Despite this rapid development, poly(pyrazolyl) ligands have rarely been used in the chemistry of dendrimers or related

compounds. We initially incorporated scorpionate ligands into

metallodendrimers by taking advantage of the facile function-

alization of the bridging methine carbon atom in tris(pyrazol-

1-yl)methane,⁸ as first reported by Reger for the preparation of

related multitopic ligands and polynuclear compounds containing

tris(pyrazolyl)methane units.²¹ A different approach has also been

reported by Ciriano and Casado for the synthesis of carbosilane

dendrimers with peripheral bis- or tris(pyrazolyl)borate ligands

coordinated to rhodium.²² More recently, we have reported that

bis(pyrazol-1-yl)methane functionalized at the bridging methylene

group with poly(benzyl ether) dendritic wedges (Fréchet dendrons)

In a previous report,8 we showed that sterically demanding

substituents bonded directly to the methine bridging carbon of

tris(pyrazol-1-yl)methane ligands restrict the arrangement of the

pyrazolyl rings and can suppress the coordination capability of

these ligands. In order to relax the steric pressure caused by

dendritic substituents, we introduced an -OCH₂- spacer between

the poly(benzyl ether) dendrons (Gn-dend) and the methine

carbon in the tris(pyrazol-1-yl)methane ligands reported here

(Chart 1). The coordination of bis(pyrazol-1-yl)methane ligands

is more flexible and Fréchet's dendrons can be linked directly to

their methylene bridges, as demonstrated elsewhere,9,10 even when

methyl substituents are introduced in the 3- and 5-positions of

the pyrazolyl rings. The synthesis and characterization of series of

forms monometallic nickel(II)9 and palladium(II) complexes.10

Dendronized scorpionate complexes of molybdenum in low and high oxidation states $\ensuremath{^{+}}$

Alberto Sánchez-Méndez, Alba M. Ortiz, Ernesto de Jesús,* Juan C. Flores* and Pilar Gómez-Sal

Received 3rd July 2007, Accepted 18th September 2007 First published as an Advance Article on the web 4th October 2007 DOI: 10.1039/b710125b

Tridentate (L₃) and bidentate (L₂) poly(pyrazolyl)methane ligands (*Gn-dend*)OCH₂C(pz)₃ (1–4) and (*Gn-dend*)CH(3,5-Me₂pz)₂ (pz = pyrazol-1-yl) have been used to synthesize the molybdenum(0) complexes [Mo(CO)₃(L₃)] (G0–G3, **5–8**), [Mo(CO)₄(L₂)] (G0–G1, **13–14**), and [Mo(CO)₃(NCMe)(L₂)] (G0, **15**), and the molybdenum(v1) complexes [MoCl₂O₂(L₂)] (**9–12**). The G0–G3 prefixes represent the generation of poly(aryl ether) dendrons in which the metal complexes are embedded. The molecular structures of compounds **13** and **15** have been determined by X-ray diffraction studies and the hydrodynamic radii of tricarbonyl complexes **5–8** calculated by diffusion-ordered NMR spectroscopy (DOSY). Molybdenum(v1) compounds **9–12** have also been evaluated as catalysts for olefin epoxidation, showing comparable but inferior performances than ligand-free MoCl₂O₂, probably because of the labile coordination of L₂.

Introduction

Dendrimers functionalized with transition metals have aroused great interest in catalysis, and a large variety of ligands have been used for the fixation of metal complexes at the core, branches or periphery of the dendritic macromolecules.¹⁻³ We are interested in the way in which the surrounding dendritic arms modulate the properties of metal centers located at the core or focal point of dendritic structures. With this aim, we have undertaken studies on the functionalization of ligands with dendritic substituents [cyclopentadienido,⁴ siloxido,⁵ diketiminato,⁶ phosphine⁷ or poly(pyrazol-1-yl)methane⁸⁻¹⁰] and on the behavior of their early and late transition metal complexes as catalysts (polymerization and other carbon–carbon bond-formation reactions).^{4,6,7} These studies have been complemented with others to try to understand the organization of the dendritic arms around the metal centers in both the solid state and in solution.^{8,9}

The work of Trofimenko in the field of scorpionate chemistry meant that poly(pyrazolyl) ligands rapidly became a very important class of nitrogen donors in modern coordination chemistry,¹¹ and in the last few years the chemistry of poly(pyrazol-1yl)alkane complexes, the neutral and isoelectronic counterparts of poly(pyrazol-1-yl)borates, has undergone significant progress.^{12,13} This renewed interest has been fuelled, in part, by advances in the syntheses of the ligands themselves¹⁴ and also by their attractive applications in catalysis,¹⁵ bioinorganic chemistry, inorganic and organometallic syntheses, or crystal engineering.¹²⁻²⁰ New metal complexes with unusual structures have been prepared,¹⁶ and major research fields such as heteroscorpionate metal chemistry have grown.^{12,17-19}

Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares (Madrid), Spain. E-mail: juanc.flores@uah.es (J. C. F.), ernesto.dejesus@uah.es (E. de J.); Fax: +34 91 885 4683; Tel: +34 91 885 4607

[†] CCDC reference numbers 652159 & 652160. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b710125b

dioxidodichloridomolybdenum(v1) and molybdenum(0) carbonyl complexes of both types of dendritic pyrazolyl ligands is described in this work.

