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A new equation for nadir tracking estimation, taking into account secular perturbations from the Earth’s
gravitationalfield and the influence of drag, is presented. The advantage of this proposed approachis that it needs
to be solved just twice per day with respect to a specific ground target (there are usually 14 orbital periods per day
for sun synchronous orbit). The resultant approximate near nadir angle time, whose root of mean square error is
around a few seconds (i.e., ~ 30-km groundtrack error), is then further refined using a newly developed controlling
equation, reducing the maximum error to about 0.4 s (~ 2.8 km groundtrack) for over 20 days prediction period.
This is acceptable when the imaging field of view of 10 km is considered for high resolution small satellite cameras.
The prediction period of 60 days can be used for a typical small satellite camera whose field of view is about 100 km.
This method can also be expanded to solve the rise-and-set time problem. Because of the low complexity of the
proposed method, it is very suitable for implementation on the onboard processor whose computational resources
are generally limited. The new computational process is described and simulation results are presented.

Nomenclature

a = satellite’s orbital semimajor axis

h = elevationangle

i = inclination

N = integerrepresenting the number of satellite
passages

n = mean motion

r = radial distance of the satellite from the center
of the Earth

T = orbital period

1o = time when the satellite first crosses over a given

latitude line on the ascending pass
y = angle of camera field of view

Avumax = maximum longitudinal offset angle for target
to be in field of view of camera

0, = longitudinal angle margin for ground target
to be visible to satellite

A = argument of latitude measured on orbital
plane

Ug = geodetic longitude of satellite footprint

vr = geodetic longitude of ground target

o = geocentric latitude of ground target

or = geodetic latitude of ground target

Q = right ascension of ascending node

w = argument of perigee

Wg = Earth rotation rate

I. Introduction

UTURE generations of Earth observation satellites must be

considerably more operable and autonomous to enable con-
tinuing military and civil applications such as resources investiga-
tion, fast-changingphenomenon monitoring, and geographicinfor-
mation generation. The need for greater operability and autonomy
stems from shrinking governmental support for imaging space mis-
sions and commercial interestin deploying low-cost small satellites
for Earth observation. Greatly decreased operations costs will not
only enable more such missions, but will also enable systems to be
scalable to meet commercial goals. These include ESAT (URL:

Received 13 June 2000; revision received 29 August 2000; accepted for
publication 4 December 2000. Copyright © 2001 by Yan Mai and Philip
Palmer. Published by the American Institute of Aeronautics and Astronau-
tics, Inc., with permission.

*Ph.D. Student, Surrey Space Centre.

Senior Lecturer, Surrey Space Centre.

1118

http:/www.dbsindustries.com/nvestor.html#esat), which consists
of a 6 enhanced microsatellite constellation targeted at the gas and
electricutility for Global Energy Metering Service (GEMS); Global
Altimeter Network Designed to Evaluate Risk,! which operates a
constellation of 16 small satellites that will orbit the Earth in rapid
succession, observing sea surface winds and waves so that ships at
sea can be constantly updated on the sea conditions around them;
and a proposed 7-microsatellite constellatior’* to deliver global
frequent disaster monitoring. Accordingly, the number of users
of Earth images will increase rapidly. Among all sorts of space-
crafts carrying imaging instruments, low-cost small satellites will
become a main source because of their cost effectiveness and fast
reaction.

With the increasing capability of modern micro- and minisatel-
lites to undertake autonomous imaging of targets on the surface of
the Earth by employing sophisticated onboard computers and data
processing techniques, one requirement is to be able to determine
the time of closest approach to nadir of a satellite in low Earth orbit
for a specific ground location. Because the satellite may not fly di-
rectly over the desired target area for some period (days or weeks), it
is first necessary to determine whether a given target will be within
the narrow field of view of the satellite cameras to capture an image
within a shorter time span. In the conventionalapproach, it has been
customary to solve this problem by letting the satellite run through
its ephemeris and then checking at each instant to see where the
subsatellite nadir point falls. An orbital simulation is advanced in
time by some small time increment At, and a possibility check is
performed at each step. This method is called trajectory checking.
However, this method requires Keplerian equations to be solved
hundreds of times per orbital period, and is, therefore, not suitable
for onboard processing because of the computational load.

