Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/inoche

Synthesis of tetraphenylphosphonium (thio)phosphorylthiobenzamides and hydrolytic degradation to $Ph_3P=O$, H_2S and phosphoryl(thio)benzamides: A route for crystal design of $PhC(X)NHP(O)(OiPr)_2$ (X=S, O)

Damir A. Safin ^a, Maria G. Babashkina ^{a,*}, Michael Bolte ^b, Yann Garcia ^a

^a Institute of Condensed Matter and Nanosciences, MOST – Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium ^b Institut für Anorganische Chemie, J.-W.-Goethe-Universität, Frankfurt/Main, Germany

ARTICLE INFO

Article history: Received 28 January 2012 Accepted 29 February 2012 Available online 10 March 2012

Keywords: Crystal structure ES mass spectrometry (Thio)phosphoryl(thio)benzamide Tetraphenylphosphonium salt H-bond networks Polymorphism

ABSTRACT

Reactions of the sodium salts of PhC(S)NHP(Y)(OiPr)₂ (Y=S, **HL**^I; O, **HL**^{II}) with PPh₄Br in 96% aqueous EtOH leads to the corresponding compounds **PPh₄L**^{III}. The structures of these compounds were investigated by IR, ¹H, ³¹P{¹H} NMR spectroscopies; their compositions were examined by microanalysis. Recrystallization of **PPh₄L**^{III} from EtOH/H₂O solution (1:1, v/v) leads to the formation of **HL**^{II} and PhC(O)NHP(O)(OiPr)₂ (**HL**^{III}), respectively. The crystal structures of **HL**^{II,III} are reported and compared with the previously reported polymorphs.

© 2012 Elsevier B.V. All rights reserved.

N-(Thio)phosphorylated (thio)ureas and (thio)amides RC(X) $NHP(Y)(OR')_2$ (X, Y=O, S) are easily deprotonated under the influence of bases in aqueous alcohol medium [1–3]. Accordingly salts with alkaline metal cations are easily formed. In the literature there is so far only one crystal structure of a salt of N-(thio)phosphorylthioureas ([K(Me₂₋ CO)](PhNHC(S)NP(S)(OiPr)₂)) [4]. The structures of similar compounds, salts of *N*-(thio)phosphorylamides and thioamides $[M(CCl_3C(O)NP(O)(OMe)_2)], M = Na^+$ or Rb⁺ [5]; [K(Me₂₋ CO)](PhC(S)NP(S)(OiPr)₂) [6], [K(MeOH)](PhC(O)NP(S)Ph₂) [7,8] have also been investigated. Salts of N-phosphorylamides and thioamides with the alkaline metal cation being complexed by crown ether molecules $[M(crown)](PhC(Y)NP(X)(OiPr)_2)$ (X, Y=O, S; M=Na⁺, K⁺; crown = 18-crown-6, dibenzo-18-crown-6, 1,10-diaza-18-crown-6) are also described [1]. Furthermore, a number of salts of imidodiphosphinate ligands R₂P(X)NHP(Y)R'₂ were isolated and structurally characterized [9-11]. Phosphonium salts of RC(O)NHP(O)(OR')₂ are also of interest, since they might exhibit a variety of structures [1,5].

The X-ray diffraction data for crystal modifications of each *N*-(diiso-propoxyphosphoryl)(thio)benzamides $PhC(S)NHP(O)(OiPr)_2$ [12,13] and $PhC(O)NHP(O)(OiPr)_2$ were reported earlier [14,15].

Herein we present data about the tetraphenylphosphonium salts of PhC(S)NHP(Y)(OiPr)₂ (Y=S, **HL^I**; O, **HL^{II}**) (Scheme 1). Recrystallization

* Corresponding author. E-mail address: maria.babashkina@ksu.ru (M.G. Babashkina). of **PPh₄L^{III}** from EtOH/H₂O solution (1:1, v/v) leads to the formation of **HL^{II}** and PhC(O)NHP(O)(OiPr)₂ (**HL^{III}**), respectively. The crystal structures of **HL^{II,III}** are reported and compared with the previously reported polymorphs.

The tetraphenylphosphonium salts $PPh_4L^{I,II}$ were prepared by the following procedure: the ligand was *in situ* converted to the sodium salt, followed by interaction with PPh_4Br (Scheme 1) [16]. The obtained compounds are solids, which are soluble in H₂O and slightly soluble in EtOH and most polar solvents.

