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A new equation for nadir tracking estimation, taking into account secular perturbations from the Earth’s
gravitational� eld and the in� uence of drag, is presented. The advantageof this proposed approach is that it needs
to be solved just twice per day with respect to a speci� c ground target (there are usually 14 orbital periods per day
for sun synchronous orbit). The resultant approximate near nadir angle time, whose root of mean square error is
around a few seconds (i.e., » 30-km groundtrack error), is then further re� ned using a newly developed controlling
equation, reducing the maximum error to about 0.4 s ( » 2:8 km groundtrack) for over 20 days prediction period.
This is acceptable when the imaging � eld of view of 10 km is considered for high resolution small satellite cameras.
The prediction period of 60 days can be used for a typical small satellite camera whose � eld of view is about100 km.
This method can also be expanded to solve the rise-and-set time problem. Because of the low complexity of the
proposed method, it is very suitable for implementation on the onboard processor whose computational resources
are generally limited. The new computational process is described and simulation results are presented.

Nomenclature
a = satellite’s orbital semimajor axis
h = elevation angle
i = inclination
N = integer representing the number of satellite

passages
n = mean motion
r = radial distance of the satellite from the center

of the Earth
T = orbital period
t0 = time when the satellite � rst crosses over a given

latitude line on the ascending pass
° = angle of camera � eld of view
1Àmax = maximum longitudinal offset angle for target

to be in � eld of view of camera
µÀ = longitudinal angle margin for ground target

to be visible to satellite
¸ = argument of latitude measured on orbital

plane
ÀS = geodetic longitude of satellite footprint
ÀT = geodetic longitude of ground target
’T = geocentric latitude of ground target
ÁT = geodetic latitude of ground target
Ä = right ascension of ascending node
! = argument of perigee
!© = Earth rotation rate

I. Introduction

F UTURE generations of Earth observation satellites must be
considerably more operable and autonomous to enable con-

tinuing military and civil applications such as resources investiga-
tion, fast-changingphenomenonmonitoring, and geographic infor-
mation generation. The need for greater operability and autonomy
stems from shrinking governmentalsupport for imaging space mis-
sions and commercial interest in deploying low-cost small satellites
for Earth observation. Greatly decreased operations costs will not
only enable more such missions, but will also enable systems to be
scalable to meet commercial goals. These include ESAT (URL:
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http://www.dbsindustries.com/investor.html#esat), which consists
of a 6 enhanced microsatellite constellation targeted at the gas and
electricutility for Global EnergyMetering Service (GEMS); Global
Altimeter Network Designed to Evaluate Risk,1 which operates a
constellation of 16 small satellites that will orbit the Earth in rapid
succession, observing sea surface winds and waves so that ships at
sea can be constantly updated on the sea conditions around them;
and a proposed 7-microsatellite constellation2;3 to deliver global
frequent disaster monitoring. Accordingly, the number of users
of Earth images will increase rapidly. Among all sorts of space-
crafts carrying imaging instruments, low-cost small satellites will
become a main source because of their cost effectiveness and fast
reaction.

With the increasing capability of modern micro- and minisatel-
lites to undertake autonomous imaging of targets on the surface of
the Earth by employing sophisticated onboard computers and data
processing techniques, one requirement is to be able to determine
the time of closest approach to nadir of a satellite in low Earth orbit
for a speci� c ground location. Because the satellite may not � y di-
rectlyover the desired target area for some period (days or weeks), it
is � rst necessary to determine whether a given target will be within
the narrow � eld of view of the satellite cameras to capture an image
within a shorter time span. In the conventionalapproach, it has been
customary to solve this problem by letting the satellite run through
its ephemeris and then checking at each instant to see where the
subsatellite nadir point falls. An orbital simulation is advanced in
time by some small time increment 1t , and a possibility check is
performed at each step. This method is called trajectory checking.
However, this method requires Keplerian equations to be solved
hundreds of times per orbital period, and is, therefore, not suitable
for onboard processing because of the computational load.

