

PII: S0040-4020(96)00951-9

Chemical Study on Hapalosin, a Cyclic Depsipeptide Possessing Multidrug Resistance Reversing Activities: Synthesis, Structure and Biological Activity¹

Toshiaki Okuno, Ken Ohmori, Shigeru Nishiyama,* Shosuke Yamamura* Kensuke Nakamura,[†] K. N. Houk[†] and Kazuya Okamoto^{††}

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan [†]Department of Chemistry and Biochemistry, University of California, Los Angeles 405 Hilgard Ave. Los Angeles CA 90095-1569 USA

^{††}Research Laboratories, Pharmaceuticals Group, Nippon Kayaku, Kita-ku, Shimo 3-31-12, Tokyo 115, Japan

Abstract: Hapalosin 1 possessing a multidrug resistance reversing activity, has been synthesized from the corresponding hydroxy acids A, C and γ -amino acid B. The stereochemistry of the natural product 1 and N-demethylhapalosin 11 is discussed by means of spectroscopic manner as well as molecular modeling studies. Biological evaluation of 1 and 11 indicated that a cis-amide function is a crucial factor for the MDR reversing activity. Copyright © 1996 Elsevier Science Ltd

Chemotherapeutic treatment of cancer disease has encountered multidrug resistance (MDR) mediated by P-glycoprotein, which acts as a ATP-dependent drug efflux pump.² Among numerous natural and unnatural substances examined to solve this urgent problem, such agents as reserpine, quinidine, verapamil and related derivatives have been found to possess MDR reversing activities.³ Recently, hapalosin **1**, a 12-membered cyclic depsipeptide isolated from the blue green alga *Hapalosiphon welwitschii* W. & G. S. West, was included as a new member of this family.⁴ The cyclic structure bearing comparable activity to verapamil as well as low cytotoxicity ($IC_{50} = 5 \sim 15 \mu M$) might be a lead to develop new MDR reversing agents. From a stereochemical viewpoint, **1** was obtained as an inseparable mixture of conformers (**1a/1b** = ~3:1) around the amide function, and their gross stereostructures had not been elucidated. Accordingly, respective activities of both conformers had not been clarified. The chemical and biological interests in the molecule prompted us to initiate synthesis of **1** and its congeners.⁵ The retrosynthetic analysis indicated that **1** might be constructed by a sequential coupling of 3-hydroxy-2-methylbutylic acid **A**, 3-hydroxy-4-amino acid **B** and 2-hydroxy acid

C. Final production of the amide linkage followed by the N-methylation, might set up congeners carrying diverse N-alkyl groups.

RESULTS AND DISCUSSION

According to the Evans aldol protocol,⁶ the stereogenic centers of **A** were produced by coupling of *N*propionyl-(4S,5R)-4-methyl-5-phenyl-2-oxazolidinone (2)⁷ with octanal in the presence of Bu₂BOTf and Et₃N, leading to **3** in 90% yield, which on recrystallization contained no diastereomers detectable by the ¹H NMR spectrum. The chiral auxiliary was converted in 71% yield into the corresponding benzyl ester **4** by a standard procedure using BnOLi. Compound **4** was submitted to coupling with a carboxylic acid prepared from 6⁸ under the DCC conditions to give **7** in 86% yield based on **6**. After removal of the benzyl protective group of **7**, introduction of the third fragment **8** provided the fully functionalized seco derivative **9** in 81% yield from **7**. Treatment of **9** with (Ph₃P)₄Pd furnished carboxylic acid **10** (80%), which underwent acid hydrolysis, followed by cyclization under the high dilution conditions (1 mmol/l) to yield desmethylhapalosin **11** in 83% yield. Transformation into the natural product **1** by employing the protected derivative **12** was troublesome, probably owing to low reactivity of the amide part under the usual N-methylation conditions examined (MeI - NaH, MeI - Ag₂O and MeI - LDA). During such attempts, exposure to Me₃OBF₄ and

Scheme 1. Reagents: a. Bu₂BOTf, Et₃N / CH₂Cl₂, then Me(CH₂)₆CHO (90%). b. nBuLi, BnOH / THF (71%). c. ref. 8. d. i) NaOH; ii) 4, DCC, DMAP / CH₂Cl₂ (86% in two steps). e. i) H₂, Pd(OH)₂ / EtOH: ii) 8, DCC, DMAP/CH₂Cl₂ (81% in two steps). f. (Ph₃P)₄Pd, morpholine/THF (80%). g. i) TFA / CH₂Cl₂: ii) DPPA, iPr₂NEt / DMF (1 mmol/1) (83% in two steps). h. TBSCl, Imd / DMF (92%). i. Me₃OBF₄, Proton SpongeTM / CH₂Cl₂ (66%).

Proton SpongeTM,9 produced 13¹⁰ as a 1.8:1 (cis / trans) mixture of geometrical isomers, whose structures were elucidated by the NOESY experiments, as depicted in Scheme 1. Interestingly, preference of the formation of the cis-type product is similar to the ratio of the natural conformers.⁴ Additionally, N-methylation by using the primary amine was also unsuccessful; alkylation with HCHO - NaBH₃CN gave dimethyl derivative 14 or acetal 15, depending on the reaction conditions. Upon employing 16 as a substrate, a MeI - NaH method gave rise to an ester cleavage to afford the desired fragment 17 in low yield.

Scheme 2. *Reagents*: a. i) TFA / CH_2Cl_2 : ii) HCHO, NaBH₃CN / MeOH (14, 72%): i) TFA / CH_2Cl_2 : ii) HCHO, then NaBH₃CN (15, 67%). b. i) p-TsOH / MeOH (67%): ii) TBSCl, Imd / DMF (97%). c. MeI, NaH / DMF (35%)

Scheme 3. *Reagents*: a. i) TBSCl, Imd / DMF (100%): ii) 2M NaOH (84%). b. MeI, NaH / THF (77%). c. 4, DCC, DMAP / CH₂Cl₂ (77%). d. i) H₂, Pd(OH)₂ / EtOH: ii) 8, DCC, DMAP / CH₂Cl₂ (96% in two steps). e. HF / pyridine (87%). f. i) (Ph₃P)₄Pd, morpholine / THF (97%): ii) TFA / CH₂Cl₂ (94%): g. DPPA, iPr₂NEt / DMF (1 mmol/l) (44%).

