 10.8 Hz, 1 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.6 (t'), 7.0 (q'), 23.5 (t'), 58.7 (d'), 81.3 (s'), 120.7 (t'), 138.4 (d'), 200.6 (s'); exact mass (electrospray) m/z calcd for C₁₅H₂₄NaO₃Si (M + Na) 303.1392, found 303.1397.

Methyl 4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]butanoate (15). MeI (3.3 mL, 52 mmol) in dry DMF (6 mL) was added to a stirred solution of sodium 4-hydroxy-butanoate¹⁵ (1.01 g, 8.01 mmol) in DMF (22 mL). Stirring was continued for 24 h, and then imidazole (1.201 g, 17.62 mmol) was added, followed by t-BuPh₂SiCl (2.5 mL, 9.6 mmol). Stirring was continued for 12 h, and the mixture was diluted with EtOAc (70 mL), washed with water (5 x 35 mL) and brine (10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (3.2 x 28 cm), using 5% EtOAc-hexane, gave 15 (2.601 g, 91%) as a colorless oil: FTIR (CH₂Cl₂ cast) 1740 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 1.06 (s, 9 H), 1.85-1.93 (m, 2 H), 2.47 (t, J = 7.4 Hz, 2 H), 3.64 (s, 3 H), 3.71 (t, J = 6.1 Hz, 2 H), 7.37-7.47 (m, 6 H), 7.65-7.70 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 19.6 (s'), 27.2 (q'), 28.3 (t'), 30.9 (t'), 51.7 (q'), 63.4 (t'), 128.2 (d'), 130.1 (d'), 134.3 (s'), 136.0 (d'), 174.1 (s'); exact mass (electrospray) *m/z* calcd for C₂₁H₂₈NaO₃Si (M + Na) 379.1705, found 379.1702.

Methyl $(1\alpha, 4\alpha, 7R^*)$ -4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-3hydroxy-2-oxo-7-[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-yl]butanoate (16a and 16b). A solution of 15 (158.2 mg, 0.4437 mmol) in THF (0.2 mL, plus 2 x 0.1 mL as a rinse) was added dropwise to a stirred and cooled (-78 °C) solution of LDA in THF (0.5 mL) [prepared by addition of n-BuLi (2.5 M in hexane, 178 µL, 0.445 mmol) to a stirred and cooled (0 °C) solution of (i-Pr)2NH (58 µL, 0.44 mmol) in THF (0.5 mL), followed by stirring at 0 °C for 15 min]. Stirring at -78°C was continued for 1 h, and then diketone 10 (113.0 mg, 0.4040 mmol) in THF (0.4 mL, plus 2 x 0.2 mL as a rinse) was added dropwise. Stirring at -78°C was continued for 15 min, the mixture was quenched with saturated aqueous NH₄Cl (0.5 mL) and allowed to warm to room temperature over ca. 15 min. Water (0.5 mL) was added and the mixture was extracted with Et₂O (40 mL). The organic extract was washed with water (5 mL) and brine (5 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 x 28 cm), using 5% EtOAc-hexane, gave 16a (206.9 mg, 80%) and 16b (20.0 mg, 8%) as colorless oils. Compound 16a had: FTIR (CH₂Cl₂ cast) 3458, 1756, 1716 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.59-0.66 (m, 6 H), 0.96 (t, J = 7.9 Hz, 9 H), 1.06 (s, 9 H), 1.48-1.71 (m, 2 H), 1.80-1.88 (m, 1 H), 1.92-2.02 (m, 1 H), 2.15-2.34 (m, 3 H), 2.74-2.78 (m, 1 H), 2.86 (dd, J = 11.5, 2.8 Hz, 1 H), 3.50 (td, J = 10.2, 3.9 Hz, 1 H), 3.66 (s, 3 H), 3.70-3.76 (m, 1 H), 4.35 (s, 1 H), 5.16 (dd, J = 10.7, 0.7 Hz, 1 H), 5.18 (dd, J = 17.7, 0.7 Hz, 1 H), 6.33(dd, J = 17.7, 10.7 Hz, 1 H), 7.37-7.48 (m, 6 H), 7.64-7.69 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.8 (t'), 7.1 (q'), 19.4 (s'), 21.6 (t'), 23.3 (t'), 27.0 (q'), 31.3 (t'), 43.9 (d'), 52.3 (d') or (q'), 54.6 (d') or (q'), 56.7 (d') or (q'), 61.6 (t'), 80.4 (s'), 84.7 (s'), 116.9 (t'), 128.1 (d'), 130.1 (d'), 133.8 (s'), 133.9 (s'), 135.9 (d'), 136.0 (d'), 140.2 (d'), 176.9 (s'), 214.9 (s'); exact mass (electrospray) m/z calcd for C₃₆H₅₂NaO₆Si₂ (M + Na) 659.3200, found 659.3189.