Results and discussion

Synthesis of dendronized tris(pyrazolyl)methane ligands 1-4

Tridentate ligands (Gn-dend)OCH₂C(pz)₃ [Gn-dend = poly(benzyl ether) dendron, pz = pyrazol-1-yl, **1–4**] were synthesized by treating the bromoalkanes (Gn-dend)Br (G0–G3) with the alkoxide NaOCH₂C(pz)₃ (Scheme 1) and isolated, after appropriate workup, as white or pale-yellow solids in good yields (>70%, see Experimental for details). They are air-stable in the solid state and in solution. Their solubility in alkanes or diethyl ether is poor and decreases progressively as the generation number (*n*) increases. In contrast, the solubility increases with generation in good solvents such as acetone, THF, or aromatic and chlorinated solvents.

Scheme 1 Synthesis of dendritic ligands 1–4. Reagents and conditions: (a) 1 equiv. (*Gn-dend*)Br (n = 0, 1, 2, 3), THF, 0 °C; (b) room temperature, overnight.

The three equivalent pyrazolyl rings of compounds 1-4 give rise to three doublets of doublets at about $\delta = 6.3$ (H⁴), 7.4 (H⁵), and 7.6 ppm (H³) in the ¹H NMR spectra and three singlets at about $\delta = 106 (C^4)$, 131 (C⁵), and 141 ppm (C³) in the ¹³C{¹H} NMR spectra (See Chart 1 for the numbering scheme of the pyrazolyl rings). The methine carbon $[C(pz)_3]$ is found at $\delta = 90$ ppm and the protons attached to the neighboring methylene group appear as a singlet at around $\delta = 5.1$ ppm. The protons of the dendritic moieties give sets of resonances in the three regions characteristic for this type of poly(benzyl ether) dendrons,9,10,23 namely multiplets at $\delta = 7.2$ –7.4 ppm for the terminal phenyl groups (Ph), a doublet and a triplet at $\delta = 6.4$ –6.6 ppm for each layer of internal aryl groups (Ar), and a singlet at $\delta = 4.5$ –4.9 ppm for each generation of -CH₂O- groups. The ¹³C{¹H} NMR spectra of compounds 1-4 also show a set of resonances for each layer, the relative intensities of which increase on going from the focal point to the periphery of the dendron. The most significant band found in the IR spectra of these ligands is an absorption assigned to the asymmetric stretching of the C=N bond at around 1520 cm⁻¹, together with clearly visible bands assigned to the C=C and C–O–C vibrations (2–4). Peaks with isotope distributions that match the calculated patterns for the molecular fragments plus sodium or potassium cations were observed by ESI⁺-TOF mass spectrometry.

Synthesis of molybdenum complexes

The carbonyl molybdenum(0) complexes $[Mo(CO)_3](Gn$ dend)OCH₂C(pz)₃] (5-8, Scheme 2, i) were isolated as yellowish solids in good yields (> 83%) after treatment of one equivalent of the tris(pyrazolyl)methane ligands 1-4 with $[Mo(CO)_3(\eta^6-$ 1,3,5-C₆H₃Me₃)] in THF. The synthesis of the related complexes $[Mo(CO)_3 \{HC(pz)_3\}]$ with tris(pyrazol-1-yl)methane or tris(3,5-dimethylpyrazol-1-yl)methane ligands not substituted at the bridging methine carbon was originally reported by Trofimenko starting from molybdenum hexacarbonyl.24,25 Complexes 5-8 are insoluble in alkanes or diethyl ether, partially soluble in chlorinated or aromatic solvents, and soluble in acetone and THF. Their solubility tends to increase with generation as a consequence of the increase in the number of terminal groups at the molecular surface of the dendritic wedge. They are relatively stable to air in the solid state but decompose to brown materials after several days.

Scheme 2 Synthesis of molybdenum compounds with dendritic tris-(pyrazolyl)methane ligands. Conditions: (i) 1 equiv. $[Mo(CO)_3(\eta^6-1,3,5-C_6H_3Me_3)]$, THF, room temperature, 5 h. (ii) 1 equiv. $[MoCl_2O_2]$, THF, room temperature, 1 h.

