

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 5559-5562

Tetrahedron Letters

Synthesis of dysiherbaine analogue

Muneo Shoji,^a Kaoru Shiohara,^a Masato Oikawa,^a Ryuichi Sakai^b and Makoto Sasaki^{a,*}

^aGraduate School of Life Sciences, Tohoku University, Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan ^bSchool of Fisheries Science, Kitasato University, Sanriku-cho, Iwate 022-0100, Japan

> Received 4 April 2005; revised 6 June 2005; accepted 8 June 2005 Available online 5 July 2005

Abstract—Synthesis of dysiherbaine analogue 4, which corresponds to 8,9-*epi*-neodysiherbaine A, is described. The synthesis features a concise route to the bicyclic ether skeleton through stereoselective C-glycosylation to set the C₆ stereocenter and 5-*exo* ring-closure to form the tetrahydrofuran ring. The results of preliminary biological studies of 4 are also provided. © 2005 Elsevier Ltd. All rights reserved.

Dysiherbaine (1), isolated from the Micronesian sponge, Dysidea herbacea, is a novel excitatory amino acid with potent convulsant activity.^{1,2} Dysiherbaine activates neuronal non-NMDA type glutamate receptors, namely, AMPA and kainic acid (KA) receptors, with considerable preference over KA receptors (K_i values of 26 and 153 nM for KA and AMPA receptors, respectively).² Moreover, it has been shown that dysiherbaine could differentially activate one of the activation sites within the subunit of a heteromeric GluR5/KA2 receptor complex.³ This discrete affinity of dysiherbaine has enabled characterization of the unexpectedly complex behavior of the heteromeric KA receptors. Neodysiherbaine A (2),⁴ isolated as a minor congener from the same sponge, differs from dysiherbaine in the functional group at the C₈ position and is also a selective agonist for non-NMDA type glutamate receptors (Fig. 1).

Due to these unusual pharmacological properties of dysiherbaine to KA receptors and its potent epileptogenic activity, dysiherbaine and its designed analogues are anticipated to serve as useful tools for understanding the structure and functions of glutamate receptors in the central nervous system. Thus, the total synthesis of dysiherbaine has been reported by several research groups.^{5,6}

Recently, Swanson and co-workers have characterized the pharmacological action of neodysiherbaine A and simplified synthetic analogue 3^7 on glutamate recep-

Figure 1. Structures of dysiherbaine and its analogues.

tors.⁸ These studies revealed that neodysiherbaine A is similar to dysiherbaine in its pharmacological activity on KA receptors, albeit with slightly different binding affinities for individual receptor subunits, whereas analogue **3**, lacking the hydroxyl and *N*-methyl groups on the tetrahydropyran ring, is a selective antagonist for GluR5 KA receptors. These results strongly suggest that the C₈ and C₉ functional groups are critical structural elements for specificity and selectivity for KA receptors. In order to reveal further the detailed structure–activity relationship profiles of dysiherbaine, we undertook a diverted synthesis of structural analogues of dysiherbaine. In this letter, we describe a synthesis of dysiherbaine analogue **4**, corresponding to 8,9-*epi*neodysiherbaine A, for the biological evaluation.

The synthesis started with C-glycosylation of allylsilane 6^9 with diacetyl-L-arabinal (5).¹⁰ Thus, reaction of 5

^{*}Corresponding author. Tel.: +81 22 717 8828; fax: +81 22 717 8897; e-mail: masasaki@bios.tohoku.ac.jp

^{0040-4039/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.06.093

Scheme 1. Reagents and conditions: (a) compound 6, Yb(OTf)₃ (10 mol%), CH₂Cl₂, rt, 85%; (b) AD mix-β, MeSO₂NH₂, *t*-BuOH/ H₂O, 0 °C \rightarrow rt, quant.; (c) TBSOTf, Et₃N, DMAP, CH₂Cl₂, 0 °C, 87%; (d) K₂CO₃, MeOH, rt, 92%; (e) *m*-CPBA, CH₂Cl₂/pH 7 phosphate buffer, 0 °C \rightarrow rt, then SiO₂, 89%; (f) Me₂C(OMe)₂, CSA, CH₂Cl₂, 0 °C, 85%; (g) H₂, Pd/C, hexane, rt, 11a, 60%; 11b, 38%.