Compound **16b** had: FTIR (CH₂Cl₂ cast) 3495, 1755 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.56-0.63 (m, 6 H), 0.94 (t, *J* = 7.9 Hz, 9 H), 1.02 (s, 9 H), 1.48-1.56 (m, 1 H), 1.80-1.95 (m, 2 H), 2.08-2.28 (m, 3 H), 2.57-2.65 (m, 1 H), 2.73-2.77 (m, 1 H), 3.01-3.07 (m, 2 H), 3.52-3.60 (m, 1 H), 3.63 (s, 3 H), 3.66-3.72 (m, 1 H), 5.20-5.26 (m, 2 H), 6.31 (dd, *J* = 17.7, 10.8 Hz, 1 H), 7.35-7.45 (m, 6 H), 7.61-7.67 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.7 (t'), 7.0 (q'), 19.4 (s'), 22.5 (t'), 22.6 (t'), 26.9 (q'), 29.6 (t'), 45.7 (d'), 52.1 (d') or (q'), 57.3 (d') or (q') 57.5 (d') or (q'), 62.2 (t'), 79.6 (s'), 84.2 (s'), 117.8 (t'), 128.0 (d'), 130.0 (d'), 134.08 (s'), 134.12 (s'), 135.9 (d'), 140.3 (d'), 174.9 (s'), 212.5 (s'); exact mass (electrospray) *m*/z calcd for C₃₆H₅₂NaO₆Si₂ (M + Na) 659.3200, found 659.3209.

Methyl $(1\alpha, 3Z, 4\alpha, 7R^*)$ -4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-2oxo-7-[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-ylidene]butanoate (17). SOCl₂ (118 µL, 1.62 mmol) was added dropwise to a stirred solution of 16a (206.0 mg, 0.3240 mmol) in pyridine (2 mL). Stirring was continued for 3 h. The mixture was cooled (0 °C), water (1 mL) was added dropwise, and the mixture was extracted with Et₂O (100 mL). The organic extract was washed with 5% hydrochloric acid (10 mL), saturated aqueous NaHCO₃ (10 mL), water (5 mL) and brine (10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 x 27 cm), using 5% EtOAc-hexane, gave 17 (180.3 mg, 90%) as a colorless oil: FTIR (CH₂Cl₂ cast) 1736, 1658 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.57-0.65 (m, 6 H), 0.96 (t, J = 7.9 Hz, 9 H), 1.05 (s, 9 H), 1.36-1.52 (m, 2 H), 2.11-2.28 (m, 2 H), 2.45-2.58 (m, 2 H), 2.61 (dd, J = 4.5, 1.3 Hz, 1 H), 2.77-2.78 (m, 1 H), 3.66 (s 3 H), 3.72 (t, J = 7.1 Hz, 2 H), 5.14-5.20 (m, 2 H), 5.93 (dd, J = 17.8, 10.7 Hz, 1 H), 7.38-7.48 (m, 6 H) 7.64-7.69 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.7 (t'), 7.1 (q'), 19.4 (s'), 23.2 (t'), 27.00 (q'), 27.04 (t'), 35.3 (t'), 49.3 (d') or (q'), 52.4 (d') or (q'), 57.7 (d') or (q'), 62.0 (t'), 84.5 (s'), 119.1 (t'), 128.1 (d'), 130.2 (d'), 132.6 (s'), 133.9 (s'), 136.0 (d'), 138.3 (d'), 141.8 (s'), 170.0 (s'), 200.8 (s'); exact mass *m/z* calcd for C₃₆H₅₀O₅Si₂ 618.3197, found 618.3190.