A closelyrelated problemis therise-and-settime problemof when
a satellite is visible from a given point on the Earth. An important
application of this is to find when the satellite is visible over a
ground station for data transmission. The simplest way to solve this
problem is by using a numerical method such as described in the
preceding paragraph. Escobal* proposed a faster method to solve
this problem by developing a closed-form solution for the visibility
periods.He introduceda single transcendentalequationas a function
of the eccentric anomaly of the satellite orbit, which he called the
controllingequation. Numerical methods® were then used to find the
rise-and-settimes. The advantage of this equation s thatit is solved
only once per orbital period, in contrast with the hundreds of times
the Keplerian equation must be solved with the standard step-by-
step technique of hill climbing. The controlling equation, however,
is only valid for two-body motion, and our main aim is to solve
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the satellite nadir tracking problem, which means in applicationthis
equation needs further development.

Besides the controllingequation method, Lawton® has developed
another method to solve for satellite-satellite and satellite-ground
station visibility periods for vehicles in circular or near circular
orbits by approximating the visibility function ¥(¢) by a Fourier
series. More recently, Alfano and Negron’ (see also Ref. 8) further
developedthe v (f) function to suit all orbital types. However, these
methods are only valid for solving satellite rise-and-set time prob-
lems and are not suitable for satellite nadir tracking and still have
their own limitations.

In this paper, a new method is presented that can be used not only
for two-body motion, but also accommodates secular perturbations,
short and long periodic perturbations, and the influence of drag in
a straightforward manner, providing a simple equation for nadir
tracking and solving the satellite visibility problem. The proposed
formulation only needs to be solved twice per day, which makes
it very suitable for implementation onboard a small satellite. In
Sec.II, we describethe first phase of the new method, whichis called
coarse search. It works in two-body, secular perturbations arising
from the Earth’s oblateness and atmospheric drag perturbations. In
Sec. III, we introducethe second phaseof the method, whichis called
refinement. Refinement improves the accuracy of the new method.
Simulationresultsare presentedin Sec. I'V, as well as the comparison
of CPU processing time between the conventional method and this
new method. Finally, in Sec. V, we set out our conclusions.

II. Coarse Search for Satellite Passes
A. Fundamental Algorithm: Two-Body Analysis

We can easily estimate the satellite closest approach time by
checking the satellite ascending and descending passage once, re-
spectively, per day. Set the orbital period of the satellite to be
T (=2m/n) (where n is the mean motion) and f, the time when
the satellite first crosses over a given latitude line on the ascending
pass (Fig. 1). We call the circle of constantlatitude that runs through
the target location the target latitude line (TLL). The key point of
our approachis to use the fact that, for two-body motion, a satellite
will revisit exactly the same point in an inertial coordinate system
after each orbital period T (Fig. 1). This means that the satellite
will make another ascending pass over the TLL at time (o + 7).
To simplify the discussion,we shall ignore the descendingpassages
over the TLL and include them again only at the end. Note that in
this method satellite positionis expressed by the redundantepicycle
coordinates r, A, I, and Q (Ref. 9), where r is the radial distance
of the satellite from the center of the Earth, A is the argument of
latitude measured on the orbital plane, i is the inclination,and €2 is
the right ascension of the ascending node.

If the location of a target on the Earth is (vr, ¢r), where vr and
¢r are the geodetic longitude and latitude, respectively, then the
satellite will pass over the TLL every t, + NT (or ty + N2m/n),
where N is an integer representingthe number of satellite passages.

At time 1y, the satellite is over the TLL and the initial longitu-
dinal difference between the satellite footprint vg and target vy is

Satellite at £,

Fig. 1 Satellite orbiting around Earth showing crossings of TLL.

Av =vg —vr. After each orbital period the satellite revisits the
TLL and the Earth rotates under it, bringing the target closer to
the satellite’s longitudinal position. The satellite will see the tar-
get approaching by an amount wg T or wg 27w /n, where wg is the
Earth’s rotation rate. The target closest satellite passage (TCSP) oc-
curs when the longitudinal difference dv is smaller than wg 27 /n.
Therefore, we obtain the following fundamental equation:

Av = Nwg?2n/n +dv (1)

where dv is the longitudinal difference between the subsatellite
point and the target at TCSP.
Hence,

N = [(Av/27)(n/wg)] 2)

where the square brackets implie the integer part.

In other words, the closest approach to the target will occur when
0 <dv < wg2m/n. Therefore, as long as we know the initial pas-
sage time #, of the TLL and the satellite’s orbital period T, we
can derive the possible closest approach time over long intervals of
time. We name the procedure of TCSP estimation as coarse search
because the satellite maximum elevation time over the target does
not necessarily occur at TLL crossing.