The IR spectra of **PPh₄L^{III}** contain an intense absorption band for the conjugated S—C—N group at about 1560 cm⁻¹. There is a weak absorption band of the P=S group at 608 cm⁻¹ in the spectrum of **PPh₄L^I**, while a band for the P=O group in the spectrum of **PPh₄L^{II}** was observed at 1192 cm⁻¹. The strong band at 996–1008 cm⁻¹ corresponds to the POC group. No NH group bands were found in the IR spectra of **PPh₄L^{III}**.

In the ³¹P{¹H} NMR spectrum of **PPh₄L¹** the resonance at 61.8 ppm corresponds to the phosphorus atom of the thiophosphoryl group [1], while the singlet signal of the phosphoryl group in the spectrum of **PPh₄L^{II}** was found at 11.4 ppm [1]. These signals are low-field shifted relative to those in the spectra of **HL**^{III}, respectively [1]. The signal of the phosphorus atom of PPh₄⁺ was found at 22.3–23.9 ppm. The ¹H NMR spectra of **PPh₄L^{III}** contain only signals, which correspond to the proposed structures. The spectra contain a set of signals for the *i*Pr protons: signals for the CH₃ protons at 1.08–1.18 ppm and a signal for the CH protons at 4.57–4.74 ppm. The signals for the phenyl protons in the spectra were observed at 6.21–7.82 ppm.

^{1387-7003/\$ –} see front matter 0 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2012.02.041

The ES (electrospray method) mass spectra were measured in the positive and negative ion regime. In the mass spectra of **PPh₄L^{LII}** besides the [PPh₄]⁺ peak there are characteristic peaks for the molecular ions [PPh₄Lig + H]⁺ and, in addition, peaks for the [PPh₄Lig + PPh₄]⁺ and [(PPh₄)₂Lig₂ + H]⁺ cations; some of them containing additional solvent molecules (alcohol and/or water). Negative ES mass spectra of **PPh₄L^{III}** revealed peaks of [Lig]⁻ but again also the peaks of the composition as [PPh₄Lig + solv + Lig]⁻ and [(PPh₄)₂Lig₂ + solv + Lig]⁻ (solv = H₂O or CH₃OH).

Unfortunately, we were not successful to obtain X-ray-suitable crystals of **PPh₄L^{1,II}** even though attempting a number of different sol-

vents for crystallization. However, recrystallization of **PPh₄L^{I,II}** from an aqueous EtOH solution (1:1, v/v) leads to the formation of **HL^{II}** and **HL^{III}**, respectively. After several days, yellow needles of **HL^{II}** or colorless plates of **HL^{III}** were deposited and then isolated by decantation. The structures of **HL^{II,III}** were proven by means of ¹H, ³¹P{¹H} NMR spectroscopy and microanalysis. The mother liquor was left for one day and afterwards the fine-crystalline solid of Ph₃P=O (δ_P =29.9 ppm [17]) was formed. The hydrolysis of the thiophosphoryl and thiocarbonyl groups was most likely caused by the presence of H₂O as well as the presence of the PPh₄⁺ ion. We assume, that binding of PPh₄⁺ to L¹⁻ or L^{II-} through the sulfur atom of the thiopho-

Table 1

Crystal data and data collection details for \mathbf{HL}^{II} and \mathbf{HL}^{III}