Several oxidomolybdenum(VI) complexes have proven to be useful catalysts for the epoxidation of olefins with hydroperoxides. For example, Kühn, Romão and coworkers have synthesized complexes of formula $[MoXO_2{HC(pz)_3}]X$ (X = Cl, Br) starting from $[MoO_2X_2(THF)_2]$.²⁶ However, our attempts to isolate the related complexes $[MoClO_2{(Gn-dend)OCH_2C(pz)_3}]Cl$ under similar conditions failed to give pure products (Scheme 2, ii). Thus, the treatment of ligands 1–4 with $[MoCl_2O_2]$ or $[MoCl_2O_2L_2]$ (L = THF or DMSO) in THF at room temperature resulted in the precipitation of white, air-sensitive solids containing the expected products spectroscopically almost pure (see Experimental for ¹H NMR data). These impure solids were found to be soluble in chlorinated solvents and insoluble in diethyl ether, although all attempts to obtain analytically pure samples failed or resulted in decomposition. As an alternative to the preceding cationic molybdenum(VI) complexes, neutral dioxido compounds of general formula [MoCl₂O₂(L₂)] can be prepared with bidentate instead of tridentate pyrazolylmethane ligands.²⁶ Thus, complexes **9–12** were isolated as yellowish solids in good yields (77–89%) by treatment of the dendritic bis(pyrazolyl)methane ligands (G*n*-dend)CH(3,5-Me₂pz)₂ (3,5-Me₂pz = 3,5-dimethylpyrazol-1-yl)⁹ with [MoCl₂O₂] in THF (Scheme 3, i). Complexes **9–12** are rather unstable to air and moisture in both the solid state and in solution. They are insoluble in alkanes or diethyl ether, partially soluble in chlorinated or aromatic solvents, and soluble in THF.

Scheme 3 Synthesis of molybdenum compounds with dendritic bis(pyrazolyl)methane ligands. Conditions: (i) 1 equiv. $[MoCl_2O_2]$, THF, room temperature, 1 h. (ii) 1 equiv. $[Mo(CO)_6]$, toluene, 55 °C, 4 (13) or 7 (14) days. (iii) 1 equiv. $[Mo(CO)_3(NCMe)_3]$, toluene, room temperature, 4 h.

Bis(pyrazolyl)methane ligands form molybdenum(0) carbonyl complexes of general formula $[M(CO)_n \{RR'C(pz)_2\}]$ (n = 3)or 4).27,28 Such compounds are usually prepared by heating a solution of the free ligands and Mo(CO)₆ for several hours at temperatures higher than 70-80 °C in solvents such as toluene, DME, or acetonitrile. The preparation of the dendritic complexes $[Mo(CO)_n \{ (Gn-dend)CH(3,5-Me_2pz)_2 \} \}$ was, however, not that straightforward. Direct combination of Mo(CO)₆ with the respective $(Gn-dend)CH(3,5-Me_2pz)_2$ ligands in warm toluene afforded compounds 13 (G0) and 14 (G1) in approximately 75% yields (Scheme 3, ii), whereas almost complete decomposition was observed in DME or THF. The reaction in toluene had to be conducted at 55 °C because of the poor thermal stability of the reaction mixtures, which gradually became dark at higher temperatures (\geq 70 °C). The reaction proceeded more slowly at these lower temperatures and required several days for completion. Periodic removal of the CO evolved under vacuum also proved necessary to avoid its recoordination. In contrast, two of the three acetonitrile ligands of [Mo(CO)₃(NCMe)₃] were replaced by the G0 ligand PhCH₂CH(3,5-Me₂pz)₂ in toluene or benzene

in a matter of hours at room temperature (Scheme 3, iii). This reaction led to pure [Mo(CO)₃(NCMe){PhCH₂CH(3,5-Me₂pz)₂}] (15) in good yields (80%) thanks to the precipitation of the complex from the reaction solution. However, treatment of PhCH₂CH(3,5-Me₂pz)₂ with $[Mo(CO)_3(NCMe)_3]$, $[Mo(CO)_3(\eta^6 - \eta^6)_3]$ $1,3,5-C_6H_3Me_3$], or [Mo(CO)₆] in acetonitrile or in other polar solvents such as THF or acetone in the presence of added acetonitrile led to product mixtures containing varying amounts of 13, 15, and the free ligand. Compounds 13-15 are insoluble in alkanes, diethyl ether, aromatic solvents, and soluble in acetone or acetonitrile; they decompose quickly in THF solution. They are unstable to air and moisture in the solid state and in solution. Moreover, solutions of pure compound 15 in [D₆]acetone or [D₃]acetonitrile change over time to give mixtures of 15, 13, and free ligand with relative compositions 6:2:1 (acetone) or 4: 1 : 1 (acetonitrile) after 10 min, stabilizing after about 16 h at 2 : 3:1 (acetone) or 4:3:1 (acetonitrile) ratios. These solutions were found to contain only 13 and free ligand [and probably Mo(CO)₆] after bubbling CO gas through them briefly. The initial composition could be slowly recovered after replacing the CO with an argon atmosphere. Similarly, solutions of compound 13 were transformed into the same mixture in $[D_3]$ acetonitrile or in $[D_6]$ acetone and MeCN. It appears that compound 13 is more stable than 15 and that the CO/MeCN scrambling process, which is promoted by polar solvents,²⁹ facilitates the equilibrium process, with concomitant formation of unidentified Mo species and free ligand. It has been suggested that the moderate stability of the bis(pyrazolyl)methane coordination in $[M(CO)_4 \{CH_2(pz)_2\}]$ (M = Cr, Mo, and W) complexes is partly a consequence of the differences in the conformational energy between the coordinated and free ligand.^{27a} The steric repulsion between the Gn-dend and pz-Me⁵ groups increases the rigidity of the metallacycle in the complexes described here (see NMR and X-ray discussion) and probably makes the coordination of the (Gndend)CH(3,5-Me₂pz)₂ ligands even more unstable than that of the unsubstituted CH₂(pz)₂ ligand. Shiu has shown that prolonged thermolysis of $[Mo(CO)_4\{(C_6H_5)CH(3,5-Me_2pz)_2\}]$ in DME gives $[Mo(CO)_3{(\eta^2-C_6H_5)CH(3,5-Me_2pz)_2}]$ by decarbonylation and weak intramolecular η^2 -binding of the phenyl group to the metal center.^{28b} A simple Cochrane molecular model suggests that such an η^2 -binding is even more favorable for the benzyl group of complex 13. All attempts to promote a similar transformation in 13 at reflux or by warming samples of the complex in a sealed ampoule under vacuum in DME, THF, acetone, or toluene resulted, however in mixtures of decomposition products and unreacted 13.