Methyl $(1\alpha,2\beta,3Z,4\alpha,7S^*)-4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-2-hydroxy-7-[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-ylidene]butanoate (18) and Methyl <math>(1\alpha,2\alpha,3Z,4\alpha,7S^*)-4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-2-hydroxy-7-$

[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-ylidene]butanoate (19). NaBH4 (14.8 mg, 0.391 mmol) was added in three portions to a stirred and cooled (0 °C) mixture of 17 (80.0 mg, 0.130 mmol) and CeCl_{3.7H2}O (72.8 mg, 0.195 mmol) in dry MeOH (2 mL). Stirring was continued for 0.5 h, the cooling bath was removed, and stirring was continued for 1.5 h. The mixture was diluted with EtOAc (5 mL) and water (1 mL), and extracted with EtOAc (30 mL). The organic extract was washed with brine (5 mL), dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel (1.6 x 28 cm), using 5% EtOAc-hexane, gave 18 (18.0 mg, 22%) and 19 (52.2 mg, 65%) as colorless oils. Compound 18 had: FTIR (CH₂Cl₂ cast) 3472, 1694, 1634 cm⁻¹; ¹H NMR (CD₂Cl₂, 360 MHz) δ 0.56-0.64 (m, 6 H), 0.95 (t, J = 7.8 Hz, 9 H), 1.05 (s, 9 H), 1.19-1.28 (m, 1 H), 1.76-1.86 (m, 1 H), 1.95-2.03 (m, 1 H), 2.06-2.16 (m, 1 H), 2.28 (t, J = 3.9Hz, 1 H), 2.56-2.72 (m, 3 H), 3.63-3.71 [m, including s (3 H) at δ 3.64, 5 H in all], 4.50 (br s, 1 H), 4.92 (d, J = 2.4 Hz, 1 H), 5.07 (dd, J = 10.8, 1.2 Hz, 1 H), 5.09 (dd, J = 17.7, 1.2 Hz, 1 H), 5.89 (dd, J = 1710.8 Hz, 1 H), 7.37-7.47 (m, 6 H), 7.65-7.71 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.8 (t'), 7.1 (q'), 19.3 (t'), 19.4 (s'), 27.0 (q'), 27.7 (t'), 33.5 (t'), 49.5 (d') or (q'), 52.2 (d') or (q'), 52.6 (d') or (q'), 63.6 (t'), 70.8 (d'), 84.3 (s'), 118.2 (t'), 120.5 (s'), 128.0 (d'), 130.0 (d'), 134.2 (s'), 135.9 (d'), 138.2 (d'), 167.7 (s'), 169.6 (s'); exact mass (electrospray) m/z calcd for C₃₆H₅₂NaO₅Si₂ (M + Na) 643.3251, found 643.3255.

Compound **19** had: FTIR (CH₂Cl₂ cast) 3489, 1696, 1637 cm⁻¹; ¹H NMR (CD₂Cl₂, 360 MHz) δ 0.58-0.65 (m, 6 H), 0.96 (t, J = 7.9 Hz, 9 H), 1.00-1.18 [m, including s (9 H) at δ 1.06, 11 H in all], 1.96-2.13 (m, 3 H), 2.58-2.72 (m, 2 H), 2.75-2.79 (m, 1 H), 3.63-3.75 [m, including s (3 H) at δ 3.65, 5 H in all], 4.24 (d, J = 3.0 Hz, 1 H), 4.28 (d, J = 3.0 Hz, 1 H), 5.01 (dd, J = 10.8, 1.4 Hz, 1 H), 5.07 (dd, J = 17.6, 1.4 Hz, 1 H), 6.30 (dd, J = 17.6, 10.8 Hz, 1 H), 7.37-7.48 (m, 6 H), 7.67-7.71 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.9 (t'), 7.2 (q'), 19.4 (s'), 25.0 (t'), 27.0 (q'), 27.2 (t'), 33.7 (t'), 50.8 (d') or (q'), 51.8 (d') or (q'), 52.2 (d') or (q'), 63.3 (t'), 75.8 (d'), 86.9 (s'), 116.3 (t'), 121.5 (s'), 128.1 (d'), 130.1 (d'), 134.18 (s'), 134.22 (s'), 135.9 (d'), 140.7 (d'), 167.2 (s'), 169.4 (s'); exact mass (electrospray) *m/z* calcd for C₃₆H₅₂NaO₅Si₂ (M + Na) 643.3251, found 643.3252.