with 6 in the presence of $Yb(OTf)_3$ (CH₂Cl₂, room temperature)¹¹ led to C-glycoside 7 as the sole product in 85% yield (Scheme 1). Subsequent treatment of 7 with AD mix- $\beta^{(R)}$ (MeSO₂NH₂, *t*-BuOH/H₂O, 0 °C \rightarrow rt) effected regioselective dihydroxylation of the exocyclic double bond to afford diol 8 in quantitative yield as an approximately 1.6:1 mixture of diastereomers, which was carried forward without separation through the subsequent transformations. The primary hydroxy group of 8 was selectively protected as the *tert*-butyldimethylsilyl (TBS) ether to give 9 in 87% yield. After removal of the acetyl group (92%), treatment of the resultant allylic alcohol with m-CPBA led exclusively to the corresponding β -epoxide. When the crude epoxide was subjected to purification by column chromatography on silica gel, epoxide ring-opening by an intramolecular attack of the tertiary alcohol occurred to generate diol 10 in 89% yield. Protection of the diol as the acetonide (85%) followed by removal of the benzyl group under hydrogenolysis afforded alcohols 11a (60%) and **11b** (38%), which were readily separable by flash column chromatography.¹² Thus, the synthesis of the bicyclic ether skeleton was realized in only seven steps from 5.

Oxidation of the major alcohol **11a** with SO₃·pyr/DMSO followed by Wittig reaction, gave enoate **12** in 88% overall yield (Scheme 2). DIBALH reduction and Sharpless asymmetric epoxidation using (+)-diisopropyl tartrate (DIPT) delivered epoxy alcohol **13** in 93% yield for the two steps. Stereoselective introduction of the amino group at the C₂ position was carried out following the procedure of Kishi and co-workers.¹³ Thus, treatment of **13** with benzyl isocyanate (*i*-Pr₂NEt, benzene, 50 °C, 80%) followed by reaction of the resultant benz-

Scheme 2. Reagents and conditions: (a) SO_3 ·pyr, DMSO, Et₃N, CH₂Cl₂, 0 °C; (b) Ph₃P=CHCO₂Me, CH₂Cl₂, rt, 88% (two steps); (c) DIBALH, CH₂Cl₂, -78 °C, 98%; (d) *t*-BuOOH, Ti(O*i*-Pr)₄, (+)-DIPT, 4 Å MS, CH₂Cl₂, -20 °C, 95%; (e) BnNCO, *i*-Pr₂NEt, benzene, 50 °C, 80%; (f) KO*t*-Bu, THF, -20 \rightarrow 0 °C, 61%; (g) NaH, CS₂, MeI, THF, 0 °C \rightarrow rt, 80%; (h) Bu₃SnH, AIBN, toluene, 110 °C, 82%.

ylcarbamate with KOt-Bu afforded cyclic carbamate 14 (61%). Subsequent deoxygenation was carried out according to the method of Barton and MaCombie¹⁴ to provide 15 in 66% yield for the two steps.

Diastereomeric alcohol **11b** was also converted to **15** as depicted in Scheme 3. Oxidation to the acid and subsequent esterification provided methyl ester **16** in 60% overall yield. Desilylation followed by oxidation with SO_3 ·pyr/DMSO afforded an aldehyde, which was subjected to Wittig reaction to give **17** in 51% yield for the three steps. Selective reduction of the enoate moiety of diester **17** was achieved by exposure to DIBALH in THF to yield an allylic alcohol (90%), which upon asym-

Scheme 3. Reagents and conditions: (a) TEMPO, NaClO₂, cat. NaClO, MeCN/pH 7.0 phosphate buffer, 75%; (b) K₂CO₃, MeI, DMF, rt, 80%; (c) TBAF, THF, rt, 85%; (d) SO₃·pyr, DMSO, Et₃N, CH₂Cl₂, 0 °C; (e) Ph₃P=CHCO₂Me, CH₂Cl₂, rt, 60% (two steps); (f) DIBALH, THF, -78 °C, 90%; (g) *t*-BuOOH, Ti(*i*-PrO)₄, (+)-DIPT, CH₂Cl₂, 4 Å MS, -20 °C, 83%; (h) BnNCO, *i*-Pr₂NEt, benzene, 50 °C, 95%; (i) KO*t*-Bu, THF, -20 °C, 78%; (j) NaH, CS₂, MeI, THF, 0 °C \rightarrow rt, 80%; (k) Bu₃SnH, AIBN, toluene, 110 °C, 75%; (l) LiBH₄, THF, $0 \rightarrow 60$ °C, 74%; (m) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 87%.