A closelyrelatedproblemis therise-and-settimeproblemofwhen
a satellite is visible from a given point on the Earth. An important
application of this is to � nd when the satellite is visible over a
ground station for data transmission.The simplest way to solve this
problem is by using a numerical method such as described in the
preceding paragraph. Escobal4 proposed a faster method to solve
this problem by developinga closed-form solution for the visibility
periods.He introduceda singletranscendentalequationas a function
of the eccentric anomaly of the satellite orbit, which he called the
controllingequation.Numericalmethods5 were then used to � nd the
rise-and-settimes. The advantageof this equation is that it is solved
only once per orbital period, in contrast with the hundreds of times
the Keplerian equation must be solved with the standard step-by-
step technique of hill climbing. The controlling equation, however,
is only valid for two-body motion, and our main aim is to solve
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MAI AND PALMER 1119

the satellite nadir trackingproblem, which means in applicationthis
equation needs further development.

Besides the controllingequationmethod,Lawton6 has developed
another method to solve for satellite–satellite and satellite–ground
station visibility periods for vehicles in circular or near circular
orbits by approximating the visibility function Ã.t/ by a Fourier
series. More recently, Alfano and Negron7 (see also Ref. 8) further
developedthe Ã.t/ function to suit all orbital types. However, these
methods are only valid for solving satellite rise-and-set time prob-
lems and are not suitable for satellite nadir tracking and still have
their own limitations.

In this paper, a new method is presented that can be used not only
for two-body motion, but also accommodatessecular perturbations,
short and long periodic perturbations, and the in� uence of drag in
a straightforward manner, providing a simple equation for nadir
tracking and solving the satellite visibility problem. The proposed
formulation only needs to be solved twice per day, which makes
it very suitable for implementation onboard a small satellite. In
Sec. II, we describethe � rst phaseof the new method,which is called
coarse search. It works in two-body, secular perturbations arising
from the Earth’s oblateness and atmospheric drag perturbations.In
Sec. III,we introducethe secondphaseof themethod,which is called
re� nement. Re� nement improves the accuracy of the new method.
Simulationresultsare presentedin Sec. IV, aswell as thecomparison
of CPU processing time between the conventionalmethod and this
new method. Finally, in Sec. V, we set out our conclusions.

II. Coarse Search for Satellite Passes
A. Fundamental Algorithm: Two-Body Analysis

We can easily estimate the satellite closest approach time by
checking the satellite ascending and descending passage once, re-
spectively, per day. Set the orbital period of the satellite to be
T . D2¼=n) (where n is the mean motion) and t0 the time when
the satellite � rst crosses over a given latitude line on the ascending
pass (Fig. 1). We call the circleof constant latitude that runs through
the target location the target latitude line (TLL). The key point of
our approach is to use the fact that, for two-body motion, a satellite
will revisit exactly the same point in an inertial coordinate system
after each orbital period T (Fig. 1). This means that the satellite
will make another ascending pass over the TLL at time (t0 C T ).
To simplify the discussion,we shall ignore the descendingpassages
over the TLL and include them again only at the end. Note that in
this method satelliteposition is expressedby the redundantepicycle
coordinates r , ¸, I , and Ä (Ref. 9), where r is the radial distance
of the satellite from the center of the Earth, ¸ is the argument of
latitude measured on the orbital plane, i is the inclination, and Ä is
the right ascension of the ascending node.

If the location of a target on the Earth is (ÀT ; ÁT ), where ÀT and
ÁT are the geodetic longitude and latitude, respectively, then the
satellite will pass over the TLL every t0 C N T (or t0 C N2¼=n),
where N is an integer representingthe number of satellite passages.

At time t0, the satellite is over the TLL and the initial longitu-
dinal difference between the satellite footprint ÀS and target ÀT is

Fig. 1 Satellite orbiting around Earth showing crossings of TLL.