Evenin this TCSP case, however, the satellite maximum elevation
angle of this pass may not be suitable for imaging because the on-
board camera field of view (FOV) is very small. Therefore, we need
to find the maximum longitudinal offset angle Av,,,, for the target
to be in the FOV of the camera and to check whether dv < Avpy.
The calculation of Av,,,, will be describedin Sec. II1.A.2.

To determine the rise-and-set times of the satellite over a given
ground station, some modification to the description given has to
be made. Instead of Aum, We need to set another angle margin
0, within which the ground target is visible to the satellite (Fig. 2).
Vallado and McClain® define this as the ground-range angle. The
calculationof 8, will be describedin Sec. I1.A.2. Figure 3 shows the

Fig. 2 Within longitude angle 0, satellite S is visible to ground
target 7.

T u

Fig.3 Visibility of satellite passes.
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Fig.4 Geometry of )\ in Earth-centered inertial coordinate.

basic idea of our new method for satellite rise-and-set times. When
the satellite is visible, its longitude vg must satisty the following
condition:

ur — 0, Svs <vr +6, (3)

To test whether the passes are visible, we startfrom vg >~ vy —6,,.
If this is a visible pass, we add it to our coarse search list. When
vs < vr —0,,weadd2x tovs. Whenvg > vy + 6, we cancompute
the difference in longitude Av, = vs — (vr + 6,) that will bring it
to within the visibility of the ground station. Therefore, we get the
following formula for satellite visible estimation:

N = [(Av,/27)(n/wg)] + 1 4)

1. Finding Initialization Argument of Latitude X

In the preceding section, we pointed out that we need to know
the initial passage time 7, of the TLL. In our approach, we only
need to calculate the correspondinginitial vg,. Therefore, we need
Ao (the initial argument of latitude) for TLL. This is found from the
spherical triangle shown in Fig. 4, where T is the ground target and
@r is the geocentric latitude of the ground target:

sin g = singy /sini Q)

2. Longitudinal Offset Angle Margin

a. Angle marginfor satellite maximum elevationangle estimation.
For nadirtracking, sometimes the satellitemaximum elevationangle
to a specific target may not be high enough for the payload to image
the ground target. Therefore, we need to find the longitudinal offset
angle, which determineswhethera givenpassageis a suitableclosest
approachpassage. The range of an image is dependenton the phys-
ical dimension of the charge-coupled device (CCD) array and the
focal length of the lens. For the narrow angle camera of PoOSAT-1,'°
which has an interlaced CCD matrix of dimension 576 x 560 (about
8.4 x 6.5 mm) and focal length of 50 mm, the ground cover is
150 x 100 km from an orbital altitude of 800 km, which corresponds
to the camera’s half FOV of 3.6 deg. For nadir tracking, we need
to find the longitudinal offset angle margin A v,y to check whether
the previous approachestimationwould be acceptable, which means
we need to check whether dv < Avpay.

We assume the shape of the Earth is spherical. Let the camera
FOV angle be y. Then the upper limit of the spherical offset angle
0(r) is given by (Fig. 5)

6(r) = sin~![(r/a,) sin(y /2)] — y /2 6)

where r is the geocentric range of the satellite and a, is the Earth’s
equatorial radius. Vallada and McClain® describe in detail the ge-
ometry of surveillance and reconnaissance operations.

Satellite

o(r)

T Earth

Fig.5 Location of target and satellite at closest approach; O is center
of Earth, where offset angle 0 is defined; ~ is FOV of camera.

z

—

[T
o\%//

Fig. 6 Computation of maximum longitudinal offset angle margin
Avnax, given ground track of satellite(/) and spherical offset angle 6.

Y

X

For typical Earth observation orbits, which are near circular and
polar, the angle 6 (r) in Eq. (6) can be approximated by the constant
angle