Methyl $(1\alpha,3Z,4\alpha,7R^*)$ -4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-2oxo-7-[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-ylidene]butanoate (17) from 18. A solution of 18 (50.0 mg, 0.081 mmol) in CH₂Cl₂ (0.5 mL plus 2 x 0.2 mL as a rinse) was added dropwise over 5-10 min to a stirred solution of the Dess-Martin reagent⁷(51.3 mg, 0.121 mmol) in CH₂Cl₂ (0.6 mL). Stirring was continued for 0.5 h and Et₂O (5 mL) was added, followed by saturated aqueous NaHCO₃ (1 mL) containing $Na_2S_2O_3$ (186.0 mg). The mixture was stirred for 5 min and extracted with Et_2O (10 mL). The organic extract was washed with saturated aqueous NaHCO₃ (2 mL), water (2 mL) and brine (5 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 5% EtOAc-hexane, gave 17 (49.0 mg, 98%) as a colorless oil, spectroscopically identical to material obtained from 16a.

 $(1\alpha, 2\alpha, 3Z, 4\alpha, 7S^*)$ -4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-2-[7-ethenyl-2hydroxy-7-[(triethylsilyl)oxy]bicyclo[2.2.1]hept-3-ylidene]butanoic acid (20). n-PrSLi¹⁰ (2.5 M in HMPA, 226 µL, 0.565 mmol) was added dropwise to a stirred solution of 19 (50.0 mg, 0.081 mmol) in degassed (by passage of a stream of Ar for 0.5 h) HMPA (3 mL). Stirring was continued for 2 h (TLC indicated complete reaction), the mixture was poured into ice water (50 mL) containing 10% hydrochloric acid (2 mL), and extracted the with Et₂O (4 x 30 mL). The combined organic extracts were washed with brine (10 mL), dried (Na₂SO₄), and evaporated. Flash chromatography of the residue over silica gel $(1.6 \times 28 \text{ cm})$, using 40% EtOAc-hexane, gave 20 (39.6 mg, 81%) as a colorless oil: FTIR (CH₂Cl₂ cast) 2750-3400 (br), 1684, 1637 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.60 (q, J = 7.9 Hz, 6 H), 0.94 (t, J = 7.9 Hz, 9 H), 0.98-1.22 [m, including s (9 H) at δ 1.06, 11 H in all], 1.88-2.09 (m, 2 H), 2.14-2.18 (m, 1 H), 2.58-2.72 (m, 2 H), 2.78 (d, J = 2.3 Hz, 1 H), 3.69-3.78 (m, 2 H), 4.26 (s, 1 H), 5.04-5.14 (m, 2 H), 6.29 (dd, J = 17.7, 10.8 Hz, 1 H), 7.35-7.47 (m, 6 H), 7.63-7.69 (m, 4 H), the OH signals were not observed; ¹³C NMR $(CD_2Cl_2, 100.6 \text{ MHz}) \delta 6.8$ (t'), 7.1 (q'), 19.3 (s'), 24.8 (t'), 27.0 (q'), 27.1 (t'), 33.9 (t'), 50.4 (d'), 51.8 (d'), 63.7 (t'), 75.6 (d'), 86.8 (s'), 117.3 (t'), 123.2 (s'), 128.14 (d'), 130.2 (d'), 133.4 (s'), 133.5 (s'), 135.9 (d'), 140.6 (d'), 165.8 (s'), 171.1 (s'); exact mass (electrospray) m/z calcd for C₃₅H₅₀NaO₅Si₂ (M + Na) 629.3095, found 629.3105.