1À D ÀS ¡ ÀT . After each orbital period the satellite revisits the
TLL and the Earth rotates under it, bringing the target closer to
the satellite’s longitudinal position. The satellite will see the tar-
get approaching by an amount !©T or !©2¼=n, where !© is the
Earth’s rotation rate. The target closest satellite passage (TCSP) oc-
curs when the longitudinal difference dÀ is smaller than !©2¼=n.
Therefore, we obtain the following fundamental equation:

1À D N!©2¼=n C dÀ (1)

where dÀ is the longitudinal difference between the subsatellite
point and the target at TCSP.

Hence,

N D [.1À=2¼/.n=!©/] (2)

where the square brackets implie the integer part.
In other words, the closest approach to the target will occur when

0 · dÀ < !©2¼=n. Therefore, as long as we know the initial pas-
sage time t0 of the TLL and the satellite’s orbital period T , we
can derive the possible closest approach time over long intervals of
time. We name the procedure of TCSP estimation as coarse search
because the satellite maximum elevation time over the target does
not necessarily occur at TLL crossing.

Even in this TCSP case, however,the satellitemaximumelevation
angle of this pass may not be suitable for imaging because the on-
board camera � eld of view (FOV) is very small. Therefore,we need
to � nd the maximum longitudinal offset angle 1Àmax for the target
to be in the FOV of the camera and to check whether dÀ · 1Àmax.
The calculation of 1Àmax will be described in Sec. II.A.2.

To determine the rise-and-set times of the satellite over a given
ground station, some modi� cation to the description given has to
be made. Instead of 1Àmax , we need to set another angle margin
µÀ within which the ground target is visible to the satellite (Fig. 2).
Vallado and McClain8 de� ne this as the ground-range angle. The
calculationof µÀ will be describedin Sec. II.A.2. Figure 3 shows the

Fig. 2 Within longitude angle µÀ satellite S is visible to ground
target T.

Fig. 3 Visibility of satellite passes.

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

E
 W

A
SH

IN
G

T
O

N
 U

N
IV

 o
n 

Ja
nu

ar
y 

14
, 2

01
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/2

.4
84

6 



1120 MAI AND PALMER

Fig. 4 Geometry of ¸0 in Earth-centered inertial coordinate.

basic idea of our new method for satellite rise-and-set times. When
the satellite is visible, its longitude ÀS must satisfy the following
condition:

ÀT ¡ µÀ · ÀS · ÀT C µÀ (3)

To test whether the passesare visible,we start fromÀS ’ ÀT ¡ µÀ .
If this is a visible pass, we add it to our coarse search list. When
ÀS < ÀT ¡ µÀ , we add2¼ to ÀS .WhenÀS > ÀT C µÀ , we cancompute
the difference in longitude 1ÀÀ D ÀS ¡ .ÀT C µÀ / that will bring it
to within the visibility of the ground station. Therefore, we get the
following formula for satellite visible estimation:

N D [.1ÀÀ =2¼/.n=!©/] C 1 (4)

1. Finding Initialization Argument of Latitude ¸0

In the preceding section, we pointed out that we need to know
the initial passage time t0 of the TLL. In our approach, we only
need to calculate the corresponding initial ÀS0. Therefore, we need
¸0 (the initial argument of latitude) for TLL. This is found from the
spherical triangle shown in Fig. 4, where T is the ground target and
’T is the geocentric latitude of the ground target:

sin ¸0 D sin’T = sin i (5)

2. LongitudinalOffset Angle Margin
a. Anglemargin for satellitemaximumelevationangle estimation.

For nadir tracking,sometimes the satellitemaximumelevationangle
to a speci� c target may not be high enough for the payload to image
the ground target. Therefore,we need to � nd the longitudinaloffset
angle,whichdetermineswhethera givenpassageis a suitableclosest
approachpassage.The range of an image is dependenton the phys-
ical dimension of the charge-coupled device (CCD) array and the
focal length of the lens. For the narrow angle camera of PoSAT-1,10

which has an interlacedCCD matrix of dimension576 £ 560 (about
8:4 £ 6:5 mm) and focal length of 50 mm, the ground cover is
150 £ 100 km froman orbital altitudeof 800km, which corresponds
to the camera’s half FOV of 3.6 deg. For nadir tracking, we need
to � nd the longitudinaloffset angle margin 1Àmax to check whether
the previousapproachestimationwouldbe acceptable,which means
we need to check whether dÀ · 1Àmax .