Successful transformation into the target molecule was achieved by employing 19 carrying the N-methyl group as fragment C equivalent. Thus, a hydroxyl group of 5 was protected as a siloxy ether (100%), followed by alkaline hydrolysis, leading to 18 in 84% yield. The desired N-methylation of 18 was effected under MeI – NaH conditions¹¹ to provide 19 in 77% yield. Compound 19 in hand was directly coupled with 4, followed by reductive abstraction of a benzyl group, and further coupling with 8 to give 20 in a moderate overall yield. After successive removal of a siloxy (87%) and an allyl (97%) protective groups of 20,

hydrolysis with TFA (94%) provided a pair of a free carboxylic acid and an ammonium salt. Final cyclization as described in the case of 11 afforded hapalosin 1 in 44% yield, exhibiting superimposable spectral data to those reported for the natural product.⁴ Detailed ¹H NMR study indicated that synthetic 1 at room temperature existed as a ~3:1 (1a / 1b) mixture of the conformers as reported by Moor. The ratio was reversibly changed to 1.7:1 at 100 °C (DMSO-d₆). The NOE experiments indicated the major 1a exhibited a correlation between H₉ and H₁₂ ascribed to a cis-amide, while the minor 1b adopted a trans-amide without a NOE effect at the same position.¹² Interestingly, contrary to the case of 1, the ¹H NMR spectrum of N-demathylhapalosin 11 showed the presence of a trans-amide as a single isomer.

Molecular Modeling Study. Monte Carlo conformational analysis was carried out using Macromodel^{13a} with MM2*^{13b} force field. The heptyl group was replaced with a methyl group in order to reduce the number of conformations. The lowest energy conformation for the cis-amide form of hapalosin (1a) was calculated to be 1.3 kcal/mol more stable than the trans-amide form (1b), which is consistent with our experimental findings. The preference for the cis-amide form is mainly due to the steric repulsion between the N-methyl and the isopropyl groups. The H9-H₁₂ distance in the force field optimized structures are 2.08 Å and 4.49 Å, respectively. Similar procedure was carried out for N-demethylhapalosin 11. The lowest energy conformation of the cis-amide was found to be 5.1 kcal/mol higher than that of the trans-amide. The relative energy between trans- and cis-N-methyl acetamide was calculated to be 1.9 kcal/mol in favor of the trans conformation. Calculation on 11 indicated that the trans conformation has additional 3 kcal/mol preference.

Figure 1. Lowest Energy Conformations of the Cis- and Trans-amides of Hapalosin (1) and N-Demethylhapalosin (11) Optimized by MM2* Force Field Calculations.

The extra preference is probably due to an additional intramolecular hydrogen bondings in trans-11 which may not exist in a polar solvent. Monte Carlo conformational search with GB/SA solvation (water) model calculations was performed to take this effect into account. As a result, the cis-preference for 1 stayed same, while the trans-preference for 11 was reduced to 3.7 kcal/mol. The computational results clearly explain why only the trans-amide was observed in N-demethylhapalosin (11).

Biological Activity. To elucidate structure - activity relationship, MDR reversing activities of 1 and 11 were examined by the human breast cancer cell lines MCF-7 and Adr^R (adriamycin resistant). As can be seen in Fig. 2, 1 during $10 \sim 2.5 \mu$ M concentration exhibited a similar activity to those of verapamil used as a positive control, although 11 indicated no remarkable activities. Our results could not reproduce the observation by Moore et al. that natural 1 has a more potent activity than verapamil.⁴ However, it should be mentioned that 11 possessing a trans-amide exhibited few MDR reversing activity. Accordingly, the cisamide conformation assisted by the N-methyl group may be a crucial factor for expression of the MDR activity. Evaluation of relationship between size of the N-alkyl group and the activity is in progress.

Figure 2. Relative Growth Rate of Hapalosin (1), N-demethylhapalosin (11) and Verapamil Combined with Adriamycin Against Human Breast Cancer Cell Lines MCF-7 and Adr^R. \bigcirc ADR only, O 20 μ M, \fbox{O} 10 μ M, O 5 μ M, \triangle 2.5 μ M, \bigstar 1.25 μ M of combination drug — against MCF-7, --- against Adr^R

EXPERIMENTAL

All of the melting points were obtained on a Yanaco MP-S3 melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO Model A-202 spectrophotometer. ¹H NMR and ¹³C NMR spectra were obtained on a JEOL JNM EX-270, a JEOL JNM GX-400 or a JNM ALPHA-400 NMR spectrometer in a

deuteriochloroform (CDCl₃) solution using tetramethylsilane as an internal standard, unless otherwise stated. Optical rotations were recorded on a JASCO DIP-360 digital polarimeter. High-resolution mass spectra were obtained on a Hitachi M-80 GC-MS spectrometer operating at the ionization energy of 70 eV. Preparative and analytical TLC were carried out on silica-gel plates (Kieselgel 60 F₂₅₄, E. Merck A. G., Germany) using UV light and/or 5% molybdophosphoric acid in ethanol for detection. Katayama silica-gel (K 070) was used for column chromatography.

(4S,5R)-3-[(2S,3R)-3-Hydroxy-2-methyl-1-oxodecanyl]-4-methyl-5-phenyl-2-oxazolidinone (3). To a precooled solution of N-propionyl-(4S,5R)-4-methyl-5-phenyl-2-oxazolidinone (2, 451 mg, 1.9 mmol) in CH₂Cl₂ (10 ml) was added Et₃N (0.33 ml, 2.4 mmol), followed by the dropwise addition of 1M solution of Bu₂BOTf in CH₂Cl₂ (2.2 ml, 2.2 mmol) at 0 °C. The mixture was stirred at the same temperature for 30 min. Octanal (0.33 ml, 2.1 mmol) was then added dropwise at -78 °C. The solution was stirred at -78 °C for 30 min, then at room temperature for 2 h. The reaction was guenched with phosphate buffer (pH 7.0, 10 ml), and the mixture was extracted with CH₂Cl₂. The organic extracts were combined, dried (Na₂SO₄), then concentrated in vacuo. The residue was dissolved in MeOH (10 ml), and 30% aqueous H₂O₂ (6 ml) was added at 0 °C. After being stirred at 0 °C for 1 h, the reaction was quenched by the addition of 10% aq. NaHSO₄. The mixture was extracted with EtOAc, and the organic extracts were washed with sat.aq. NaHCO3 and brine, dried (Na2SO4), and concentrated in vacuo. The residue was purified by silica gel column chromatography (50 g, hexane/EtOAc = 3:1), then recrystallized from EtOAc hexane to afford 3 (629 mg, 90%) as needles: mp 107 - 108 °C: $[\alpha]_{D}^{21}$ -16.2° (c 1.00, CHCl₃); IR (film) 3470, 1760, and 1680 cm⁻¹; $\delta_{\rm H}$ 0.9 (3H, br. d, J= 6 Hz), 1.22 - 1.29 (18H, complex), 2.86 (1H, d, J= 3 Hz), 3.77 (1H, m), 3.96 (1H, m), 4.79 (1H, m), 5.68 (1H, d, J= 7.2 Hz), and 7.25 - 7.46 (5H, complex); $\delta_c \ 10.1, \ 14.0, \ 14.3, \ 22.5, \ 25.9, \ 29.1, \ 29.4, \ 31.7, \ 33.8, \ 42.1, \ 54.0, \ 71.5, \ 78.8, \ 125.5, \ 128.6, \ 128.7, \$ 133.0, 152.5, and 177.3. Found: C, 69.65; H, 8.94; N, 3.90%. Calcd for C₂₁H₃₁NO₄: C, 69.78; H, 8.64; N, 3.87%.