	HL ^{II}		HL ^{III}		
	Polymorph HL^{II}{1 }	Polymorph HL ^{II} {2} [13]	Polymorph HL^{III}{1 }	Polymorph HL^{III}{2 } [14]	
Empirical formula	$C_{13}H_{20}NO_3PS$	C ₁₃ H ₂₀ NO ₃ PS	C ₁₃ H ₂₀ NO ₄ P	C ₁₃ H ₂₀ NO ₄ P	
Formula weight	301.33	301.33	285.27	285.28	
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	
Space group	C2/c	$P2_1/n$	C2/c	$P2_1/c$	
a/Å	23.694 (2)	9.497 (1)	22.831 (2)	15.573(4)	
b/Å	9.0823 (8)	18.972 (2)	8.8312(9)	9.546 (2)	
c/Å	14.8961 (15)	8.937 (1)	14.9842 (15)	21.897 (3)	
β/°	91.696 (8)	95.30 (1)	91.025 (2)	100.94 (2)	
V/Å ³	3204.2 (5)	1603.4 (3)	3020.7 (5)	3196 (6)	
Ζ	8	4	8	8	
$D_{\rm calc}/{\rm g}{\rm cm}^{-3}$	1.25	1.25	1.26	1.19	
T/K	173 (2)	293 (2)	100 (2)	293 (2)	
μ/mm^{-1}	0.3 (Mo Kα)	2.8 (Cu <i>Kα</i>)	0.2 (Mo <i>K</i> α)	1.7 (Mo <i>K</i> α)	
Reflections collected	10,491	3492	8551	7528	
Unique reflections	2988	3295	3068	2290	
Observed reflections	2270 $(R_{int} = 0.0511)$	$3030 (R_{int} = 0.012)$	$2646 (R_{int} = 0.024)$	1506 ($R_{int} = not given$)	
Final R indices [I>2sigma(I)]	$R_1 = 0.0594, wR_2 = 0.1730$	$R_1 = 0.041, wR_2 = 0.112$	$R_1 = 0.0487, wR_2 = 0.1217$	$R_1 = 0.044, wR_2 = 0.053$	

Fig. 1. Displacement ellipsoid representation of HL^{II}. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms not involved in H-bonding are omitted for clarity.

Fig. 2. Displacement ellipsoid representation of HL^{III}. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms not involved in H-bonding are omitted for clarity.

sphoryl or the thiocarbonyl group, respectively, might provoke the hydrolysis of the P=S group in **PPh₄L^I** and the C=S group in **PPh₄L^{II}** (Chart 1). It should be noted, that recrystallization of **HL^{I,II}** or their sodium salts from an EtOH/H₂O solution (1:1, v/v) does not lead to the hydrolysis products.

The crystal structures of **HL**^{**II**,**III**} were elucidated by single-crystal X-ray diffraction [18] and are compared with the previously reported structures [12–15]. It is noteworthy that the X-ray suitable crystals of the recently published structures of **HL**^{**II**,**III**} were obtained from the slow evaporation of their solutions in the chloroform–ethanol (1:1, v/v) and benzene–diethyl ether (1:2, v/v) mixtures, respectively [12–15]. Results of the structure solutions and refinements are collected in Table 1. The representative structures are shown in Figs. 1 and 2, bonding parameters are collected in Table 2.

Table 2

Selected bond lengths (Å) and bond angles (°) for \mathbf{HL}^{II} and \mathbf{HL}^{III}

The crystal structures of $HL^{II,III}$ reveal to be polymorphs of the previously reported structures [13,14]. In view of the fact that the structures of these polymorphs (HL^{II} {1} and HL^{III} {1}) have been established we discuss in the following the structural parameters of these polymorphs in comparison with the recently established second polymorphs HL^{II} {2} and HL^{III} {2}.

The polymorphs HL^{II} [1] and HL^{III} [1] crystallize in the monoclinic space group C2/c (Z=8), while the polymorphs HL^{II} [2] and HL^{III} [2] crystallize in the space groups $P2_1/n$ (Z=4) [13] and $P2_1/c$ (Z=8) [14], respectively (Table 1). The polymorph HL^{III} [2] contains two independent molecules in the crystal [14]. The parameters of the C=S, C-N, P-N and P=O distances observed in the molecular structures of the polymorphs $HL^{II,III}$ [1] and $HL^{II,III}$ [2] (Table 2) are in the typical range for *N*-phosphorylated (thio)amides [1]. The P-N-C=X moieties in $HL^{II,III}$ [1] and $HL^{II,III}$ [2] exhibit an *E*-conformation (Figs. 1 and 2) [13,14], and are significantly flattened (torsion angle is $-9.4(4)^{\circ}$ in HL^{II} [1], 7.5(2)° in HL^{II} [2], $-12.1(3)^{\circ}$ in HL^{III} [1], and 4.8° and 11.8° in HL^{III} [2], respectively) and rotated towards the phenyl group.