All the reported complexes were characterized by ¹H and ¹³C{¹H} NMR and IR spectroscopy, elemental analysis, and mass spectrometry. Coordination of the ligands to the molybdenum atom only produces significant shifts in the proton and carbon-13 resonances of the nuclei close to the metal center, especially those in the 3-position of the pyrazolyl ring ($\Delta \delta = +0.8, +0.7$, and +0.5 ppm for H³ and +5, +10, and +8 ppm for C³ in **5–8**, **9–12**, and **13–15**, respectively).[‡] The chemical shifts of most of

[‡] Ligand (G0-*dend*)CH(3,5-Me₂pz)₂: ¹H NMR (C₆D₆): δ 1.97 (s, 6 H, pz-Me³), 2.19 (s, 6 H, pz-Me⁵), 3.96 (d, J_{H,H} = 7.2 Hz, 2 H, CH₂), 5.57 (s, 2 H, pz-H⁴), 6.38 (t, J_{H,H} = 7.2 Hz, 1 H, CH), 6.9–7.0 ppm (m, 5 H, Ph). ¹H NMR ([D₆]acetone): δ 2.08 (s, 6 H, pz-Me³), 2.10 (s, 6 H, pz-Me⁵), 3.87 (d,

the nuclei located at the core of dendrons are shifted progressively upfield with increasing generation, from G0 to G3, in the metal complexes described here. For example, the chemical shift of the $CH_2C(pz)_3$ protons in **5–8** moves from $\delta = 5.87$ ppm in **5** to $\delta =$ 5.82, 5.80, and 5.77 ppm in **6–8**, respectively, the chemical shift of H⁴ moves from $\delta = 6.47$ ppm in **5** to $\delta = 6.45$, 6.42 and 6.40 ppm in **6–8**, respectively, and that of H³ moves from $\delta = 8.42$ ppm in **5** to $\delta = 8.38$, 8.36, and 8.32 ppm in **6–8**, respectively. Likewise, on going from **9** to **11** the chemical shift of Me⁵ follows the sequence $\delta = 2.10$, 2.05, and 2.01 ppm, that of Me³ the sequence $\delta = 2.74$, 2.73, and 2.71 ppm, that of pz-H⁴ the sequence $\delta = 6.47$, 6.45, and 6.42 ppm, and that of $CH(3,5-Me_2pz)_2$ the sequence $\delta = 6.09$, 6.00, and 5.98 ppm. This small but consistent effect might be due to an increased shielding at the focal point caused by the presence of an increasing number of aryl groups.

The pyrazolyl rings of complexes **5–15** give rise to a unique set of proton and carbon-13 resonances at room temperature. This is indicative of apparent C_{3v} (**5–8**) or C_s (**9–15**) symmetry in solution and is also in accordance with the single ¹³C resonances observed for the carbonyl groups in complexes **5–8** (δ = 230 ppm). In contrast, the ¹H and ¹³C{¹H} NMR spectra of complexes [MoClO₂{(*Gn-dend*)OCH₂C(pz)₃]Cl show the existence of two different pyrazolyl groups in a 2 : 1 ratio assigned, respectively, to the rings *trans* to the oxido and *trans* to the chlorido ligands of a rigidly coordinated tris(pyrazolyl)methane ligand (see Scheme 2).

The carbonyl groups of complexes 13 and 14 give rise to three ¹³C resonances at $\delta = 220$, 208, and 207 ppm, respectively. Because carbonyl groups are π -acceptors, the low-field signal was assigned to the carbonyl groups located *trans* to the pyrazolyl groups and the two higher field resonances to the mutually *trans* CO ligands. The chemical inequivalence of the latter is coherent with the predominance in solution of a boat conformation for the bis(pyrazolyl) metallacycle, similar to that found in the solid state, with no boat-to-boat conformational exchange (see below and Fig. 1).^{8-10,28c,30} The number of CO resonances reduces to two for 15 ($\delta = 228$, 207 ppm), as expected, as the coordinated acetonitrile replaces one of the two mutually *trans* carbonyl groups in 13.