metric epoxidation delivered epoxy alcohol **18** in 83% yield. Elaboration of **18** to cyclic carbamate **19** was readily accomplished as described above. The resultant ester **19** was then converted to **15** by ester reduction and protection.¹⁵

Cyclic carbamate 15 was subsequently transformed to diol 20 by a four-step sequence of protective group manipulations, including reductive debenzylation with lithium tert-butylbiphenylide (LDBB),¹⁶ reprotection as the Boc group, ethanolysis of the cyclic carbamate and desilylation with TBAF (Scheme 4). Oxidation of 20 with $KMnO_4$ (1 M NaOH, H_2O) gave a mixture of diacid 21 and aminal 22, which without separation was further oxidized with catalytic amounts of tetra-n-propylammonium perruthenate (TPAP) and N-methylmorpholine N-oxide $(NMO)^{17}$ and subsequently treated with excess trimethylsilyldiazomethane to deliver dimethyl ester 23 in 61% yield over the three steps. Finally, global deprotection by acid hydrolysis (6 M HCl, 65 °C) furnished the target compound 4 in 90% yield.¹⁸ Thus, the synthesis of analogue 4 was completed in 23 steps and 3.4% overall yield from diacetyl-L-arabinal via **11a.** In addition, selective deprotection of the acetonide of 23 was realized by using DDQ (CH₃CN/H₂O, 50 °C) to give diol 24 in 85% yield.¹⁹ Further modification of

Scheme 4. Reagents and conditions: (a) LDBB, THF, -78 °C, 76%; (b) Boc₂O, Et₃N, DMAP, CH₂Cl₂, 85%; (c) Cs₂CO₃, EtOH, rt, 95%; (d) TBAF, THF, 4 Å MS, rt, 94%; (e) KMnO₄, aq NaOH, rt; (f) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt; (g) TMSCHN₂, MeOH, rt, 61% (three steps); (h) 6 M HCl, 65 °C, 90%; (i) DDQ, CH₃CN/H₂O, 50 °C, 85%.

the C_8 and C_9 hydroxy groups of **24** should lead to various dysiherbaine analogues.

The toxicity of dysiherbaine analogue 4 was preliminarily tested on mice. Intracerebral injection of 4 against mice did not induce any behavioral effects such as violent scratching and head bobbing even at higher dose $(20 \ \mu g/mouse)$.

In conclusion, we have developed a synthetic route to dysiherbaine analogue 4, which features a concise synthesis of the bicyclic ether skeleton through stereoselective C-glycosylation to set the C₆ stereocenter and 5-*exo* cyclization for constructing the tetrahydrofuran ring. Further neurophysiological studies of compound 4 and synthesis of other analogues from a key intermediate 23 to probe the structure–activity relationship of dysiherbaine are in progress and will be reported in due course.

Acknowledgments

This work was financially supported by Yamada Science Foundation and a Grant-in-Aid for Scientific Research on Priority Area 'Creation of Biologically Functional Molecules' from the Ministry of Education, Science, Sports, Culture and Technology, Japan.