In the crystal modifications $HL^{II,III}$ {1} and $HL^{II,III}$ {2} the molecules are linked into identical centrosymmetric or pseudocentrosymmetric dimers by a pair of intermolecular hydrogen bonds $N-H-O=P^{\#1}$, formed between the hydrogen atom of the NH group and the oxygen atom of the P=O group of a neighboring molecule (Figs. 1 and 2, Table 3). Furthermore, in the polymorphs HL^{II,III} **(1)** a centrosymmetric dimer is additionally stabilized by two Hbonding contacts C-H(Ph)... $O=P^{\#1}$, formed between the hydrogen atom of the ortho CH unit of the phenyl group and the oxygen atom of the P=O group of a further molecule (Figs. 1 and 2, Table 3). These dimers in **HL^{II,III}**{1} are packed into stacks along the *b* axis by intermolecular $C-H(iPr)-S=C^{\#2}$ or $C-H(iPr)-O=C^{\#2}$ interactions, respectively, formed between the methyl hydrogen atoms of the *i*Pr groups and the sulfur $(HL^{II}{1})$ or oxygen $(HL^{III}{1})$ **(1)** atoms of the C=S or C=O groups of further dimers (Figs. 1 and 2, Table 3). The crystal packing in the modification HL^{II} {1} is similar to that in **HL^{II}{2**} (Table 1), while the crystal packing in the polymorph HL^{III}{1} differs markedly compared with the crystallographic modification HL^{III}{2} (Table 1). This is also evident in the difference of density (0.07 g cm^{-3}) of the polymorphs.

It should be noted, that the differences in the polymorphs are not apparently due to the hydrogen bonding. Thus, compounds **HL**^{II,III}{1} and **HL**^{II,III}{2} can be considered as a good example to stress the importance of the entire crystal packing arrangement to the overall energy and stability of a certain crystal form [29,30].

0						
	Polymorph HL^{II}{1 }	Polymorph HL^{II}{2 } [13]	Polymorph HL^{III}{1 }	Polymorph HL ^{III} {2} [14]		
Bond lengths						
P-0	1.561 (2), 1.569 (2)	1.545 (1), 1.557 (1)	1.5553 (15), 1.5647 (14)	1.544 (4), 1.546 (4), 1.559 (5), 1.560 (5)		
P=0	1.471 (2)	1.465 (1)	1.4654 (15)	1.440 (4), 1.463 (4)		
P - N	1.677 (3)	1.675 (1)	1.6633 (17)	1.649 (6), 1.670 (5)		
X=C	1.591 (3)	1.650 (2)	1.309 (2)	1.200 (7), 1.229 (7)		
N-C	1.366 (4)	1.365 (2)	1.374 (2)	1.356 (8), 1.388 (8)		
Bond angles						
O = P - O	115.22 (13), 115.30 (13)	114.73 (7), 114.96 (7)	114.60 (8), 115.90 (8)	116.1 (3), 116.3 (3), 116.4 (3)		
0-P-0	103.81 (12)	104.94 (6)	103.54 (8)	98.1 (2), 101.9 (3)		
O = P - N	107.52 (13)	107.05 (7)	108.48 (8)	107.8 (3), 110.4 (3)		
O - P - N	105.08 (13), 109.37 (12)	105.61 (7), 109.09 (7)	104.42 (8), 109.29 (8)	101.6 (3), 108.9 (3), 109.1 (3)		
C - N - P	126.7 (2)	128.4 (1)	124.44 (14)	126.8 (5)		
N-C=X	122.6 (2)	123.2 (1)	122.05 (17)	120.4 (7)		
Torsion angles ^a						
O = P - N - C	- 176.3 (2)	174.5 (1)	-174.98 (15)	174.9, 179.6		
O - P - N - C	-53.1 (3), 57.8 (3)	51.9 (2), -60.5 (2)	-50.82 (17), 59.42 (18)	47.9, 55.5, -51.5, -58.2		
P-N-C=X	-9.4 (4)	7.5 (2)	-12.1 (3)	4.8, 11.8		

^a Torsion angles must be compared by their magnitudes.

Table 3			
Hydrogen bor	nd lengths (Å)	and angles (°)	for HL^{II} and HL^{III} .