0, = sin"'[(a/a,) sin(y /2)] — y /2 @)

where a is the satellite’s orbital semimajor axis. From the angle
0., we can compute the longitudinal offset angle margin Auvy,,.
Figure 6 shows how Auy,y is related to the satellite inclination
angle i, the upper limit of the spherical offset angle 6., and ground
target latitude ¢r. The arc [ represents the satellite’s ground track.
To find Avy,y, we start by finding p. Then the longitudinal offset
angle Avun,, can be solved by following the equation for a small
circle (Werts,'' page 727, Eq. A-3):
s p — sin?
08 Ay, = 2SI 01 @®
COS” @r
To find p we use the law of cosines for sides (Werts,!! page 732,
Eq. A-26):

cos p = cosl cosn + sinlsinncosT 9)

where the three angles of [, 1, and I' are given in terms of ¢r, 6.,
and i using the law of sines (Werts,'! page 732, Eq. A-25):

in6. sini
tanI" = & (10)
sin ¢ — cosi sinf,

sin 6,
sinn = 11
7 sin’ 1n
inl = 241 (12)

sin i

This completes the approach estimation procedure.
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b. Angle margin for rise-and-settimes. The rise time of a satel-
lite should occur when the satellite, at a given orbital height, crosses
the horizon plane. In this case, we set up another angle margin 6,
as shown in Fig. 2 and simplified the calculation for it.

If the orbital radius of the satellite S is a(= R + H, where R is
the radius of the Earth and H is the satellite orbital height) then
(see Ref. 8):

cosf, = R/a (13)

We, therefore, wish to estimate the times when the satellite
reaches the target longitude within £6,,. However, because this a
simplified calculation for satellite longitudinal angle margin, we
reduce R by a fixed fraction to avoid missing some low passes.

B. Adding Secular Perturbations

A satellite under the influence of an inverse square gravitational
law has truly constantorbital elements. In reality, however, there is a
gradual change in the orbital elements due to the Earth’s oblateness.
The principal effect of this is to introduce a short-period oscillation
of the orbital elements, which we canignore in most cases. The argu-
ment of perigee w and longitude of the ascendingnode €2, however,
experience a secular drift that significantly changes the long-term
prediction of maximum elevation angle. We can adopt the method
we have outlined in Sec. II. A to take proper account of all of these
secular variations. In the following description we will introduce
the formulas for the satellite maximum elevation angle prediction.
The procedure for satellite rise-and-set times is similar to this.

First, we can easily add secular perturbationsto the coarse search
procedure for the effect on the argument of latitude A that changes
the nodal period if the satellite comes back to the same TLL:

r=a(l+«k) (14)

where « is the coefficient of secular drifts in the epicycle equations’
and epicycle phase o = nt. Thus, there is a change in « for each
TLL crossing of Ae =27 /(1 + «). )

The second effect is the precession of the orbital plane . This
moves the target away from the orbital plane, Q2 > 0. We can incor-
porate this effect into the rotation rate of the Earth:

Weff = Wg — Q (15)

In the epicycle description of the orbit,’ the variation in € is
expressed as

Q=Q)+0a (16)

where 6 is the secular coefficient of plane precession’ Hence,
Q=0n.

We can incorporate these results into Eqs. (1) and (2) for the
coarse search to get

Av = (wg —On)N(Aa/n) 17)
Therefore,
N:[ﬁ n(l+«) i| (18)
21 (wg — 6On)

C. Accounting for Drag

Gravity is not the only force acting on the satellite. Another im-
portant effect comes from the Earth’s atmosphere, which still has a
significant effect on orbits up to altitudes as high as 1000 km. Be-
cause most of our Earth observationsatellites orbitat altitudes lower
than this, we need to consider the effects of atmospheric drag. Drag
is very difficult to model because of the many factors affecting the
Earth’s upper atmosphere and the satellite’s attitude, which affects
the cross-sectional area. In this paper, we only consider the effect
of drag on the satellite’s argument of lattitude for the coarse search
and include the effect on r in the refinement. To test our result, the
SGP4 model'? has been used for drag modeling.

The effect of drag on the argument of latitude can be incorporated
into the epicycle equations as

r=a( +«)+1.5Ba” (19)

where B is the drag coefficient.

We start by finding the change in the epicycle phase o over one
nodal period. By setting A to be 277, we find the solutionfora (= Aa)
from Eq. (19):

Aa=[4m/0+0)]1-[1/(1+~T+127B)]  (20)
Using this in Eq. (17), we obtain
N = {(Av/Aa)[n/(wg — 6n)]} (21)

This completes our discussion of the coarse search, where we
have included the secular perturbations and atmospheric drag.

III. Refining the Estimates of Maximum Elevation and
Rise-and-Set Times

Having estimated the approach time to the targetat TLL, we now
need a procedure that will refine this estimate to an application set
tolerance. For this we extend Escobal’s* approach to determine the
maximum elevationangle by introducinga new controllingequation
based on the epicycle equations.