References and notes

- 1. Sakai, R.; Kamiya, H.; Murata, M.; Shimamoto, K. J. Am. Chem. Soc. 1997, 119, 4112–4116.
- Sakai, R.; Swanson, G. T.; Shimamoto, K.; Contractor, A.; Ghetti, A.; Tamura-Horikawa, Y.; Oiwa, C.; Kamiya, H. J. Pharm. Exp. Ther. 2001, 296, 655–663.
- Swanson, G. T.; Green, T.; Sakai, R.; Contractor, A.; Che, W.; Kamiya, H.; Heinemann, S. F. *Neuron* 2002, 34, 589–598.
- Sakai, R.; Koike, T.; Sasaki, M.; Shimamoto, K.; Oiwa, C.; Yano, A.; Suzuki, K.; Tachibana, K.; Kamiya, H. Org. Lett. 2001, 3, 1479–1482.
- (a) Snider, B. B.; Hawryluk, N. A. Org. Lett. 2000, 2, 635–638; (b) Sasaki, M.; Koike, T.; Sakai, R.; Tachibana, K. Tetrahedron Lett. 2000, 41, 3923–3926; (c) Masaki, H.; Maeyama, J.; Kamada, K.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. J. Am. Chem. Soc. 2000, 122, 5216–5217; (d) Phillips, D.; Chamberlin, A. R. J. Org. Chem. 2002, 67, 3194–3201.
- (a) For synthetic studies on dysiherbaine, see: Naito, T.; Nair, J. S.; Nishiki, A.; Yamashita, K.; Kiguchi, T. *Heterocycles* 2000, 53, 2611–2615; (b) Huang, J.-M.; Xu, K.-C.; Loh, T.-P. Synthesis 2003, 755–764; (c) Miyata, O.; Iba, R.; Hashimoto, J.; Naito, T. Org. Biomol. Chem. 2003, 1, 772–774; (d) Kang, S. H.; Lee, Y. M. Synlett 2003, 993–994.
- Sasaki, M.; Maruyama, T.; Sakai, R.; Tachibana, K. Tetrahedron Lett. 1999, 40, 3195–3198.
- Sanders, J. M.; Ito, K.; Settimo, L.; Pentikäinen, O. T.; Shoji, M.; Sasaki, M.; Johnson, M. S.; Sakai, R.; Swanson, G. T. J. Pharm. Exp. Ther. 2005, in press.
- 9. Konosu, T.; Furukawa, Y.; Hata, T.; Oida, S. Chem. Pharm. Bull. 1991, 39, 2813–2818.
- Diacetyl-L-arabinal (5) is readily available in two steps from L-arabinose Hullomer, F. L. In *Methods in Carbohydrate Chemistry*; Academic Press: New York, 1962; Vol. I, pp 83–88.

- 11. Takhi, M.; Rahman, A. A.-H. A.; Schmidt, R. R. *Tetrahedron Lett.* **2001**, *42*, 4053–4056.
- 12. The stereochemistry at C_4 position of each compound was determined by NOE experiments of the corresponding aldehydes (A and B).

- Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109–1111.
- Barton, D. H. R.; MaCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574–1585.
- 15. Attempts to remove the benzyl group of compound **19** were unsuccessful.

- (a) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 45, 1924–1930; (b) Ireland, R. E.; Smith, M. G. J. Am. Chem. Soc. 1988, 110, 854–860.
- 17. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639–666.
- 18. Selected data for compound **4**: $[\alpha]_D^{25}$ -40.0 (*c* 0.05, H₂O); ¹H NMR (600 MHz, D₂O) δ 2.00 (dd, *J* = 15.6, 10.6 Hz, 1H, 3-H), 2.09 (dd, *J* = 14.1, 3.8 Hz, 1H, 5-H), 2.53 (dd, *J* = 15.6, 2.3 Hz, 1H, 3-H); 2.54 (d, *J* = 14.1 Hz, 1H, 5-H), 3.39 (dd, *J* = 10.6, 10.6 Hz, 1H, 10-H), 3.47 (dd, *J* = 10.6, 5.0 Hz, 1H, 10-H), 3.61 (dd, *J* = 10.6, 2.3 Hz, 1H, 2-H), 3.93 (ddd, *J* = 10.6, 5.0, 3.2 Hz, 1H, 9-H), 4.05 (m, 1H, 7-H), 4.09 (m, 1H, 8-H), 4.13 (m, 1H, 6-H); ¹³C NMR (125 MHz, D₂O) δ 178.57, 174.12, 86.89, 83.97, 74.24, 67.42, 65.11, 64.43, 53.79, 44.31, 39.70; HRMS (FAB) calcd for C₁₁H₁₆NO₈ [(M–H)⁻]: 290.0876. Found: 290.0881.
- Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435–2446.