		D - H - A	d (D-H)	d (H…A)	<i>d</i> (D…A)	\angle (DHA)
HL ^{II}	Polymorph HL^{II}{1} ^a Polymorph HL^{II}{2} ^b [13]	$\begin{array}{c} N(1) - H(1) \cdots O(3)^{\#1} \\ C(16) - H(16) \cdots O(3)^{\#1} \\ C(6) - H(6B) \cdots S(1)^{\#2} \\ N(1) - H(1) \cdots O(3)^{\#1} \end{array}$	0.83 (4) 0.95 0.98 0.87 (2)	2.04 (4) 2.60 2.81 1.95 (2)	2.849 (4) 3.239 (4) 3.705 (6) 2.805 (2)	165 (3) 125 152 165 (2)
ΗL ^{III}	Polymorph HL^{III}{1} ^c	$ \begin{array}{c} N(1) - H(6) \cdots O(1)^{\#1} \\ C(3) - H(1) \cdots O(1)^{\#1} \\ C(11) - H(11B) \cdots O(4)^{\#2} \end{array} $	0.80 (3) 0.95 0.98	2.04 (3) 2.58 2.68	2.836 (2) 3.254 (2) 3.615	172 (3) 128 159
	Polymorph HL^{III}{2 } [14]	$N-H(1)\cdots O(1)'$ $N'-H(1)'\cdots O(1)$	0.89 (6) 0.84 (6)	1.96 (8) 1.99 (6)	2.837 (7) 2.811 (7)	162 (5) 164 (6)

^a Symmetry transformations used to generate equivalent atoms: $\#1 \ 1/2 - x, \ 1/2 - y, \ 1 - z; \ \#2 \ x, -1 + y, z.$

^b Symmetry transformations used to generate equivalent atoms: #1 1 - x, -y, -z.

^c Symmetry transformations used to generate equivalent atoms: $\#1 \ 3/2 - x$, 3/2 - y, 1 - z; $\#2 \ x$, -1 + y, z.

In summary, the tetraphenylphosphonium salts **PPh₄L^{I,II}** have been synthesized and characterized by means of IR, ¹H, ³¹P{¹H} NMR spectroscopy, ES mass spectrometry and microanalysis. Recrystallization of **PPh₄L^{I,II}** from an aqueous EtOH solution (1:1, v/v) leads to the formation of **HL^{II,III}**, respectively. The crystal structures of **HL^{II}**, ^{III} reveal to be polymorphs to the previously reported structures. Single crystal X-ray diffraction studies showed that **HL^{II,III}** form intermolecular hydrogen bonds leading to the centrosymmetric dimer formation.

Acknowledgments

This work was partly funded by the Fonds National de la Recherche Scientifique – FNRS (FRFC No. 2.4508.08, No. 2.4537.12, IISN 4.4507.10) and the IAP-VI INANOMAT program. We thank the F.R.S.-FNRS (Belgium) for a post-doctoral position allocated to D. A. S.

Appendix A. Supplementary material

CCDC 767460 (**HL^{II}**) and 767909 (**HL^{III}**) contain the supplementary crystallographic data. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data to this article can be found online at doi:10.1016/j. inoche.2012.02.041.

References

- F.D. Sokolov, V.V. Brusko, N.G. Zabirov, R.A. Cherkasov, Curr. Org. Chem. 10 (2006) 27.
- [2] L.C. Shaidarova, A.V. Gedmina, V.V. Brusko, N.G. Zabirov, N.A. Ulakhovich, H.K. Budnikov, Russ. J. Appl. Chem. 71 (2002) 919.
- [3] M.P. Kutyreva, N.A. Ulakhovich, Yu.I. Salnikov, V.V. Brusko, F.D. Sokolov, N.G. Zabirov, Russ. J. Inorg. Chem. 49 (2004) 1520.
- [4] F.D. Sokolov, D.A. Safin, M.G. Babashkina, N.G. Zabirov, V.V. Brusko, N.A. Mironov, D.B. Krivolapov, I.A. Litvinov, R.A. Cherkasov, B.N. Solomonov, Polyhedron 26 (2007) 1550.
- [5] V.A. Trush, K.E. Gubina, V.M. Amirkhanov, J. Swiatek-Kozlowska, K.V. Domasevitch, Polyhedron 24 (2005) 1007.
- [6] N.G. Zabirov, F.M. Shamsevaleev, V.A. Shcherbakova, R.A. Cherkasov, V.N. Solovyov, A.N. Chekhlov, G.V. Dmitryeva, I.V. Martynov, J. Gen. Chem. USSR 60 (1990) 1783.
- [7] T.Q. Ly, A.M.Z. Slawin, J.D. Woollins, Angew. Chem. 110 (1998) 2605.
- [8] T.Q. Ly, A.M.Z. Slawin, J.D. Woollins, Angew. Chem. Int. Ed. 37 (1998) 2501.
- [9] I. Haiduc, Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, vol. 1, Elsevier, 2003, pp. 323–347.
- [10] C. Silvestru, J.E. Drake, Coord. Chem. Rev. 223 (2001) 117.
- [11] T.Q. Ly, J.D. Woollins, Coord. Chem. Rev. 176 (1998) 451.
- [12] N.G. Zabirov, V.N. Solovyov, F.M. Shamsevaleev, R.A. Cherkasov, A.N. Chekhlov, A.G. Tsyfarkin, I.V. Martynov, J. Gen. Chem. USSR 61 (1991) 597.
- [13] A.N. Chekhlov, J. Struct. Chem. 41 (2000) 721.
- [14] V.N. Solovyov, A.N. Chekhlov, N.G. Zabirov, R.A. Cherkasov, I.V. Martynov, J. Struct. Chem. 6 (1990) 117.
- [15] A.N. Chekhlov, J. Struct. Chem. 1 (2001) 156.