In Fig. 7, we show the geometry of a satellite pass. The target
ground station 7 is located on the surface of an oblate Earth, and
the vector z7 is the local normal to the ground target surface. The
position of the satellite is S. We have the position of both the target
and the satellitein Earth-centered,Earth-fixed (ECEF) coordinates'?
expressed in r, I, ©, A, and « from the epicycle equations, from
which we compute the slant vector P:

This gives the position of the satellite as seen from the target. The
elevation angle is the angle measured from the horizon up to the
satellite. If this angle is &, then

P-Z; = Psinh (23)
Therefore, we name a new controlling equation:
F(a) =sinh =P -Z;)/P 24)

F is afunction of « only through X|, and Z; and X are constant
vectors in the ECEF coordinate system. X varies with « both be-
cause the satellite moves along its orbits and through the Earth’s ro-
tation in the transformation from Earth-centered inertial'® to ECEF
coordinates. It is obvious that the maximal and zero points of the
elevation angle i representthe maximal and zero of function F («),
respectively. Therefore, to find the maximum elevation angle, we
justneed to find amax such that dF /da(amax) =0, in which case we

ZE

Zr

Xe

Fig. 7 Geometry of ground target 7 and satellite S in ECEF
coordinates.
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take the derivative of F(«), and the solution should represent the
satellite maximum elevation time.
The computation of satellite location X is carried out as follows.
The epicycle equations which express (r, I, Q, 1) as functions of
time can be written as

r=a(l+p)— Acos(e —ap) +aysinp

+aA, cos2B — 2B (25)
I =1+ A;(1 — cos2a) (26)
Z
J
i n
/ Y
Q
Y,
X 3

Fig.8 Earth-centered inertial coordinates (X, Y, Z) and orbital plane
coordinates (£, 1, J).
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-80 -
look-ahead time Thour]

Fig.9 Diamondsshow timing error of two-body prediction when com-
pared with SGP4 model; squares show error when J; is incorporated.

Q =Qy+0a+ Ag sin2ux 27)
A =B+ QA/a)[sin(e — a,) + sina,] —2x (1 — cos B)
+ A, sin2B + 3BB (28)
where we have included the effects of atmospheric drag,'* and
B=U0+K) (29)

where p, k, and 0 are the coefficients for secular perturbation; x
represents long periodic perturbationcoefficients; and A represents
the short periodic terms.

We define the satellite position (¢, 1) (Fig. 8) on the orbital plane
using Cartesian coordinateswith the £ axis along the ascendingnode
of the orbit. Hence,

& =rcosa, n=rsini
X can be expressedin ECEF coordinatesas Xs = (X, Yg, Zg),
where

Xg =E&cos(v — Q)+ ncoslsin(v — Q)
Y = —&sin(v — Q) +ncoslcos(v — Q)
Zg =nsinl (30)

and v is the local ephemeris time (the angle between the first point
of Aries y and the Xy axis in the ECEF frame). These equations
together describe the dependenceof F on «.

IV. Test and Result

Results for two-body and secular perturbation expansion are as
follows.

For many practical problems, the approximationof two-body mo-
tion is sufficient, especially if two closely neighboring points on a
trajectory are under investigation. However, for the long-term satel-
lite passes prediction, we cannot ignore the cumulative effect of the
gradual variation of elements from their two-body values to achieve
the required accuracy for satellite imaging and communication. In
Fig. 9, we show the prediction of our method compared with the
SGP4 model.'> The diamonds clearly indicate that after only a few
hours the timing error of our prediction based on two-body theory
is already up to 8 s, and within one day the timing error is around
1 min. Images from PoSAT-1 cover an area 150 x 100 km on the

s} — — . — . — — —

<+ L 4
—_

o m | B
0
»
-
\_
S
2
=
B
)

gLl ]
=

A A A A aa .
W s A Aa 4
S A
A‘ A ry
a
A, aa
) A A, 4
o Tat 4 L ! AN L N T
o] 10 20 30 40 50 60

elapse time [doy]

Fig. 10 Timing errors when short and long variations are included, when compared with SGP4.
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ground which means that the prediction timing errors should be at
least within 7 s (1 s corresponds to approximately 7 km ground-
track) to keep the target within the image. The two-body prediction
is, therefore, only adequate for image capture within 2 ~ 3 h.

To reduce the timing errors, we have included the secular ef-
fects into our coarse search. Unlike Escobal’s* original controlling
equation, our function F () not only includes secular drift but also
has short- and long-periodic perturbations taken into account. We
present in Table 1 a comparison of the epicycle prediction with
an accurate propagator’ to look at the timing errors from the pre-
diction when atmospheric drag is ignored. Table 1 shows that the
timing errors are as small as 0.15 s for a look-ahead time of almost
300 days.