Benzyl (2S,3R)-3-Hydroxy-2-methyldecanoate (4). To a solution of 3 (243 mg, 0.67 mmol) in THF (5 ml) at -78 °C was added nBuOLi in THF (5 ml) prepared from nBuLi (2 ml, 3.4 mmol, 1.7M hexane solution) and BnOH (0.35 ml, 3.4 mmol); the mixture was stirred at the same temperature for 30 min, then at 0 °C for 1h. After the addition of aq. NH₄Cl, The resulting mixture was extracted with EtOAc. The organic extracts were washed with brine, dried (Na₂SO₄), and evaporated to dryness. The residue was purified by silica gel column chromatography (15 g, hexane/EtOAc = 10:1 \rightarrow 3:1) to give 4 (140 mg, 71%) as an oil: [α]_D²⁴ +3.7° (*c* 1.00, CHCl₃); IR (film) 3450 and 1715 cm⁻¹; δ_{11} 0.88 (3H, t, *J*= 7 Hz), 1.16 - 1.46 (15H, complex), 2.56 (2H, complex), 3.90 (1H, m), 5.14 (2H, s), and 7.31 (5H, complex); δ_{c} 10.7, 14.0, 22.6, 25.9, 29.1, 29.4, 31.7, 33.8, 44.4, 66.3, 71.2, 128.1, 128.2, 128.5, 135.8, and 175.8. Found: C, 73.67; H, 9.94%. Calcd for C₁₈H₂₈O₃: C, 73.93; H, 9.65%.

Benzyl (2S,3R)-3-[(4S,5R)-4-Benzyl-3-(*tert*-butoxycarbonyl)-2,2-dimethyl-5-oxazolidineacetoxy]-2-methyldecanoate (7). Ethyl ester 6 (5.07 g, 13 mmol) was hydrolyzed according to the known procedure.⁸ A mixture of the resulting carboxylic acid, 4 (3.90 g, 13.4 mmol), DCC (4.5 g, 22 mmol), and DMAP (0.23 g, 1.9 mmol) in CH₂Cl₂ (70 ml) was stirred at 0 °C for 2 h, then at room temperature for 40 h. The reaction mixture was diluted with 10% aq. citric acid, and extracted with CH₂Cl₂. The organic extracts were washed with sat.aq. NaHCO₃ and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (200 g, hexane/EtOAc = 10:1 \rightarrow 3:1) to give 7 (7.22 g, 86% in two steps) as an oil: $[\alpha]_D^{16}$ -16.4° (c 1.00, CHCl₃); IR (film) 1740 and 1695 cm⁻¹; δ_H 0.87 (3H, t, J= 6.6 Hz), 1.14 (3H, d, J= 6.9 Hz), 1.22-1.93 (26H, complex), 2.35 (2H, complex), 2.56 - 2.86 (3H, complex), 3.19 (1H, m), 4.25 (1H, m), 4.40 (1H, m), 5.09 (2H, s), 5.16 (1H, m), and 7.21 - 7.33 (10H, complex); δ_c 12.0, 14.0, 22.5, 23.6, 25.3, 27.4, 28.1, 28.3, 29.0, 29.2, 31.7, 31.8, 35.0, 36.4, 43.1, 60.0, 66.4, 73.1, 74.6, 77.2, 93.1, 126.1, 128.2, 128.3, 128.5, 129.3, 135.7, 138.4, 151.6, 169.8, and 173.4. Found: C, 71.14; H, 8.74; N, 2.26%. Calcd for C₃₇H₅₃NO₇: C, 71.24; H, 8.56; N, 2.25%.

2-Propenyl (S)-2-Hydroxy-3-methylbutanoate (8). A mixture of 2-hydroxy acid prepared by the known procedure¹⁴ from L-valine (13.7 g, 0.12 mol), allyl bromide (80 ml, 0.92 mol), and NaHCO₃ (52.5 g, 0.62 mol) in DMF (100 ml) was stirred at room temperature for 20 h. The reaction mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (300 g, hexane/EtOAc = 5:1) to give **8** (9.1 g, 49% in two steps) as an oil: $[\alpha]_D^{19}$ -0.6° (*c* 1.00, CHCl₃); IR (film) 3510 and 1725 cm⁻¹; δ_H 0.84 (3H, d, *J*= 6.8 Hz), 0.99 (3H, d, *J*= 6.8 Hz), 2.06 (1H, m), 2.85 (1H, d, *J*= 3.6 Hz), 4.03 (1H, m), 4.63 (2H, complex), 5.24 (1H, br. d, *J*= 10.2 Hz), 5.31 (1H, dd, *J*= 1.3, 17 Hz) and 5.89 (1H, m); δ_C 15.9, 18.7, 32.1, 66.0, 75.0, 119.1, 131.4, and 174.6.

2-Propenyl (2S)-2-[(2S,3R)-3-[(4S,5R)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-oxazolidineacetoxy]-2-methyldecanoyloxy]-3-methylbutanoate (9). A solution of 7 (52 mg, 0.084 mmol) in EtOH (1.5 ml) in the presence of Pd(OH)₂ (6 mg) was stirred at room temperature for 2 h under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was evaporated to give a carboxylic acid, which was dissolved in CH_2Cl_2 (1.5 ml). After the addition of 8 (20 mg, 0.13 mmol), DCC (30 mg, 0.15 mmol) and DMAP (1.8 mg, 0.015 mmol), the mixture was stirred at 0 °C for 2 h, then at room temperature for 12 h. The reaction mixture was filtered, and the filtrate was partitioned between CH₂Cl₂ and 10% aq. citric acid. The organic extracts were washed with sat.aq. NaHCO₃ and brine, dried (Na₂SO₄), and concentrated in vacuo. A crude product was purified by silica gel column chromatography (5 g, hexane/EtOAc = 4:1) to yield 9 (45 mg, 81% from 7) as an oil: $[\alpha]_{D}^{19}$ -25° (c 1.00, CHCl₃); IR (film) 1740, 1695, and 1465 cm⁻¹; $\delta_{\rm H}$ 0.84 (3H, t, J= 6.6 Hz), 0.95 (6H, complex), 1.13 - 1.90 (30H, complex), 2.20 (1H, m), 2.43 (1H, m) 2.60 - 2.77 (3H, complex), 3.16 (1H, m), 4.25 (1H, m), 4.44 (1H, m), 4.57 (2H, d, J= 5.6 Hz), 4.78 (1H, d, J= 4.6 Hz), 5.10 - 5.31 (3H, complex), 5.82 (1H, m), and 7.16 - 7.24 $(5H, \text{ complex}); \delta_{c}(12.5, 14.0, 17.2, 18.7, 22.6, 24.6, 25.3, 25.4, 27.4, 28.1, 28.3, 29.1, 29.3, 30.0,$ 31.7, 31.8, 34.9, 36.4, 43.0, 55.7, 60.0, 65.6, 74.6, 76.8, 77.2, 93.1, 118.7, 126.1, 128.3, 128.4, 129.4, 131.6, 151.7, 168.9, 170.0, and 173.2. Found: C, 67.82; H, 9.18; N, 2.45%. Calcd for C₃₈H₅₉NO₉: C, 67.73; H, 8.82; N, 2.08%.