- [16] Physical measurements: IR spectra were recorded with Bruker IFS66vS or Specord M-80 spectrometers in the range 400–3600 cm⁻¹. NMR spectra (CDCl₃) were obtained on Bruker Avance 300 MHz or Varian Unity-300 NMR spectrometers at 25 °C. ¹H and ³¹P{¹H} spectra were recorded at 299.948 and 121.420 MHz, respectively. Chemical shifts are reported with reference to SiMe₄ (¹H) and 85% H_3PO_4 (${}^{31}P{}^{1}H$). Electrospray ionization mass spectra were measured with a Finnigan-Mat TCQ 700 mass spectrometer on a 10⁻⁶ M solution in CH₃OH. The speed of sample submission was 2 µL/min. The ionization energy was 4.5 kV. The capillary temperature was 200 °C. Elemental analyses were performed on a Perkin-Elmer 2400 CHN microanalyser. Synthesis of PPh4LIII: A suspension of HL^{I,II} (0.317 or 0.301 g, respectively; 1.0 mmol), in 96% aqueous EtOH (10 mL) was mixed with a 96% aqueous EtOH (10 mL) solution of sodium hydroxide (0.044 g, 1.1 mmol, 10% excess). A 96% aqueous EtOH (10 mL) solution of PPh_4Br (0.419 g, 1.0 mmol) was added dropwise under vigorous stirring to the resulting sodium salt. The mixture was stirred at room temperature for a further 3 hours and left overnight. The white precipitate of NaBr was filtered off, and the solvent was removed in vacuo. A yellow (**PPh₄L^{II}**) or colorless precipitate (**PPh₄**-L^{II}) was isolated from a H₂O/EtOH mixture (1:1, v/v). **PPh₄L^I**: Yield 0.525 g (80%). $_{\rm POCH}^{\rm H}$ = 0.2 Hz, 2H, H, OCH), 6.38–7.82 (m, overlapped with the solvent signal, Ph). $^{31}P{}^{\rm H}$ NMR δ (ppm): 23.9 (1P, PPh₄), 61.8 (1P, NPS). ES–MS positive ion m/z (%) 339.4 (100) [PPh₄]⁺, 657.1 (81.8) [PPh₄Lig + H]⁺, 1013.4 (28.9) [PPh₄Lig + H₂O + PPh₄]⁺, 1041.7 (17.4) [PPh₄Lig + EtOH + PPh₄]⁺, 1330.8 (10.9) $[(PPh_4)_2Lig_2 + H_2O + H]^+$. ES-MS negative ion m/z (%): 316.2 (62.1) [Lig]⁻, 972.4 (85.3) [PPh₄Lig + Lig]⁻, 1646.8 (38.6) [(PPh₄)₂Lig₂ + H₂O + (02.1) [LIg] , 92.4 (05.5) [F114Lig + Lig] , 104.6 (56.5) [(114)/2.4, 12.5] [Lig] - Anal. for $C_{37}H_{39}NO_2P_{25}$ (655.79): cald. C 67.77, H 5.99, N 2.14; found C 67.64, H 6.04, N, 2.09. **PPh_4L^{II}**: Yield 0.569 g (89%). IR ν (cm⁻¹): 1008 (POC), 1192 (P=0), 1557 (S-C-N). ¹H NMR δ (ppm): 1.08 (d, ${}^{3}J_{H,H}$ =6.0 Hz, 6H, CH₃, iPr), 1.14 (d, ${}^{3}J_{H,H}$ =6.2 Hz, 6H, CH₃, iPr), 4.74 (d sept, ${}^{3}J_{POCH}$ =9.0 Hz, ${}^{3}J_{H}$, = 6.0 Hz, 2H, OCH), 6.21–7.76 (m, overlapping with the solvent signal, Ph). _H=6.0 Hz, 2H, 0CH, 6.21-7.76 (III, overlapping that its contract of m/z³¹P{¹H} NMR δ (ppm): 11.4 (1P, NPO), 22.3 (1P, PPI4). ES–MS positive ion m/z(%): 339.1 (100) [PPh₄]⁺, 64.3 (70.2) [PPh₄Lig + H]⁺, 979.6 (44.1) [PPh₄Lig + PPh₄]⁺, 1312.0 (27.4) [(PPh₄)₂Lig₂ + CH₃OH + H]⁺. ES-MS negative ion m/z(%): 30.3 (48.2) [Lig]⁻, 97.7 (13.6) [PPh₄Lig + CH₃OH + Lig]⁻. Anal. for $C_3H_{39}NO_3P_2S$ (639.73): calcd. C 69.47, H 6.14, N 2.19; found: C 69.32, H 6.18, N 2.13.