In Fig. 10 we show a comparison of our prediction with SGP4.
With an exhaustivesearch approachwe see that the timing difference
between our method and SGP4 is less than 1 s for two months look-

1123

ahead time. As Mai and Palmer'® pointed out, when atmospheric
dragcan be ignored, the differencebetweenour predictionand SGP4
arisesbecausethe accuracyof SGP4 is only 10, and there is a small
drift of X between the epicycle equations and SGP4 that builds up to
a significant error. This demonstratesthat over a look-ahead time of
a few days, when drag effects can be ignored, we have achieved the
prediction timing accuracy required by the high-resolution camera
on UoSat-12 (Ref. 17).

We next consider the drag compensation that we introduced
in Sec. II. In Fig. 11, we show the timing errors compared with
SGP4, now with drag included in the model. Both predictions are
based on the same set of initial conditions taken for the same
North American Aerospace Defence Command (NORAD) file
(URL:http://www.celestrak.com), and the predictions extend over
100 days. With a look-ahead time of 100 days, the timing error has
now been reduced to about 2 s. Without drag compensation, for the

time error [sec]

60 80 100

elapse time [day]

Fig. 11 Timing errors when atmospheric drag is included, when compared with SGP4.

10

time error [sec]
o]
3
2
p

—-10

25 30 35 40

elapse time [day]

Fig. 12 Prediction errors of single pass using our method, for look-ahead times of up to 40 days using NORAD data at different epochs.
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Table1 Timing errors as a function
of look-ahead time, comparing
the predictions with an accurate
orbit propagator

Look-ahead Timing
time, day error, S
0.96 8.7¢—3
4.53 2.2e—2
9.26 3.8¢—2
298.99 1.5e—1

Table 2 Processing time on a Pentium II,
averaged over 10,000 experiments®

Proposed Estimation, Refining,
method S S
Two-body 1.71 2.86
J 1.86 3.71

aCurrent program, SGP4 = 786 s.

same accuracy level, the look-ahead time is only one week. Thus,
for POSAT-1, with a typical small satellite remote sensing camera,
we can predict imaging opportunities for up to 100 days ahead.
For UoSat-12, which has a high-resolution camera onboard, we
can predictimaging opportunities for up to 1 month with sufficient
accuracy.

To remove the drift errors in SGP4, we performed one last ex-
periment where we compared the predictions of our algorithm with
itself, using two different NORAD files. The separation in time be-
tween the two NORAD files was anything up to 40 days, and the
timing errors for the same pass are shown in Fig. 12. One of these
predictions was based on a NORAD data set from just before the
pass. The dates used for this experiment were from May to July of
1997. The variability in prediction time is due to the variability of
atmospheric drag.

The algorithmis several orders of magnitude faster to run than the
exhaustive searchusing SGP4 that we have employed. In Table 2 we
presentsome timings for the estimation on a Pentium II. These tim-
ings are sufficiently short for this algorithmto be used on hand-held
receivers and are sufficiently accurate to control imaging devices on
satellites.

V. Conclusions

We have introduced a new method to predict the passes of a
satellite’s closest approach to a specific target on the ground. This
is useful for satellite nadir tracking and solving the satellite vis-
ibility problem. We have first described a coarse search phase of
this method, including two-body motion, secular perturbation, and
atmospheric drag. We have then described the second phase, refine-
ment, which uses a further developed controllingequation F'(«) = 0
based on the epicycle equations. We have shown that, ignoring drag
effects, we can achieve timing accuraciesof 1 s for look-aheadtimes
of 60 days. When drag compensationis included, we provide suffi-
ciently accurate timing estimates for over 100 days ahead. For most
imaging and communication applicationsusing small satellites, this
is sufficient. For high-resolution imaging, look-ahead time is re-
duced to about 1 month.

Although we have shown that, particularly as we approach so-
lar maximum, the variability of atmospheric drag degrades perfor-
mance, it is still adequate to predict imaging times to within 1-2 s
overa timescale of a month. Estimates can be automaticallyupdated
during this interval to monitor the stability of the image capture
time and, hence, remove the effects of the uncertainty in the drag
parameters.

We have shown elsewhere!® how to translate NORAD elements,
which are freely available for all traded satellites over the Internet,
to epicycle elements. Hence, this method can be used by any system
that has access to these NORAD files.
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