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Abstract: First total synthesis of lotthanongine (3), a natural prod-
uct with a flavan–indole composite structure, has been achieved via
the Lewis acid-catalyzed C–C bond formation between the catechin
and the indole units.
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Flavan-type polyphenols are widely distributed in the
plant kingdom, and show various significant biological
activities.1 Recent structural studies have identified fur-
ther structural diversity of polyphenols by hybridization
with other structure motifs, such as acetate2 and terpenes.3

Among these, lotthanongine (3) isolated from the roots of
Trigonostemon reidioides Craib (Euphorbiaceae, Thai
name: Lot-Tha-Nong),4 has a structure, in which a flavan
unit, afzelechin (2), is connected with an indole unit at its
C(4) position (Figure 1).

Figure 1

Attracted by the novel structure as well as the potential bi-
ological activities expectable in each component, we be-
came interested in the total synthesis of 3. We envisioned
that the cation A, generated from catechin derivative (vide
infra), would be susceptible of the nucleophilic attack of
indole B, a process which is most probably involved in the
biosynthesis (Figure 2).

Two questions were due to this key coupling, (1) the
reactivity of the indole nucleophile, and (2) the stereo-
selectivity.

Concerning the latter point, we previously noted that the
Lewis acid promoted SN1-type reaction of catechin
acetate 4 showed a remarkable stereochemical dichotomy
depending on the nucleophilic partner (Scheme 1).5

Most nucleophiles showed b-selectivities including hete-
ro-nucleophiles, such as PhSH and Me3SiN3, and carbon
nucleophiles such as ketene silyl acetals, whereas in sharp
contrast the a-selectivity prevailed for the electron-rich
aromatic rings in the phloroglucinol and catechin deri-
vatives.5 Within the synthetic context of lotthanongine
(3), the question was whether or not indoles are the b-se-
lective nucleophiles for establishing the requisite stereo-
chemistry.
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Scheme 1 a-Stereoselective nucleophiles and b-stereoselective 
acetate 4 showed remarkable stereochemical nucleophiles
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Table 1 shows the initial model study on the connectivity
of indole and catechin derivatives. Catechin acetate 4 was
allowed to react with indole-3-acetic acid methyl ester (5)
under some sets of acidic conditions.

Representative procedure is described by the reaction cat-
alyzed by BF3·OEt2 (run 1). A solution of catechin acetate
4 and indole 5 (3 mol equiv) in CH2Cl2 was treated with
10 mol% of BF3·OEt2 at –78 °C, and the temperature was
gradually raised with monitoring of the reaction by TLC.
After the complete consumption of catechin acetate 4 was
assured at 5 °C, usual work up and separation by silica gel
TLC gave product 6 in 86% yield. The NMR analysis
showed the product was mainly composed of the b-isomer
(a/b = 10:90), also that the C–C bond formation occurred
at the C(2) for the indole and the C(4) position for the
catechin.6

Further experiments showed that other Lewis acids (runs
2 and 3) or even a protic acid (run 4) were also effective
to catalyze the reaction with comparable yield and selec-
tivity, albeit the final reaction temperatures differed.
TMSOTf was the most reactive and showed the highest
stereoselectivity for this particular case.

Encouraged by these results, we proceeded to the synthe-
sis of lotthanongine (3). Given the poor availability of the
flavan portion, afzelechin (2),7 we prepared its racemic
form by adopting the route of catechin synthesis by Clark-
Lewis8 and Kawamoto.9a Aldol condensation of acetophe-
none 79 and aldehyde 8 was effected by using sodium hy-
dride (DMF, 0 °C, 25 min) to give crude solid products,
which were washed with Et2O to give pure chalcone 911 as
yellow powders (mp 136–137 °C) in 87% yield. Reduc-
tion of 9 with NaBH4 (2-methoxyethanol, 90 °C, 5 min)
gave alcohol 10, which was treated with BF3·OEt2
(CH2Cl2, r.t., 35 min) to afford flavan-3-ene 11
(Scheme 2). It should be noted that alcohol 10 and alkene
11 were highly labile to silica gel chromatography, and
thus, the crude materials were used without purification,

respectively. Oxidation of alkene 11 by OsO4 and N-
methylmorpholine-N-oxide (t-BuOH, THF, H2O, r.t., 5 h)
gave crude solid diol 12, which was washed with Et2O to
give colorless powders (single diastereomer, mp 157–
159 °C, 76% yield from 9).

Protection of diol 12 with t-butyldimethylsilyl (TBDMS)
group [TBDMSCl (6 mol equiv), imidazole (10 mol
equiv), DMF, r.t., 14 h] afforded the bis-silyl ether 13 as
colorless amorphous solids. The relative stereochemistry
of 1310 was assigned as such by 1H NMR (J2,3 = 10.0 Hz,
J3, 4 = 2.4 Hz).