We assume the shape of the Earth is spherical. Let the camera
FOV angle be ° . Then the upper limit of the spherical offset angle
µ.r/ is given by (Fig. 5)

µ .r/ D sin¡1[.r=ae/ sin.° =2/] ¡ ° =2 (6)

where r is the geocentric range of the satellite and ae is the Earth’s
equatorial radius. Vallada and McClain8 describe in detail the ge-
ometry of surveillance and reconnaissanceoperations.

Fig. 5 Location of target and satellite at closest approach; O is center
of Earth, where offset angle µ is de� ned; ° is FOV of camera.

Fig. 6 Computation of maximum longitudinal offset angle margin
D Àmax , given ground track of satellite(l) and spherical offset angle µc.

For typical Earth observation orbits, which are near circular and
polar, the angle µ .r/ in Eq. (6) can be approximatedby the constant
angle

µc D sin¡1[.a=ae/ sin.° =2/] ¡ ° =2 (7)

where a is the satellite’s orbital semimajor axis. From the angle
µc, we can compute the longitudinal offset angle margin 1Àmax.
Figure 6 shows how 1Àmax is related to the satellite inclination
angle i , the upper limit of the spherical offset angle µc, and ground
target latitude ’T . The arc l represents the satellite’s ground track.
To � nd 1Àmax , we start by � nding p. Then the longitudinal offset
angle 1Àmax can be solved by following the equation for a small
circle (Werts,11 page 727, Eq. A-3):

cos 1Àmax D cos p ¡ sin2 ’T

cos2 ’T

(8)

To � nd p we use the law of cosines for sides (Werts,11 page 732,
Eq. A-26):

cos p D cos l cos ´ C sin l sin ´ cos 0 (9)

where the three angles of l, ´, and 0 are given in terms of ’T , µc ,
and i using the law of sines (Werts,11 page 732, Eq. A-25):

tan 0 D sin µc sin i

sin ’T ¡ cos i sin µc

(10)

sin ´ D sin µc

sin0
(11)

sin l D sin ’T

sin i
(12)

This completes the approach estimation procedure.
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MAI AND PALMER 1121

b. Angle margin for rise-and-set times. The rise time of a satel-
lite should occur when the satellite, at a given orbital height, crosses
the horizon plane. In this case, we set up another angle margin µÀ

as shown in Fig. 2 and simpli� ed the calculation for it.
If the orbital radius of the satellite S is a. D R C H , where R is

the radius of the Earth and H is the satellite orbital height) then
(see Ref. 8):

cos µÀ D R=a (13)

We, therefore, wish to estimate the times when the satellite
reaches the target longitude within §µÀ . However, because this a
simpli� ed calculation for satellite longitudinal angle margin, we
reduce R by a � xed fraction to avoid missing some low passes.

B. Adding Secular Perturbations
A satellite under the in� uence of an inverse square gravitational

law has truly constantorbital elements. In reality,however, there is a
gradual change in the orbital elements due to the Earth’s oblateness.
The principal effect of this is to introduce a short-periodoscillation
of the orbitalelements,which we can ignore in most cases.The argu-
ment of perigee! and longitude of the ascendingnode Ä, however,
experience a secular drift that signi� cantly changes the long-term
prediction of maximum elevation angle. We can adopt the method
we have outlined in Sec. II.A to take proper account of all of these
secular variations. In the following description we will introduce
the formulas for the satellite maximum elevation angle prediction.
The procedure for satellite rise-and-set times is similar to this.