(2S)-2-[(2S,3R)-3-[(4S,5R)-4-Benzyl-3-(tert-butoxycarbonyl)-2,2-dimethyl-5-oxa $zolidineacetoxy]-2-methyldecanoyloxy]-3-methylbutanoic Acid (10). To a solution of 9 (194 mg, 0.29 mmol) in THF (5 ml) under an argon atmosphere were added (Ph₃P)₄Pd (0) (22 mg, 5 mol%) and morpholine (0.25 ml, 2.9 mmol). After being stirred at room temperature for 4 h, the mixture was partitioned between EtOAc and 10% aq. citric acid. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was separated by silica gel column chromatography (5 g, CHCl₃/MeOH = 10:1) to give 10 (146 mg, 80%) as an oil: <math>[\alpha]_D^{21}$ -18° (*c* 1.00, CHCl₃); IR (film) 3450, 1740, 1695, and 1590 cm⁻¹; δ_H 0.83-0.92 (9H, complex), 1.13 - 1.66 (30H, complex), 2.22 (1H, m), 2.42 (1H, m), 2.62 - 2.84 (4H, complex), 4.26 - 4.49 (2H, complex), 4.70 (1H, m), 5.21 (1H, m), and 7.18 - 7.24 (5H, complex); δ_C 12.6, 14.5, 17.5, 19.7, 23.1, 24.1, 25.9, 27.9, 28.6, 28.8, 29.7, 30.2, 32.2, 33.0, 35.7, 36.9, 60.5, 73.7, 75.4, 77.7, 80.0, 80.6, 93.6, 126.7, 128.7, 128.9, 129.9, 152.1, 171.1, 176.4, and 186.7.

T. OKUNO et al.

N-Demethylhapalosin (11). To a solution of 10 (146 mg, 0.23 mmol) in CH₂Cl₂ (5 ml) was added TFA (1 ml); the mixture was stirred at room temperature for 3 h. After evaporation to dryness, the residue was dissolved in DMF (200 ml, 1 mmol/l), and DPPA (0.15 ml, 0.69 mmol) and iPr₂NEt (0.24 ml, 1.4 mmol) were dropwisely added at 0 °C. After being stirred at 0 °C for 3 h followed by at room temperature for 13 h, the reaction mixture was partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. Purification of the residue by silica gel column chromatography (5 g, CHCl₃/MeOH = 50:1 \rightarrow 10:1) to give 11 (91 mg, 83% from 10) as an amorphous solid: $[\alpha]_D^{22}$ -32° (*c* 0.50, CHCl₃); IR (film) 3320, 1735, 1665, 1595, and 1490 cm⁻¹; δ_H 0.66 (3H, d, *J*= 6.8 Hz), 0.85 - 0.92 (6H, complex), 1.20 - 1.81 (16H, complex), 2.57 (1H, dd, *J*= 5.6, 14 Hz), 2.65 (1H, dd, *J*= 3.6, 14 Hz), 2.87 - 3.04 (3H, complex), 4.08 (1H, br. s), 4.53 (1H, d, *J*= 8 Hz), 4.63 (1H, m), 5.46 (1H, d, *J*= 10.8 Hz), 5.52 (1H, m), and 7.24 (5H, complex); δ_c 9.2, 14.1, 17.7, 18.5, 22.6, 25.5, 29.1, 29.3, 29.9, 31.0, 31.7, 37.5, 39.0, 41.2, 54.0, 70.6, 75.8, 81.8, 126.7, 128.6, 129.0, 136.9, 169.8, 173.4, and 174.1. Found: m/z 475.2945. Calcd for C₂₇H₄1NO₆: M, 475.2932.

8-tert-Butyldimethylsilyl-N-demethylhapalosin (12). A mixture of 11 (16 mg, 0.034 mmol), TBSCI (29 mg, 0.19 mmol), and imidazole (50 mg, 0.74 mmol) in DMF (2 ml) was stirred at room temperature for 15 h. The reaction mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (3 g, hexane/EtOAc = 20:1 → 5:1) to afford 12 (19 mg, 92%) as an oil: $[\alpha]_D^{21}$ -44.2° (*c* 1.00, CHCl₃); IR (film) 3400, 1735, 1665, and 1545 cm⁻¹; δ_H 0.13 (3H, s), 0.14 (3H, s), 0.56 (3H, d, *J*= 6.8 Hz), 0.76 (3H, d, *J*= 6.8 Hz), 0.86 - 1.73 (27H, complex), 2.48 (2H, d, *J*= 5.6 Hz), 2.66 (1H, dd, *J*= 9.4, 13.9 Hz), 3.07 (1H, m), 3.22 (1H, dd, *J*= 4.3, 13.9 Hz), 4.21 - 4.41 (2H, complex), 4.80 (1H, d, *J*= 8.2 Hz), 5.16 (1H, m), 5.55 (1H, d, *J*= 10.2 Hz), and 7.2 (5H, complex); δ_c -4.5, -4.7, 10.7, 14.0, 17.8, 18.2, 22.6, 25.7, 29.1, 29.3, 29.5, 30.4, 31.7, 38.8, 40.5, 40.9, 55.7, 71.7, 75.7, 80.0, 126.5, 128.3, 129.2, 137.7, 169.0, 171.7, and 173.0.