(4α,7α,7aβ,8R*)-3-[2-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]ethyl]-8-ethenyl-

5,6,7,7a-tetrahydro-4,7-methano-8-[(triethylsily])oxy]benzofuran-2(4H)-one (21). A solution of **20** (21.0 mg, 0.035 mmol) and Et₃N (39 µL, 0.28 mmol) in dry CH₂Cl₂ (0.4 mL, plus 2 x 0.2 mL as a rinse), was added dropwise to a stirred solution of 2-chloro-1-methylpyridinium iodide [36.5 mg (97%), 0.139 mmol] in CH₂Cl₂ (1.5 mL). The mixture was refluxed for 36 h, cooled to room temperature, diluted with Et₂O (5 mL), and filtered through a pad (1 cm x 2 mm) of silica gel with Et₂O. Evaporation of the filtrate, and flash chromatography of the residue over silica gel (1.3 x 24 cm), using 5% EtOAc-hexane, gave **21** (17.3 mg, 85%) as a colorless oil: FTIR (CH₂Cl₂ cast) 1783, 1759 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.56 (q, *J* = 7.9 Hz, 6 H), 0.92 (t, *J* = 7.9 Hz, 9 H), 1.05 (s, 9 H), 1.38-1.45 (m, 1 H), 1.61-1.69 (m, 1 H), 2.05-2.15 (m, 1 H), 2.23-2.52 (m, 3 H), 2.71 (d, *J* = 4.5 Hz, 1 H), 2.85 (d, *J* = 4.5 Hz, 1 H), 3.73-3.86 (m, 2 H), 4.48 (s, 1 H), 5.05 (dd, *J* = 10.8, 0.9 Hz, 1 H), 5.12 (dd, *J* = 17.7, 0.9 Hz, 1 H), 5.73 (dd, *J* = 17.7, 10.8 Hz, 1 H), 7.36-7.46 (m, 6 H), 7.62-7.68 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 6.6 (t'), 7.0 (q'), 19.4 (s'), 22.9 (t'), 27.0 (q'), 28.2 (t'), 28.8 (t'), 46.9 (d'), 51.8 (d'), 62.2 (t'), 86.5 (d'), 89.4 (s'), 118.9 (t'), 124.4 (s'), 128.0 (d'), 130.0 (d'), 134.1 (s'), 135.9 (d'), 137.2 (d'), 170.5 (s'), 174.4 (s'); exact mass (electrospray) *m/z* calcd for C3₅H48NaO₄Si₂ (M + Na) 611.2989, found 611.2980.

(3R*,7R*,8R*)-3,7,8-[3]Buten[1]yl[4]ylidene-3-[2-[[(1,1-dimethylethyl)diphenylsilyl]oxy]ethyl]-3,4,7,8-tetrahydro-6-[(triethylsilyl)oxy]-2H-oxocin-2-one (22). A solution of

21 (12.7 mg, 0.022 mmol) in degassed (by bubbling Ar for 0.5 h) 1,2-dichlorobenzene (7 mL) was refluxed for 20 min. The solution was cooled and evaporated, and the residue was kept under oil-pump vacuum for 4 h, to give 22 (12.7 mg, 100%) as a pale yellow oil: FTIR (CH₂Cl₂ cast) 1784 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 0.60-0.68 (m, 6 H), 0.95 (t, J = 7.9 Hz 9 H), 0.99 (s, 9 H), 1.55-1.63 (m, 1 H), 1.82-1.89 (m, 1 H), 1.92-2.13 (m, 2 H), 2.15-2.22 (m, 1 H), 2.29-2.41 (m, 3 H), 2.91-2.98 (m, 1 H), 3.61-3.68 (m, 1 H), 3.70-3.78 (m, 1 H), 4.53 (q, J = 2.9 Hz, 1 H), 4.65-4.70 (m, 1 H), 5.60-5.65 (m, 1 H), 7.34-7.45 (m, 6 H), 7.60-7.68 (m, 4 H); ¹³C NMR (CD₂Cl₂, 100.6 MHz) δ 5.4 (t'), 6.8 (q'), 19.2 (s'), 21.8 (t'), 23.6 (t'), 26.7 (q'), 35.3 (t'), 44.2 (t'), 45.6 (d'), 49.0 (s'), 60.6 (t'), 78.6 (d'), 102.5 (d'), 117.7 (d'), 128.0 (d'), 129.9 (d'), 130.0 (d'), 133.8 (s'), 134.0 (s'), 135.9 (d'), 136.0 (d'), 142.1 (s'), 151.7 (s'), 180.8 (s'); exact mass (electrospray) m/z calcd for C₃₅H₄₈NaO₄Si₂ (M + Na) 611.2989, found 611.2987.