First, we can easily add secular perturbationsto the coarse search
procedure for the effect on the argument of latitude ¸ that changes
the nodal period if the satellite comes back to the same TLL:

¸ D ®.1 C ·/ (14)

where · is the coef� cient of secular drifts in the epicycle equations9

and epicycle phase ® D nt . Thus, there is a change in ® for each
TLL crossing of 1® D 2¼=.1 C · ).

The second effect is the precession of the orbital plane PÄ. This
moves the target away from the orbital plane, PÄ > 0. We can incor-
porate this effect into the rotation rate of the Earth:

!eff D !© ¡ PÄ (15)

In the epicycle description of the orbit,9 the variation in Ä is
expressed as

Ä D Ä0 C µ® (16)

where µ is the secular coef� cient of plane precession.9 Hence,
PÄ D µn.

We can incorporate these results into Eqs. (1) and (2) for the
coarse search to get

1À D .!© ¡ µn/N .1®=n/ (17)

Therefore,

N D
µ

1À

2¼

n.1 C ·/

.!© ¡ µn/

¶
(18)

C. Accounting for Drag
Gravity is not the only force acting on the satellite. Another im-

portant effect comes from the Earth’s atmosphere, which still has a
signi� cant effect on orbits up to altitudes as high as 1000 km. Be-
causemost of our Earth observationsatellitesorbit at altitudeslower
than this, we need to consider the effects of atmospheric drag. Drag
is very dif� cult to model because of the many factors affecting the
Earth’s upper atmosphere and the satellite’s attitude, which affects
the cross-sectional area. In this paper, we only consider the effect
of drag on the satellite’s argument of lattitude for the coarse search
and include the effect on r in the re� nement. To test our result, the
SGP4 model12 has been used for drag modeling.

The effect of drag on the argumentof latitude can be incorporated
into the epicycle equations as

¸ D ®.1 C ·/ C 1:5B®2 (19)

where B is the drag coef� cient.
We start by � nding the change in the epicycle phase ® over one

nodalperiod.By setting¸ to be2¼ , we � nd the solutionfor®. D 1®)
from Eq. (19):

1® D [4¼=.1 C ·/] ¢
£
1
¯¡

1 C
p

1 C 12¼ B
¢¤

(20)

Using this in Eq. (17), we obtain

N D f.1À=1®/[n=.!© ¡ µn/]g (21)

This completes our discussion of the coarse search, where we
have included the secular perturbationsand atmospheric drag.

III. Re� ning the Estimates of Maximum Elevation and
Rise-and-Set Times

Having estimated the approach time to the target at TLL, we now
need a procedure that will re� ne this estimate to an application set
tolerance. For this we extend Escobal’s4 approach to determine the
maximumelevationangleby introducinga new controllingequation
based on the epicycle equations.

In Fig. 7, we show the geometry of a satellite pass. The target
ground station T is located on the surface of an oblate Earth, and
the vector zT is the local normal to the ground target surface. The
position of the satellite is S. We have the position of both the target
and the satellitein Earth-centered,Earth-� xed (ECEF)coordinates13

expressed in r , I , Ä, ¸, and ® from the epicycle equations, from
which we compute the slant vector P:

P D XS ¡ XT (22)

This gives the positionof the satellite as seen from the target.The
elevation angle is the angle measured from the horizon up to the
satellite. If this angle is h, then

P ¢ ZT D P sin h (23)

Therefore, we name a new controlling equation:

F.®/ D sin h D .P ¢ ZT /=P (24)

F is a function of ® only through Xs , and ZT and XT are constant
vectors in the ECEF coordinate system. Xs varies with ® both be-
cause the satellite moves along its orbits and through the Earth’s ro-
tation in the transformationfrom Earth-centered inertial13 to ECEF
coordinates. It is obvious that the maximal and zero points of the
elevation angle h represent the maximal and zero of function F.®/,
respectively. Therefore, to � nd the maximum elevation angle, we
just need to � nd ®max such that dF=d®.®max/ D 0, in which case we

Fig. 7 Geometry of ground target T and satellite S in ECEF
coordinates.
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1122 MAI AND PALMER

take the derivative of F.®/, and the solution should represent the
satellite maximum elevation time.