The synthesis of indole unit 21 relied on the Larock
method11 involving the Pd-catalyzed heteroannulation of
an internal alkyne with an o-iodoaniline derivative
(Scheme 3). The requisite o-iodoaniline 15 was prepared
by the reduction of nitroarene 1412 with hydrazine in the
presence of FeCl3 and activated charcoal (MeOH, reflux,
38 h).13 The indole skeleton was constructed via the Pd-
catalyzed cyclization of o-iodoaniline 15 and four mole
equivalents of silylacetylene 1614 [Pd(OAc) (0.1 equiv),
DMF, 80 °C, 2 h].

The trimethylsilyl group in indole 17 was removed by
acidic methanol (MeOH, AcCl, 0 °C, 15 min) to afford in-
dole 18 in 73% overall yield from 15. The hydroxy group
in 18 was transformed into an azide group with triphe-
nylphosphine (2 mol equiv), diphenylphosphoryl azide (2
mol equiv), and diethyl azodicarboxylate (2 mol equiv,
THF, 0 °C to r.t., 40 min) in 88% yield.15 Azide 19 was
converted to indole unit 2116 in 62% yield via the
Staudinger reaction with acid 20 using trimethylphos-
phine (1.2 equiv, toluene, reflux, 1.5 h).17

Having afzelechin 13 and indole unit 21 in hand, the stage
was set for the key coupling reaction. The question at this
stage was whether or not the silyl ether would be used for
the key coupling reaction. To the best of our knowledge,
siloxy groups had not been used as leaving groups in this
context. Thus, we examined whether the promoters used

Table 1 The Reaction of Catechin Acetate 4 with 3-Substituted Indole 5

Run Promoter (equiv) Temp (°C) Time (h) Yield (%) a/b

1 BF3·OEt2 (0.1) –78 → 5 2.0 86 10:90

2 TMSOTf (0.1) –78 → –40 2.0 94 6:94

3 Cp2ZrCl2 (0.1), AgClO4 (0.2), MS 4Å –78 → 25 31 84 13:87

4 TsOH·H2O (0.1) 0 1.0 97 10:90
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for the activation of catechin 4 in the model studies (vide
supra) were effective also for the activation of silyl ether.

Pleasingly, each acid promoter was effective for this pur-
pose (Table 2). It turned out the difference was, however,
that the catalytic conditions led to rather slow reactions
with poor stereoselectivities (runs 1–4).

So we attempted the stoichiometric use of acid promoters,
and Cp2ZrCl2–AgClO4 gave best results with high b-se-
lectivity (95%, a/b = 13:87, run 7).5b The other promoters
gave lower stereoselectivities so long as the stoichiomet-
ric reactions were concerned (runs 5, 6, and 8).

Since separation of the diastereomers of 22 was difficult
by silica gel chromatography, we chose to proceed, with-
out their separation, to the next desilylation stage. Fortu-
nately, upon careful treatment of the a/b mixture of 22 (a/
b = 13:87) with tetrabutylammonium fluoride (TBAF, 1.2
mol equiv) at 0 °C (THF, 25 min), only the b-isomer, 22b,
selectively underwent detachment of the TBDMS group,
while the a-isomer, 22a, remained intact. If the reaction
was further warmed to room temperature, the a-isomer
also underwent desilylation (vide infra). Finally, five ben-
zyl groups in 23b was removed by careful exposure to
BBr3 (10 mol equiv) at –78 °C (CH2Cl2, 2 h) to give
lotthanongine (3) as amorphous solids in 62% yield
(Scheme 4). The synthetic material proved to be identical
with the natural product by comparison of their spectro-
scopic data (1H NMR, 13C NMR, IR) and combustion
analysis.18

The minor diastereomer 22a was also converted to 24, the
a-isomer of the natural product 3 (Scheme 5). Thus, the
TBDMS group in 22a was removed by TBAF at room
temperature (THF, 7 h), and removal of the benzyl
protecting groups in a similar way gave the isomer 24.19

Scheme 2 Synthesis of afzelechin unit 13
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The 1H NMR data revealed the stereochemistry of 24
(J2,3 = 9.8 Hz, J3,4 = 8.8 Hz), confirming it diastereomeric
to the natural product 3.

In summary, the first synthesis of lotthanongine (3) was
achieved by using the SN1-type reaction of afzelechin 13
with indole 21, and the structure of 3 was reconfirmed by
the synthetic materials. This synthesis opened flexibility
to various flavan–indole hybridized compounds.
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