Reaction of 12 with Proton SpongeTM and Me₃OBF₃ (13a and 13b). A mixture of 12 (30 mg, 0.051 mmol), Proton SpongeTM (163 mg, 0.76 mmol), and Me₃OBF₃ (113 mg, 0.77 mmol) in CH₂Cl₂ (3 ml) was stirred at room temperature for 20 h. The resulting mixture was partitioned between EtOAc and 5% aq. citric acid. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated to dryness. The residue was purified by preparative TLC (hexane/EtOAc = 5:1) to give 13 (7 mg, 23%) as a 1.8:1 mixture of 13a (*cis*) and 13b (*trans*), along with unreacted 12 (20 mg, 67%). 13a: $\delta_{\rm H}$ 0.02 - 0.19 (6H, complex), 0.52 (3H, d, *J*= 6.8 Hz), 0.86 - 0.92 (6H, complex), 0.95 (9H, s), 1.17 (3H, d, *J*= 7.6 Hz), 1.20 - 1.49 (11H, complex), 1.95 - 2.05 (2H, complex), 2.30 (1H, dd, *J*= 10.0, 12.8 Hz), 2.54 (1H, dd, *J*= 5.6, 16.2 Hz), 2.76 (1H, dd, *J*= 2.4, 16.2 Hz), 2.87 (1H, m), 3.34 (1H, dd, *J*= 2.1, 12.8 Hz), 3.72 (1H, ddd, *J*= 2.1, 7.9, 10.0 Hz), 3.88 (1H, ddd, *J*= 2.4, 5.6, 7.9 Hz), 4.22 (1H, d, *J*= 8.8 Hz), 5.16 (1H, m), and 7.08 - 7.31 (5H, complex)

Conversion of 10 into the *N*,*N*-Dimethyl Derivative 14. To a solution of 10 (99 mg, 0.16 mmol) in CH₂Cl₂ (3 ml) was added TFA (0.6 ml); the reaction mixture was stirred at room temperature for 4 h. The resulting mixture was concentrated in vacuo, and the residue was dissolved in MeOH (3 ml). After the addition of 3.5% HCHO in aq. MeOH (0.16 ml, 0.20 mmol, prepared by 10-fold dilution of 35% aq. HCHO with MeOH) and NaBH₃CN (9.8 mg, 0.16 mmol), the mixture was stirred at 0 °C for 5 h, and partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried (Na₂SO₄), then evaporated. The residue was purified by preparative TLC (CHCl₃/MeOH = 10:1) to yield 14 (53 mg, 64%) and unreacted 10 (10 mg, 10%). 14 as an oil: IR (film) 3400, 1730, and 1600 cm⁻¹; $\delta_{\rm H}$ 0.87 (3H, t, *J* = 6.8 Hz), 0.95 (3H, d, *J* = 7 Hz), 0.99 (3H, d, *J* = 7 Hz), 1.17 (3H, d, *J* = 7.6 Hz), 1.25 (10H, complex), 1.52

(1H, m), 1.75 (1H, m), 2.25 (3H, complex), 2.40 (1H, m), 2.70 (1H, m), 2.82 (1H, m), 3.01 (1H, dd, J= 6.8, 14.8 Hz), 3.24 (1H, dd, J= 6.8, 14.8 Hz), 3.50 (1H, m), 4.63 (1H, m), 4.71 (1H, m), 5.23 (1H, m), and 7.25 (5H, complex); δ_c 10.8, 14.1, 17.6, 19.3, 22.6, 25.7, 29.1, 29.3, 29.5, 29.7, 29.9, 30.4, 31.7, 41.1, 41.3, 66.8, 69.2, 74.8, 79.8, 126.9, 128.8, 129.2, 137.8, 170.6, 173.8, and 175.2.

Conversion of 10 into Acetal 15. To a solution of 10 (106 mg, 0.16 mmol) in CH₂Cl₂ (3 ml) was added TFA (0.6 ml); the reaction mixture was stirred at room temperature for 4 h. The resulting mixture was evaporated. A mixture of the residue and 3.5% HCHO in aq. MeOH (0.093 ml, 0.10 mmol, prepared by 10-fold dilution of 35% aq. HCHO with MeOH) in MeOH (4 ml) was stirred at 0 °C for 1 h, then NaBH₃CN (9.8 mg, 0.16 mmol) was added. After being stirred at 0 °C for 2 h, the mixture was partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. Chromatographic purification (CHCl₃/MeOH = 10:1) of the residue provided 15 (49 mg, 55%) and unreacted 10 (18 mg, 17%). 15 as an oil: $\delta_{\rm H}$ 0.88 (3H, t, *J* = 7.2 Hz), 0.97 (3H, d, *J* = 6.6 Hz), 1.16 (3H, d, *J* = 6.9 Hz), 1.2 - 1.3 (10H, complex), 1.35 (3H, d, *J* = 6.9 Hz), 1.52 (1H, m), 1.86 (1H, m), 2.29 (1H, m), 2.51 (2H, complex), 2.87 (1H, m), 3.08 (2H, complex), 3.41 (1H, m), 4.37 (1H, br. s), 4.75 (1H, d, *J*= 3.9 Hz), 5.24 (1H, m), 5.90 (1H, broad signal), and 7.29 (5H, complex).

Conversion of 9 into the Fragment 17. A solution of 9 (210 mg, 0.31 mmol) in MeOH (5 ml) in the presence of TsOH (3 mg) was stirred at room temperature for 3 days. The reaction mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel column chromatography (10 g, hexane/EtOAc = $4:1 \rightarrow 2:1$, then CHCl₃/MeOH = 20:1) to give a deacetonide derivative (72 mg, 36%), along with unreacted 9 (33 mg, 16%) and N-deprotected derivative (40 mg, 24%).

A mixture of the deacetonide derivative (72 mg, 0.11 mmol), TBSCl (34 mg, 0.23 mmol), and imidazole (23 mg, 0.34 mmol) in DMF (3 ml) was stirred at room temperature for 20 h. The reaction mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (hexane/EtOAc = 4:1) to give **16** (82 mg, 97%).

A mixture of **16** (16 mg, 0.021 mmol), NaH (2.5 mg, 0.063 mmol, 60% dispersion in mineral oil), and CH₃I (0.026 ml) in DMF (3 ml) was stirred at 0 °C for 3 h, then at room temperature for 12 h. The reaction mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (hexane/EtOAc = 5:1) to give **17** (2.6 mg, 35%). **17** as an oil: δ_{11} 0.88 (3H, t, *J* = 6.9 Hz), 1.01 (3H, d, *J* = 3.3 Hz), 1.04 (3H, d, *J* = 3.3 Hz), 1.25 - 1.50 (15H, complex), 2.14 - 2.35 (3H, complex), 4.65 (2H, complex), 4.88 (1H, d, *J* = 4.6 Hz), 5.24 (1H, br. d, *J* = 10.6 Hz), 5.33 (1H, dd, *J* = 1.4, 17 Hz), and 5.95 (1H, m).