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada, and Merck Frosst for financial support.

References and footnotes

- 1 Dabrah, T. T.; Kaneko, T.; Massefski, W., Jr.; Whipple, E. B. J. Am. Chem. Soc. 1997, 119, 1594-1598.
- 2 Non-systematic numbering is used in diagram 1, and the corresponding numbers are used for all other structures.
- Dabrah, T. T.; Harwood, H. J., Jr.; Huang, L. H.; Jankovich, N. D.; Kaneko, T.; Li, J.-C.; Lindsey,
 S.; Moshier, P. M.; Subashi, T. A.; Therrien, M.; Watts, P. C. J. Antibiot. 1997, 50, 1-7.
- (a) Davies, H. M. L.; Calvo, R.; Ahmed, G. Tetrahedron Lett., 1997, 38, 1737-1740. (b) Nicolaou, K. C.; Härter, M. W.; Boulton, L.; Jandeleit, B. Angew. Chem., Int. Edn. Engl. 1997, 36, 1194-1196. (c) Nicolaou, K. C.; Postema, M. H. D.; Miller, N. D.; Yang, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 2821-2823. (d) Sgarbi, P. W. M.; Clive, D. L. J. Chem. Commun. 1997, 2157-2158. (e) Armstrong, A.; Critchley, T. J.; Mortlock, A. A. Synlett 1998, 552-553. (f) Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1877-1880. (g) Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D'Amico, D. C.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1877-1880. (g) Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; Itoh, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 6015-6018. (i) Chen, C.; Layton, M. E.; Shair, M. D. J. Am. Chem. Soc. 1998, 120, 10784-10785. (j) Nicolaou, K. C.; Baran, P. S.; Jautelat, R.; He, Y.; Fong, K. C.; Choi, H.-S.; Yoon, W. H.; Zhong, Y.-L. Angew. Chem., Int. Ed. Engl. 1999, 38, 549-552. (k) Bio, M. M.; Leighton, J. L. J. Am. Chem. Soc. 1999, 121, 890-891. (l) Meng, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1999, 38, 1485-1488. (m) Clive, D. L. J.; Sun, S.; He, X.; Zhang, J.; Gagliardini, V. Tetrahedron Lett. 1999, 40, 4605-4609.
- (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Choi, H.-S.; Yoon, W. H.; He, Y.; Fong, K. C. Angew. Chem., Int. Ed. Engl. 1999, 38, 1669-1675. (b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; He, Y.; Yoon, W. H.; Choi, H.-S. Angew. Chem., Int. Ed. Engl. 1999, 38, 1676-1678.

- 6 Vedejs, E.; Engler, D. A.; Telchow, J. E. J. Org. Chem. 1978, 43, 188-196.
- 7 Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
- 8 An attempt to dehydrate the minor isomer under the same conditions proceeded more slowly, but appeared (¹H NMR) to give 17 as the major product.
- 9 (a) Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226-2227. (b) Luche, J.-L.; Rodriguez-Hahn, L.;
 Crabbé, P. J. Chem. Soc., Chem. Commun. 1978, 601-602.
- 10 Bartlett, P. A.; Johnson, W. S. Tetrahedron Lett. 1970, 46, 4459-4462.
- 11 Strekowski, L.; Visnick, M.; Battiste, M. A. Synthesis 1983, 493-494.
- 12 Supplied by Chemical Dynamics Corp., South Plainfield, N.J.
- 13 Phosphomolybdic acid (15g) and (NH₄)₂Ce(NO₃)₆ (2.5g) dissolved in a mixture of water (485 mL) and concentrated H₂SO₄ (15 mL).
- 14 Endo hydroxyl: Creary, X.; Rollin, A. J. J. Org. Chem. 1977, 42, 4226-4230. Exo hydroxyl: Jauch, J. Tetrahedron 1994, 50, 12903-12912.
- Weber, A. E.; Halgren, T. A.; Doyle, J. J.; Lynch, R. J.; Siegle, P. K. S.; Parsons, W. H.; Greenlee,
 W. J.; Patchett, A. A. J. Med. Chem. 1991, 34, 2692-2701.