Fig. 1 ORTEP diagram of the structure of compound **13** with thermal ellipsoids at 50% probability.

 $J_{\rm H,H}=7.2$ Hz, 2 H, CH₂), 5.72 (s, 2 H, pz-H⁴), 6.42 (t, $J_{\rm H,H}=7.2$ Hz, 1 H, CH), 7.15–7.25 ppm (m, 5 H, Ph).

The IR spectra were recorded for all the new complexes in KBr pellets and show a $v_{as}(C=N)$ absorption at around 1520 (5–8) or 1560 cm⁻¹ (9–15). The number of IR bands in the region of the CO stretching vibrations is in agreement with the proposed structures, namely two absorptions for the tricarbonyl compounds 5–8 or 15 of approximate C_{3v} symmetry (A₁ + E) and four absorptions for the tetracarbonyl complexes 13 and 14 of local C_{2v} symmetry (2 A₁, B₁, and B₂ modes). Two strong absorptions are observed in the v(Mo=O) region for complexes 9–12 at about 950 (asymmetric) and 920 cm⁻¹ (symmetric), in agreement with a *cis*-[MoO₂]²⁺ geometry.

The molecular ions of complexes 5-9 were detected in the ESI⁺-TOF mass spectra with the expected isotopic distributions, although often with hydrogen or alkali-metal cations incorporated. The bis(pyrazolyl)methane complexes 9, 10, and 12 only gave peaks corresponding to the free ligands, whereas fragments derived from the molecular ions by the loss of one or more CO groups (or acetonitrile for 15) were observed in the mass spectra of the carbonyl compounds 13–15.

We recently published several studies dealing with the conformational disposition of poly(benzyl ether) dendrons around the metal center in bis(pyrazolyl)methane complexes of nickel(II)⁹ and palladium(II).¹⁰ These studies are relevant on account of the role that dendrimers can play in the confinement of active centers in catalytic processes.3 Our studies were based on solidstate structures determined by single-crystal X-ray diffraction and on nuclear longitudinal relaxation rates obtained in solution for molecules with paramagnetic metal centers. In addition to its conventional role of providing detailed information about the local environment of active nuclei, NMR spectroscopy is also a powerful tool for the study of overall molecular properties. Translational motion can be studied in a practical way by diffusion NMR spectroscopy.³¹ The hydrodynamic radii, $R_{\rm H}$, can be calculated from the diffusion coefficient of a certain molecular species using the Stokes–Einstein equation (eqn (1)), where $k_{\rm B}$ is the Boltzmann constant, T the absolute temperature, and η the viscosity of the solution.

$$R_{\rm H} = \frac{k_{\rm B}T}{6\pi\eta D} \tag{1}$$

We measured the self-diffusion coefficients of dendrimers 5-8 in deuterated acetone at 25 °C using high-resolution diffusionordered spectroscopy (DOSY, see Experimental for details).³² The values obtained were 13.4×10^{-10} (G0), 11.3×10^{-10} (G1), 9.1×10^{-10} 10^{-10} (G2), and 6.5 \times 10^{-10} m² s⁻¹ (G3), respectively. The hydrodynamic radii of complexes 5-8 were calculated to be 5.0 (G0), 5.9 (G1), 7.4 (G2), and 10.2 Å (G3) from these measurements. Eqn (1) assumes that sample molecules are spherical and much larger than the solvent, therefore the calculated radii should be considered as estimates. Riley et al.³³ have reported $R_{\rm H}$ values for similar poly(benzyl ether) dendrons with pyrene units at their focal point in good solvents, where the dendritic structures tend to be extended, and in bad solvents, which favor the collapse of the structure. Taking into account the larger size of the tris(pyrazolyl)molybdenum tricarbonyl complex, the radii of 5-8 in deuterated acetone are in good agreement with those reported for the pyrene compounds in a good solvent such as THF (3.7 (G0), 4.9 (G1), 6.2 (G2), and 10 Å (G3)].

Structures of $[Mo(CO)_4{PhCH_2CH(3,5-Me_2pz)_2]$ (13) and $[Mo(CO)_3(NCMe){PhCH_2CH(3,5-Me_2pz)_2}]$ (15)

Fig. 1 and 2 show ORTEP representations of the molecular structure of compounds 13 and 15, respectively, as determined in the solid state by single-crystal X-ray diffraction studies; the relevant structural data are given in Table 1.

The molecular structure of **13** (Fig. 1) shows a six-coordinate central molybdenum atom in a distorted octahedral geometry with the bis(pyrazolyl)methane group acting as a bidentate chelating ligand. The bond angles around the metal centre are in the range $166.5(1)-177.0(1)^\circ$ for atoms located *trans* each other and $84.0(1)-177.0(1)^\circ$

Fig. 2 ORTEP diagram of the structure of compound $15 \cdot C_6 D_6$ (enantiomer a) with thermal ellipsoids at 50% probability.