The computationof satellite locationXS is carried out as follows.
The epicycle equationswhich express (r , I , Ä, ¸) as functionsof

time can be written as

r D a.1 C ½/ ¡ A cos.® ¡ ®p/ C aÂ sin ¯

C a1r cos 2¯ ¡ 2B¯ (25)

I D I0 C 1I .1 ¡ cos 2®/ (26)

Fig. 8 Earth-centered inertial coordinates (X, Y, Z) and orbital plane
coordinates (», ´, J).

Fig. 9 Diamondsshow timing error of two-body prediction when com-
pared with SGP4 model; squares show error when J2 is incorporated.

Fig. 10 Timing errors when short and long variations are included, when compared with SGP4.

Ä D Ä0 C µ® C 1Ä sin 2® (27)

¸ D ¯ C .2A=a/[sin.® ¡ ®p/ C sin ®p] ¡ 2Â.1 ¡ cos ¯/

C 1¸ sin 2¯ C 3
2
B¯2 (28)

where we have included the effects of atmospheric drag,14 and

¯ D .1 C ·/® (29)

where ½ , · , and µ are the coef� cients for secular perturbation; Â
represents long periodic perturbationcoef� cients; and 1 represents
the short periodic terms.

We de� ne the satellite position (» , ´) (Fig. 8) on the orbital plane
usingCartesiancoordinateswith the » axisalong the ascendingnode
of the orbit. Hence,

» D r cos ¸; ´ D r sin ¸

XS can be expressed in ECEF coordinatesas XS D .X E ; YE ; Z E ),
where

X E D » cos.º ¡ Ä/ C ´ cos I sin.º ¡ Ä/

YE D ¡» sin.º ¡ Ä/ C ´ cos I cos.º ¡ Ä/

Z E D ´ sin I (30)

and º is the local ephemeris time (the angle between the � rst point
of Aries ° and the X E axis in the ECEF frame). These equations
together describe the dependenceof F on ®.

IV. Test and Result
Results for two-body and secular perturbation expansion are as

follows.
For many practicalproblems, theapproximationof two-bodymo-

tion is suf� cient, especially if two closely neighboring points on a
trajectoryare under investigation.However, for the long-termsatel-
lite passes prediction,we cannot ignore the cumulative effect of the
gradual variationof elements from their two-body values to achieve
the required accuracy for satellite imaging and communication. In
Fig. 9, we show the prediction of our method compared with the
SGP4 model.12 The diamonds clearly indicate that after only a few
hours the timing error of our prediction based on two-body theory
is already up to 8 s, and within one day the timing error is around
1 min. Images from PoSAT-1 cover an area 150 £ 100 km on the
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MAI AND PALMER 1123

ground which means that the prediction timing errors should be at
least within 7 s (1 s corresponds to approximately 7 km ground-
track) to keep the target within the image. The two-body prediction
is, therefore, only adequate for image capture within 2 » 3 h.

To reduce the timing errors, we have included the secular ef-
fects into our coarse search. Unlike Escobal’s4 original controlling
equation, our function F.®/ not only includes secular drift but also
has short- and long-periodic perturbations taken into account. We
present in Table 1 a comparison of the epicycle prediction with
an accurate propagator15 to look at the timing errors from the pre-
diction when atmospheric drag is ignored. Table 1 shows that the
timing errors are as small as 0.15 s for a look-ahead time of almost
300 days.

In Fig. 10 we show a comparison of our prediction with SGP4.
With anexhaustivesearchapproachwe see that the timingdifference
between our method and SGP4 is less than 1 s for two months look-

Fig. 11 Timing errors when atmospheric drag is included, when compared with SGP4.