(3R,4S)-4-[*N*-(*tert*-Butoxycarbonyl)amino]-3-(*tert*-butyldimethylsilyloxy)-5-phenylpentanoic Acid (18). A mixture of 5 (1.62 g, 4.8 mmol), TBSCl (1.45 g, 9.62 mmol), and imidazole (1.00 g, 14.7 mmol) in DMF (30 ml) was stirred at room temperature for 40 h. The resulting mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried (Na₂SO₄), then evaporated to give a crude product , which was chromatographed on a silica gel column (40 g, hexane/EtOAc = 10:1 \rightarrow 3:1) to yield a siloxy ether (2.27 g, quantitative yield) as an oil: $[\alpha]_{\rm D}^{21}$ -20° (*c* 1.00, CHCl₃); IR (film) 1710 cm⁻¹; $\delta_{\rm H}$ 0.06 (3H, s), 0.11 (3H, s), 0.91 (9H, s), 1.25 - 1.32 (12H, complex), 2.51 - 2.80 (3H, complex), 2.97 (1H, dd, *J*= 4.6, 14.2 Hz), 3.87 (1H, br. s), 4.15 (2H, complex), 4.29 (1H, br. s), 4.47 (1H, br. s), and 7.18 - 7.31 (5H, complex); $\delta_{\rm C}$ -4.8, -4.7, 14.1, 18.0, 25.8, 35.8, 39.9, 56.1, 60.6, 71.2, 77.2, 79.0, 126.2, 128.3, 129.1, 138.3, 155.1, and 171.2.

To a solution of the ether (41 mg, 0.12 mmol) in EtOH (1 ml) was added 2M NaOH (1 ml, 2 mmol) at 0 °C; the mixture was stirred at room temperature for 2 h. The reaction mixture was acidified to pH 5 by the

addition of 10% aq. citric acid, and partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (CHCl₃/MeOH = 10:1) to give **18** (33 mg, 84%) as an oil: $[\alpha]_{D}^{20}$ -31° (*c* 1.00, CHCl₃); IR (film) 3450 and 1720 cm⁻¹; δ_{H} 0.07 - 0.16 (6H, complex), 0.90 (9H, s), 1.14 - 1.31 (9H, complex), 2.37 - 2.59 (3H, complex), 3.07 (1H, m), 3.64 - 4.58 (2H, complex), and 7.16 - 7.28 (5H, complex). Found: C, 61.35; H, 9.11; N, 3.53%. Calcd for C₂₂H₃₇NO₅Si·1/2H₂O: C, 61.08; H, 8.85; N, 3.24%.

(3R,4S)-4-[*N*-(*tert*-Butoxycarbonyl)-*N*-methylamino]-3-(*tert*-butyldimethylsilyloxy)-5-phenylpentanoic Acid (19). A mixture of 18 (164 mg, 0.39 mmol), CH₃I (0.6 ml, 10 mmol), and NaH (116 mg, 2.9 mmol, 60% dispersion in mineral oil) in THF (8 ml) was stirred at 0 °C for 3 h, then at room temperature for 40 h. The reaction mixture was acidified by the addition of 10% aq. citric acid, and extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was subjected to preparative TLC (CHCl₃/MeOH = 10:1) to give 19 (142 mg, 83%) as an oil: $[\alpha]_D^{22}$ -41.2° (*c* 1.00, CHCl₃); IR (film) 3450 and 1700 cm⁻¹; δ_H 0.13 - 0.16 (6H, complex), 0.92 -0.94 (9H, complex), 1.17 - 1.32 (9H, complex), 2.47 - 2.61 (6H, complex), 3.18 (1H, br. d, *J* = 11.9 Hz), 4.30 (2H, complex), and 7.12 - 7.28 (5H, complex). Found: C, 62.16; H, 9.33; N, 3.09%. Calcd for C₂₃H₃₉NO₅Si•1/2H₂O: C, 61.85; H, 9.03; N, 3.14%.

Benzyl (2*S*,3*R*)-3-[(3*R*,4*S*)-4-[*N*-(*tert*-Butoxycarbonyl)-*N*-methylamino]-3-(*tert*-butyldimethylsilyloxy)-5-phenylpentanoyloxy]-2-methyldecanoate (20). A mixture of 19 (481 mg, 1.1 mmol), 4 (335 mg, 1.2 mmol) and DCC (384 mg, 1.9 mmol) in CH₂Cl₂ (8 ml) in the presence of DMAP (21 mg, 0.17 mmol) was stirred at 0 °C for 2 h, then at room temperature for 10 h. The reaction mixture was filtered, and the filtrate was partitioned between CH₂Cl₂ and 10% aq. citric acid. The organic layer was washed with sat.aq. NaHCO₃ and brine, dried (Na₂SO₄), and evaporated. A crude product was chromatographed on silica gel column (20 g, hexane/EtOAc = $10:1 \rightarrow 2:1$) to give 20 (597 mg, 77%) as an oil: $[α]_D^{21}$ -21.9° (*c* 1.00, CHCl₃); IR (film) 1745 and 1700 cm⁻¹; δ_H 0.01 - 0.07 (6H, complex), 0.76 - 0.85 (12H, complex), 1.07 (3H, d, *J*= 6.9 Hz), 1.10 - 1.48 (21H, complex), 2.30 - 2.80 (7H, complex), 3.07 (1H, m), 4.01 (1H, m), 4.30 (1H, m), 5.05 (2H, s), 5.06 (1H, m), and 7.02 - 7.28 (10H, complex); δ_c - 4.1, -4.0, 12.4, 12.5, 14.0, 17.9, 18.0, 22.5, 25.4, 25.8, 25.9, 28.2, 29.1, 29.3, 31.7, 31.8, 43.1, 66.4, 70.1, 74.7, 77.2, 79.1, 128.1, 128.18, 128.24, 128.3, 128.5, 128.9, 135.8, 139.2, 155.7, 170.7, and 173.5. Found: C, 68.91; H, 9.37; N, 2.14%. Calcd for C4₁H₆₅O₇NSi: C, 69.16; H, 9.20; N, 1.97%.