Table 1 Bond lengths [Å] and angles [°] for compounds 13 and 15

13		15 (enantiomer a)	
13 Mo-C(21) Mo-C(24) Mo-C(23) Mo-C(22) Mo-N(1) Mo-N(3) C(21)-Mo-C(23) C(21)-Mo-C(24) C(21)-Mo-C(22) C(21)-Mo-N(1) C(21)-Mo-N(3) C(24)-Mo-N(1) C(24)-Mo-N(1)	2.044(3) 1.954(3) 1.963(3) 2.056(0) 2.320(2) 2.308(2) 84.35(11) 83.95(11) 166.53(10) 97.70(9) 98.65(9) 175.37(9)	15 (enantiomer a) Mo-C(21) Mo-C(22) Mo-C(23) Mo-N(5) Mo-N(1) Mo-N(3) C(21)-Mo-C(23) C(21)-Mo-C(22) C(21)-Mo-C(22) C(21)-Mo-N(5) C(21)-Mo-N(1) C(21)-Mo-N(3) C(22)-Mo-N(1)	1.967(9) 1.934(7) 1.916(8) 2.278(7) 2.328(6) 2.327(6) 83.0(3) 81.6(3) 174.8(3) 99.6(2) 101.7(3) 177.6(3)
$\begin{array}{l} C(24)-M-N(3)\\ C(23)-Mo-C(24)\\ C(23)-Mo-N(1)\\ C(23)-Mo-N(3)\\ C(22)-Mo-C(23)\\ C(22)-Mo-C(24)\\ C(22)-Mo-N(1)\\ C(22)-Mo-N(3)\\ N(1)-Mo-N(3)\\ Mo-C(21)-O(1)\\ Mo-C(22)-O(2)\\ Mo-C(23)-O(3)\\ Mo-C(24)-O(4) \end{array}$	96.24(9) 84.51(11) 99.94(9) 176.96(9) 85.33(11) 86.47(11) 92.58(9) 91.77(9) 79.25(7) 170.4(2) 171.2(2) 175.8(2) 177.6(2)	$\begin{array}{c} C(22)-Mo-N(3)\\ C(23)-Mo-C(22)\\ C(23)-Mo-N(1)\\ C(23)-Mo-N(3)\\ N(5)-Mo-C(23)\\ N(5)-Mo-C(22)\\ N(5)-Mo-N(1)\\ N(5)-Mo-N(3)\\ N(1)-Mo-N(3)\\ Mo-C(21)-O(1)\\ Mo-N(5)-C(24)\\ Mo-C(23)-O(3)\\ Mo-C(22)-O(2)\\ N(5)-C(24)-C(25)\\ \end{array}$	$\begin{array}{c} 99.1(3) \\ 83.3(3) \\ 98.9(3) \\ 175.0(3) \\ 92.0(0) \\ 96.4(3) \\ 82.6(2) \\ 83.4(2) \\ 78.6(2) \\ 171.2(6) \\ 173.6(6) \\ 177.1(6) \\ 174.7(7) \\ 178.0(9) \end{array}$

 $99.9(1)^{\circ}$ for those in *cis* positions, with the exception of the acute angle defined by the pyrazolyl nitrogen atoms $[79.2(1)^{\circ}]$. The average Mo-N [2.314(2) Å] and Mo-C [2.004(3) Å] bond distances fall in the usual range,28,34 with slightly longer distances to the carbonyl carbons that are mutually trans, as would be expected. These carbonyl groups are somewhat tilted toward the axis bisecting the Mo-CO(cis) bonds: the angle C(21)-Mo-C(22) is $166.5(1)^{\circ}$, while the dihedral angle defined by the N(1)–Mo– N(3) and C(21)–Mo–C(22) planes is almost a right angle $[89.7(1)^{\circ}]$. This distortion is most likely due to the steric repulsions between the trans carbonyl groups and the bis(pyrazolyl)methane ligand. The metallacycle adopts a boat conformation, as typically found in related complexes,28,34 and the benzyl group attached to the methine carbon C(11) occupies the axial position. The same arrangement has been found in palladium(II), 8,10,30 nickel(II), 9 and molybdenum(0)^{28c} complexes with RCH(3,5-Me₂pz)₂ ligands (R = phenyl, benzyl, pyridyl, or dendrons) and has been ascribed to the steric hindrance that would arise in the equatorial location with the adjacent methyl groups at the 5-position of the pyrazolyl rings. This steric repulsion between the R and pz-Me⁵ groups confers rigidity on the metallacycle and explains the absence of a boat-to-boat conformational exchange in solution (see NMR discussion). The boat conformation is less pronounced on the side of the metal centre than on that of the carbon bridge, and the pyrazolyl rings show a saddlebag-type disposition with a dihedral angle of $48.6(1)^{\circ}$. The benzyl group is orientated asymmetrically towards the hemi-space that contains the N(1)-N(2) pyrazolyl ring, with a dihedral angle defined by the C(12)-C(13) bond and the Mo \cdots C(11) molecular axis of 137.4°.