- [17] F. Ramirez, C.P. Smith, I.F. Pilot, J. Am. Chem. Soc. 90 (1968) 6726.
- [18] The X-ray data for HLII{1} were collected on a Stoe IPDS-II diffractometer with graphite-monochromatized Mo $K\alpha$ radiation generated by fine-focus X-ray tube operated at 50 kV and 40 mA. The images were indexed, integrated and scaled using the X-Area data reduction package [19]. Data were corrected for absorption using the PLATON program [20]. The structures were solved by Direct Method using the SHELXS-97 program [21] and refined on F^2 with full-matrix leastsquares using SHELXL-97 [22]. Hydrogen atoms were revealed from $\Delta \rho$ maps and those bonded to C were refined using a riding model. The H atoms bonded to N were freely refined. The X-ray data for $HL^{III}\{1\}$ were collected on a Bruker SMART Apex CCD diffractometer with graphite-monochromatized Mo $K\alpha$ radiation. Data reduction was carried out using the software package Bruker SAINT [23]. Empirical corrections were performed with SADABS [24]. The structure was solved by Direct Methods, while the remainder of the atomic positions were found using difference Fourier methods. All non-hydrogen atoms were refined anisotropically (with appropriate restraints using SIMU and ISOR) by blocked full-matrix least squares calculations on F^2 using SHELX-97 [25] within the X-seed environment [26,27]. Hydrogen atoms were added to the structure model on calculated positions and were refined as riding atoms. Figures were generated using the program Mercury [28].
- [19] Stoe & Cie, X-Area, Area-Detector Control and Integration Software, Stoe & Cie, Darmstadt, Germany, 2001.
- [20] A.L. Spek, J. Appl. Crystallogr. A 36 (2003) 7.
- [21] G.M. Sheldrick, Acta Crystallogr. A46 (1990) 467.
- [22] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
- [23] SAINT, Data Reduction Software, Version 6.45, Bruker AXS Inc., Madison, WI, 2003.
- [24] SADABS, Version 2.05, Bruker AXS Inc., Madison, WI, 2002.

- [25] G.M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures, University of Goettingen, Germany, 1997.
 [26] L.J. Barbour, J. Supramol. Chem. 1 (2001) 189.
 [27] J.L. Atwood, L.J. Barbour, Cryst. Growth Des. 3 (2003) 3.
 [28] I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. B58 (2002) 389.

- [29] K. Fucke, N. Qureshi, D.S. Yufit, J.A.K. Howard, J.W. Steed, Cryst. Growth Des. 10 (2010) 880.
- [30] M.G. Babashkina, D.A. Safin, K. Robeyns, Y. Garcia, Inorg. Chem. Commun. 18 (2012) 34.