2-Propenyl (2S)-2-[(2S,3R)-3-[(3R,4S)-4-[N-(tert-Butoxycarbonyl)-N-methylamino]-3-(tert-butyldimethylsilyloxy)-5-phenylpentanoyloxy]-2-methyldecanoyloxy]-3-methylbutanoate (21). A solution of 20 (63 mg, 0.09 mmol) in EtOH (2 ml) in the presence of catalytic amounts of Pd(OH)₂ was stirred at room temperature for 1 h under a hydrogen atmosphere. The reaction mixture was filtered, and the filtrate was evaporated. A mixture of the residue, 8 (23 mg, 0.15 mmol), DCC (30 mg, 0.15 mmol), and DMAP (1.5 mg, 0.012 mmol) in CH₂Cl₂ (2 ml) was stirred at 0 °C for 2 h, then at room temperature for 30 h. The resulting mixture was filtered, and the filtrate was partitioned between CH₂Cl₂ and 10% aq. citric acid. The organic layer was washed with sat.aq. NaHCO₃ and brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (hexane/EtOAc = 4:1) to yield 21 (64 mg, 96% in two steps) as an oil: $[\alpha]_{D}^{21}$ -25.6° (c 1.00, CHCl₃); IR (film) 1740 and 1695 cm⁻¹; δ_{H} 0.08 -0.15 (6H, complex), 0.86 (3H, t, J= 6.8 H), 0.91 - 1.02 (15H, complex), 1.18 - 1.37 (22H, complex), 1.62 (2H, complex), 2.23 (1H, m), 2.43 - 2.80 (7H, complex), 3.16 (1H, m), 4.12 (1H, m), 4.40 (1H, m), 4.61 (1H, m), 4.81 (1H, m), 5.14 (1H, m), 5.23 (1H, m), 5.23 (1H, d, J=10.8 Hz), 5.32 (1H, dd, J=10.8 Hz), 5.33 (1H, dd, J=10.8 Hz), 5.34 (1H, dd, J=10.8 Hz), 5.34 (1H, dd, J=10.8 Hz), 5.34 (1H, dd, J=10.8 Hz), 5.35 (1H, dd 16.8, 1.6 Hz), 5.88 (1H, m), and 7.11 - 7.29 (5H, complex); δ_{c} -4.1, -3.9, 12.9, 13.2, 14.0, 17.2, 18.8, 22.6, 25.4, 25.9, 26.0, 28.2, 28.3, 29.1, 29.4, 30.0, 31.7, 31.8, 34.6, 40.0, 42.9, 43.3, 65.6, 70.1,

70.3, 74.4, 74.6, 76.8, 79.1, 79.7, 118.7, 126.0, 126.1, 129.0, 131.6, 139.3, 155.8, 168.9, 170.9, and 173.3.

2-Propenyl (2*S*)-2-[(2*S*,3*R*)-3-[(3*R*,4*S*)-4-[*N*-(*tert*-Butoxycarbonyl)-*N*-methylamino]-3-hydroxy-5-phenylpentanoyloxy]-2-methyldecanoyloxy]-3-methylbutanoate (22). To a solution of 21 (181 mg, 0.24 mmol) in THF (5 ml) was added. 70% HF - pyridine (1 ml). After being stirred at room temperature for 4 h, the reaction mixture was diluted with aq. NaHCO₃, and extracted with EtOAc. The organic extracts were washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (hexane/EtOAc = 4:1) to give 22 (132 mg, 87%) as an oil: $[\alpha]_D^{21}$ -24.8° (*c* 1.00, CHCl₃); IR (film) 3480, 1745, and 1700 cm⁻¹; $\delta_H 0.87$ (3H, t, *J* = 6.9 Hz), 0.94-1.02 (6H, complex), 1.22-1.69 (24H, complex), 2.20 - 3.30 (9H, complex), 3.76 - 4.24 (3H, complex), 4.64 (2H, d, *J* = 5.9 Hz), 4.84 (1H, d, *J* = 4.3 Hz), 5.23 - 5.37 (3H, complex), 5.90 (1H, m), and 7.14 - 7.27 (5H, complex); δ_C 11.8, 14.0, 17.2, 18.8, 22.6, 25.5, 25.6, 28.1, 28.3, 29.1, 29.3, 30.0, 31.1, 31.4, 31.7, 33.2, 39.3, 39.4, 42.1, 42.5, 65.7, 65.8, 70.0, 74.3, 118.9, 119.0, 126.1, 128.2, 129.0, 131.4, 169.3, 171.9, 172.0, and 173.6.

(2S)-2-[(2S,3R)-3-[(3R,4S)-4-N-Methylamino-3-hydroxy-5-phenylpentanoyloxy]-2methyldecanoyloxy]-3-methylbutanoic Acid (23). To a solution of 22 (68 mg, 0.11 mmol) in THF (5 ml) under an argon atmosphere were added (Ph₃P)₄Pd (0) (6.2 mg, 5 mol%) and morpholine (0.094 ml, 1.1 mmol); the mixture was stirred at room temperature for 3 h. The reaction mixture was partitioned between EtOAc and 10% aq. citric acid. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. The residue was purified by preparative TLC (CHCl₃/MeOH = 10:1) to give a carboxylic acid (62 mg, 97%) as an oil: $[\alpha]_D^{-21}$ -24° (c 1.00, CHCl₃); IR (film) 3500, 1740, and 1705 cm⁻¹; δ_H 0.84 - 1.65 (33H, complex), 2.30 - 3.30 (9H, complex), 4.08 - 4.23 (2H, complex), 4.94 (1H, br. s), 5.40 (1H, br. s), and 7.15 - 7.27 (5H, complex).

A mixture of the carboxylic acid (44 mg, 0.073 mmol), and TFA (0.3 ml) in CH₂Cl₂ (1.5 ml) was stirred at room temperature for 2 h. After removal of volatile materials, the residue was subjected to preparative TLC (CHCl₃/MeOH = 10:1) to give **23** (35 mg, 94%) as an oil: $[\alpha]_{D}^{22}$ -2.4° (*c* 1.00, CHCl₃); IR (film) 3470, 1735, and 1680 cm⁻¹; δ_{H} 0.84 - 1.71 (24H, complex), 2.17 - 2.57 (6H, complex), 2.82 (1H, br. d, *J* = 6.6 Hz), 3.00 - 3.19 (2H, complex), 3.41 (1H, br. s), 4.57 (2H, complex), 5.23 (1H, br. s), and 7.26 - 7.35 (5H, complex).