Complex 15 was crystallized from C₆D₆. The asymmetric part of the unit cell consists of two enantiomers (a and b) with similar bond parameters-they differ only in the relative orientation of the benzyl group-and two crystallization benzene molecules. Fig. 2 and Table 1 concern the enantiomer adduct 15a·C₆D₆. The molecular structure of 15 resembles that of 13 but with the CO group situated anti to the phenyl ring replaced by an acetonitrile ligand. Similar distortions are observed in the octahedral geometry around the metal center, with bond angles ranging from 177.6(3)° to 174.8(3)° for the atoms located trans or from $101.7(3)^{\circ}$ to $81.46(3)^{\circ}$ for those located *cis*, and an N(1)-Mo-N(3) angle of 78.6(2)°. The Mo-N(pz) [2.328(6) Å] and Mo-CO(mean) [1.939(8) Å] bond distances are slightly longer and shorter, respectively, than those found in 13, and the distances to the carbonyl carbons trans to the chelate ligand are again slightly shorter. The acetonitrile ligand is coordinated in a rather linear mode $[Mo-N(5)-C(24) = 173.6(6)^{\circ}, N(5)-C(24)-C(25) =$ $178.0(9)^{\circ}$ with an Mo–N(5) distance of 2.278(7) Å. The carbonyl group trans to acetonitrile is the most affected by the steric repulsion between the ligands, being tilted toward the other carbonyl ligands. The metallacycle in 15 adopts a similar boat conformation to that described for 13. The dihedral angle between the pyrazolyl rings is $50.2(3)^{\circ}$, and the asymmetric positioning of the benzyl group is defined by the dihedral angle C(13)-C(12)- $C(11) \cdots Mo \text{ of } 110.9^{\circ}.$

Catalytic oxidation using molybdenum(VI) complexes 9-12

We tested these compounds as catalyst precursors for the epoxidation of *cis*-cyclooctene with *tert*-butyl hydroperoxide under the conditions described by Romão and coworkers.²⁶ The reactions proved to be highly exothermic under these conditions, with conversions of the olefin to the corresponding epoxide of more than 90% in 10 min. Complete conversion were reached in less than 30 min without significant differences between the four dendritic complexes. [MoCl₂O₂] showed the same performance as the bis(pyrazolyl) complexes in the absence of ligands.

We then reduced the Mo loading from 1 mol% to 0.05 mol% and monitored the reaction under these milder conditions by GC (see Experimental for further details). The catalytic profile was again almost independent of the dendritic generation of the catalyst (Fig. 3), and only the G0 compound **9** showed a slightly inferior initial turnover frequency (5760 h⁻¹ compared with approx. 11 000 h⁻¹ for **10–12** in the first 5 min of reaction). Surprisingly, ligand-free MoCl₂O₂ proved to be more active (14 640 h⁻¹) than any of the bis(pyrazolyl) complexes and afforded 100% conversion after 5 h (compared with 92–96% for **9–12**).

Fig. 3 Catalytic profile in the oxidation of *cis*-cyclooctene for 9-12, and the reference compound MoCl₂O₂.

We have shown above that bidentate $(Gn-dend)CH(3,5-Me_2pz)_2$ ligands are more prone to dissociate from the metal center due to steric conformational restraints. We can speculate that, under catalytic conditions, the ligand dissociates quickly to afford more active species, therefore the less congested G0 ligand is initially less active and the ligand-free MoO₂Cl₂ precursor has a higher initial TOF, although the differences are small. Colbran and coworkers have recently studied alkene epoxidation using a dioxo(pentaarylcyclopentadienido)molybdenum(VI) complex and postulated that, in spite of the stability of the cyclopentadienido coordination, decomposition to a much more active non-cyclopentadienido-containing catalyst occurs as the reaction proceeds.35 The low binding constants of bis(pyrazolyl)methane ligands has been argued previously by Jordan to explain the performance of bis(pyrazolyl)methanepalladium(II) compounds in ethylene polymerization,³⁶ and also explains the behavior observed by us for nickel(II) complexes containing similar dendritic ligands.9

Conclusions

We have reported the synthesis of molybdenum(0) and molybdenum(VI) complexes with bis- and tris(pyrazolyl)methane ligands embedded in poly(benzyl ether) dendrons of up to the third generation. The presence of an $-OCH_{2-}$ spacer between the dendritic wedge and the $C(pz)_3$ moiety permits the tridentate coordination of the tris(pyrazolyl) ligands, as demonstrated by the straightforward preparation of their molybdenum(0) tricarbonyl complexes.

While the products resulting from the reaction of $[Mo_2Cl_2O_2]$ with the tridentate ligands could not be isolated in a pure form, the synthesis of the bis(pyrazolyl)methane complexes worked well. Furthermore, compounds [Mo(CO)₄{Gn-(dend)CH(3,5- Me_2pz_2] [Gn = G0 (13), G1 (14)] and [Mo(CO)₃{G0-(dend)CH(3,5-Me₂pz)₂}MeCN] (15) were isolated in good yields as substances that are fairly unstable in solution. The characterization of these bidentate metal complexes in solution by NMR spectroscopy and of 13 and 15 in the solid state by X-ray diffraction is consistent with the conformational rigidity of the coordinated bis(pyrazolyl)methane ligands, which could explain the tendency of some of them to dissociate. The catalytic behavior of complexes 9-12 found in the epoxidation of *cis*-cyclooctene with *tert*-butyl hydroperoxide is almost independent of the dendron-generation, being slightly inferior in activity than the ligand-free MoCl₂O₂ parent compound.