Fig. 12 Prediction errors of single pass using our method, for look-ahead times of up to 40 days using NORAD data at different epochs.

ahead time. As Mai and Palmer16 pointed out, when atmospheric
dragcan be ignored,thedifferencebetweenour predictionandSGP4
arisesbecausetheaccuracyofSGP4 is only10¡6 , and there is a small
drift of ¸ between the epicycle equationsand SGP4 that builds up to
a signi� cant error. This demonstrates that over a look-ahead time of
a few days, when drag effects can be ignored, we have achieved the
prediction timing accuracy required by the high-resolutioncamera
on UoSat-12 (Ref. 17).

We next consider the drag compensation that we introduced
in Sec. II. In Fig. 11, we show the timing errors compared with
SGP4, now with drag included in the model. Both predictions are
based on the same set of initial conditions taken for the same
North American Aerospace Defence Command (NORAD) � le
(URL:http://www.celestrak.com), and the predictions extend over
100 days. With a look-ahead time of 100 days, the timing error has
now been reduced to about 2 s. Without drag compensation, for the
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1124 MAI AND PALMER

Table 1 Timing errors as a function
of look-ahead time, comparing

the predictions with an accurate
orbit propagator

Look-ahead Timing
time, day error, s

0.96 8:7e¡3
4.53 2:2e¡2
9.26 3:8e¡2
—— ——
298.99 1:5e¡1

Table 2 Processing time on a Pentium II,
averaged over 10,000 experimentsa

Proposed Estimation, Re� ning,
method s s

Two-body 1.71 2.86
J2 1.86 3.71

aCurrent program, SGP4 D 786 s.

same accuracy level, the look-ahead time is only one week. Thus,
for PoSAT-1, with a typical small satellite remote sensing camera,
we can predict imaging opportunities for up to 100 days ahead.
For UoSat-12, which has a high-resolution camera onboard, we
can predict imaging opportunitiesfor up to 1 month with suf� cient
accuracy.

To remove the drift errors in SGP4, we performed one last ex-
periment where we compared the predictionsof our algorithm with
itself, using two different NORAD � les. The separation in time be-
tween the two NORAD � les was anything up to 40 days, and the
timing errors for the same pass are shown in Fig. 12. One of these
predictions was based on a NORAD data set from just before the
pass. The dates used for this experiment were from May to July of
1997. The variability in prediction time is due to the variability of
atmospheric drag.

The algorithmis severalorders of magnitude faster to run than the
exhaustivesearchusing SGP4 that we have employed.In Table 2 we
present some timings for the estimation on a Pentium II. These tim-
ings are suf� ciently short for this algorithmto be used on hand-held
receiversand are suf� ciently accurate to control imaging deviceson
satellites.

V. Conclusions
We have introduced a new method to predict the passes of a

satellite’s closest approach to a speci� c target on the ground. This
is useful for satellite nadir tracking and solving the satellite vis-
ibility problem. We have � rst described a coarse search phase of
this method, including two-body motion, secular perturbation, and
atmospheric drag. We have then described the second phase, re� ne-
ment, which uses a furtherdevelopedcontrollingequation F .®/ D 0
based on the epicycle equations.We have shown that, ignoringdrag
effects,we can achieve timing accuraciesof 1 s for look-aheadtimes
of 60 days. When drag compensation is included, we provide suf� -
ciently accurate timing estimates for over 100 days ahead. For most
imaging and communicationapplicationsusing small satellites, this
is suf� cient. For high-resolution imaging, look-ahead time is re-
duced to about 1 month.

Although we have shown that, particularly as we approach so-
lar maximum, the variability of atmospheric drag degrades perfor-
mance, it is still adequate to predict imaging times to within 1–2 s
over a timescaleof a month. Estimates can be automaticallyupdated
during this interval to monitor the stability of the image capture
time and, hence, remove the effects of the uncertainty in the drag
parameters.

We have shown elsewhere16 how to translate NORAD elements,
which are freely available for all traded satellites over the Internet,
to epicycle elements.Hence, this method can be used by any system
that has access to these NORAD � les.
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