Hapalosin (1). To a solution of 23 (34 mg, 0.067 mmol) in DMF were dropwisely added DPPA (0.043 ml, 0.12 mmol) and iPr2NEt (0.069 ml, 0.4 mmol) at 0 °C; the mixture was stirred at the same temperature for 3 h, then at room temperature for 3 days. The resulting mixture was partitioned between EtOAc and H₂O. The organic layer was washed with brine, dried (Na₂SO₄), and evaporated. Purification of the residue by silica gel column chromatography (CHCl₃/MeOH = 50:1 \rightarrow 10:1) yielded 1 (14.5 mg, 44%) as a white solid: [α]_D¹⁸ -41° (*c* 1.00, CH₂Cl₂) [-40.9° (*c* 0.11, CH₂Cl₂),5^b -48° (*c* 0.0029, CH₂Cl₂),5^a -49.2° (*c* 0.35, CH₂Cl₂)4]; IR (film) 3430, 1735, and 1635 cm⁻¹; $\delta_{\rm H}$ (a major isomer) 0.23 (3H, d, *J* = 6 Hz), 0.57 (3H, d, *J* = 6 Hz), 0.88 - 0.92 (3H, complex), 1.14 - 1.40 (13H, complex), 1.50 - 2.05 (3H, complex) 2.61 (1H, m), 2.65 (1H m), 2.86 (3H, complex), 2.92 (1H, dd, *J* = 18, 5 Hz), 3.22 (1H, m), 3.41 (1H, dd, *J* = 2.6, 14 Hz), 3.69 (1H, dt, *J* = 2.6, 10 Hz), 3.85 (1H, m), 4.31 (1H, d, *J* = 8.4 Hz), 5.12 (1H, m), and 7.17 - 7.35 (5H, complex); $\delta_{\rm C}$ 12.1, 14.1, 17.5, 18.3, 22.6, 26.0, 28.0, 28.2, 28.8, 29.1, 29.2, 31.7, 36.4, 37.0, 40.7, 61.4, 70.2, 73.8, 76.5, 127.0, 128.9, 129.7, 137.4, 168.5, 168.7, and 172.7. Found: m/z 489.3079. Calcd for C₂₈H₄3NO₆: M, 489.3087.

Bioassay. Human breast carcinoma MCF-7 and adriamycin resistant (Adr^R) cells were obtained from the National Cancer Institute (U. S. A.), and these cell lines were maintained at 37 °C in RPMI 1640 with 10% fetal bovine serum in humidified atmosphere with 5% CO₂. Samples such as **1**, **11** and verapamil were dissolved in DMSO, and diluted with saline. Adriamycin (ADR) was used as a saline solution, prepared before use. Drug cytotoxicity assay was performed in a 96-well microplates. Cell solutions (0.2 ml/well, 1x104 cells/ml for MCF-7, 2x104 cells/ml for Adr^R) were preincubated for 24 h (37 °C, 5% CO₂) with the medium. After the addition of a solution of a sample and ADR into each well, the incubation was continued for 72 h. The cells were stained with methylene blue, and the growth rates were obtained from absorbance at 660 nm. Each experimental point was determined in triplicate.

References

- 1. Preliminary communication: Ohmori, K.; Okuno, T.; Nishiyama, S.; Yamamura, S. Tetrahedron Lett. 1996, 37, 3467 3470.
- 2. Simon, S. M.; Schinller, M. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3497 3504.
- a) Pearce, H. L.; Safa, A. R.; Bach, N. J.; Winter, M. A.; Cirtain, M. C.; Beck, W. T. Natl. Acad. Sci. U. S. A. 1989, 86, 5128 - 5132. b) Beck, W. T.; Cirtain, M. C.; Glover, C. J.; Felsted, R. L.; Safa, A. R. Biochem. Biophys. Res. Commun. 1988, 153, 959 - 966. c) Cornwell, M. M.; Pastan, I.; Gottesman, M. M. J. Biol. Chem.1987, 262, 2166 - 2170. d) Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Cancer Res. 1981, 41, 1967 - 1972. e) Fojo, A.; Akiyama, S.-I.; Gottesman, M. M.; Pastan, I. Cancer Res. 1985, 45, 3002 - 3007. f) Cornwell, M. M.; Safa, A. R.; Felsted, R. L.; Gttesman, M. M.; Pastan, I. Natl. Acad. Sci. U. S. A. 1986, 83, 3847 - 3850. g) Beck, W. T.; Cirtain, M.; Look, A. T.; Ashum, R. A. Cancer Res. 1986, 46, 778 - 784. h) Dellinger, M.; Pressman, B. C.; Calderon-Higginson, C.; Savaraj, N.; Tapiero, H.; Kolonias, D.; Lampidis, T. J. Cancer Res., 1992, 52, 6385 - 6389. i) Niwa, K.; Yamada, K.; Furukawa, T.; Shudo, N.; Seto, K.; Matsumoto, T.Takao, S.; Akiyama, S.; Shimazu, H. Cancer Res., 1992, 52, 3655 - 3660.
- 4. Stratmann, K.; Burgoyne, D. L.; Moore, R. E.; Patterson, G. M. L. J. Org. Chem., 1994, 59, 7219 7226.
- Three groups independently reported synthesis of 1. a) Dinh, T. Q.; Armstrong, R. W. J. Org. Chem. 1995, 60, 8118 - 8119. b) Ghosh, A. K.; Liu, W.; Xu, Y.; Chen, Z. Angew. Chem. Int. Ed. Engl. 1996, 35, 74 - 76. c) Wagner, B.; Beugelmans, R.; Zhu, J. Tetrahedron Lett. 1996, 37, 6557 - 6560. After submission of this paper, a similar study including synthesis of 11 and computational modeling has been published: Dinh, T. Q.; Du, X.; Armstrong, R. W. J. Org. Chem. 1996, 61, 6606 - 6616.
- 6. Ager, D. A.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835 875. Many references cited therein.
- 7. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127 2129.
- a) Maibaum, J.; Rich, D. H. J. Org. Chem. 1988, 53, 869 873. b) Parkes, K. E. B.; Bushnell, D. J.; Crackett, P. H.; Dunsdon, S. J.; Freeman, A. C.; Gunn, M. P.; Hopkins, R. A.; Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Redshaw, S.; Spurden, W. C.; Thomas, G. J. J. Org. Chem. 1994, 59, 3656 3664.
- 9. Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. Tetrahedron Lett. 1994, 35, 7171 7172.
- 10. Abstraction of the siloxy group was unsucessful under TBAF conditions, which resulted in an inseparable mixture.
- 11. Shioiri, T.; Hayashi, K.; Hamada, Y. Tetrahedron 1993, 49, 1913 1924.
- 12. The same observation was reported by Armstrong (see ref.5a).
- a) MACROMODEL 4.5; W. C. Still, Columbia University: Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R. M. J.; Lipton, M. A.; Caufield, C. E.; Chang, G.; Hendrickson, T. F.; Still, W. C. J. Comput. Chem. 1990, 11, 440 - 467. b) Allinger, N. L. J. Am. Chem. Soc. 1977, 99, 8127: Burkert, U.; Allinger, N, L. ACS Monograph 177, Americal Chemical Society, Washington D. C., 1982.
- 14. Mori, K. Tetrahedron 1976, 32, 1101 1106.

(Received in Japan 24 September 1996; accepted 14 October 1996)