Experimental

General remarks

All operations were performed under argon using Schlenk or dry-box techniques. Unless otherwise stated, reagents were obtained from commercial sources and used as received. The compounds NaOCH₂C(pz)₃,⁸ [Mo(CO)₃(η⁶-1,3,5-C₆H₃Me₃)],³⁷ [Mo(CO)₃(NCMe)₃],³⁸ (Gn-dend)Br (G1-G3),²³ and (Gn-dend)-CH(3,5-Me₂pz)₂ (G0-G3)⁹ were prepared according to literature procedures. Solvents were previously dried and distilled under argon as described elsewhere.³⁹ NMR spectra were recorded with Varian Unity 500+, VR-300, or 200 spectrometers. Chemical shifts (δ) are reported in ppm relative to SiMe₄, and were referenced with respect to ¹³C and residual ¹H resonances of the deuterated solvents. Coupling constants (J) are given in Hz. The following abbreviations/notations are used: Ph refers to aromatic ring of terminal benzyl groups, Ar to internal rings of benzyl ethers, and ipso refers to the first ring-position on going from the dior tridentate pyrazolyl ligand. The numbering scheme for the pyrazolyl ring atoms is given in Chart 1. IR spectra were recorded with a Perkin-Elmer FT-IR Spectrum-2000 spectrophotometer. The Microanalytical Laboratories of the University of Alcalá performed the elemental analyses with a Heraeus CHN-O-Rapid microanalyzer and the mass spectra with a Thermoquest-Finnigan Automass Multi or an AGILENT 6210 LC/MS TOF Multi (ESI) mass spectrometer. The products of catalysis were analyzed with a CHROMPACK CP 9001 gas chromatograph using a fused silica HP-INNOWax capillary column (15 m, 0.25 mm i.d., 0.25 µm df) under the following conditions: injector and detector temperature: 250 °C; oven temperature program: 140 °C isotherm.

General procedure for the preparation of $(Gn-dend)OCH_2C(pz)_3$ (1-4). The corresponding benzyl wedge (Gn-dend)Br (n = 0, 1, 2, 3) and NaOCH₂C(pz)₃ were combined in THF (15 mL) at 0 °C. The temperature was subsequently allowed to rise to room temperature and stirring was continued overnight. The resulting reaction mixture was filtered through Celite using a cannula-filter, the solvent was removed *in vacuo*, and the crude residue treated as described individually below to give the title compounds as white (1-3) or pale-yellow (4) solids.

(G0-dend)OCH₂C(pz)₃ (1). PhCH₂Br (0.30 mL, 2.5 mmol) and NaOCH₂C(pz)₃ (544 mg, 2.04 mmol). Recrystallized from pentane. Yield: 616 mg (90%). Anal. Calc. for $C_{18}H_{18}N_6O(334.38)$: C, 64.66; H, 5.43; N, 25.13%. Found: C, 64.12; H, 5.43; N, 24.71%. ¹H NMR (CDCl₃): δ 4.50 (s, 2 H, PhCH₂O), 5.12 [s, 2 H, CH₂C(pz)₃], 6.32 (dd, $J_{H,H} = 1.5$, 2.5 Hz, 3 H, pz-H⁴), 7.14– 7.20 (m, 2 H, Ph), 7.25–7.34 (m, 3 H, Ph), 7.42 (d, $J_{H,H} = 2.5$ Hz, 3 H, pz-H⁵), 7.64 ppm (d, $J_{H,H} = 1.5$ Hz, 3 H, pz-H³). ¹H NMR ([D₆]acetone): δ 4.55 (s, 2 H, PhCH₂O), 5.11 [s, 2 H, CH₂C(pz)₃], 6.34 (dd, $J_{H,H} = 1.5, 2.5 \text{ Hz}, 3 \text{ H}, \text{pz-H}^4$), 7.20–7.35 (m, 5 H, Ph), 7.49 (d, $J_{\rm H,H} = 2.5$ Hz, 3 H, pz-H⁵), 7.59 (d, $J_{\rm H,H} = 1.5$ Hz, 3 H, pz-H³). ¹³C{¹H} NMR (CDCl₃): δ 73.4 and 74.1 (CH₂OCH₂), 89.8 [C(pz)₃], 106.5 (pz-C⁴), 127.9 (p-Ph), 127.7 and 128.4 (o- and m-Ph), 130.9 (pz-C⁵), 137.0 (*ipso*-Ph), 141.4 ppm (pz-C³). ¹³C{¹H} NMR ([D₆]acetone): δ 73.9 and 74.3 (-CH₂OCH₂-), 90.6 [C(pz)₃], 106.8 (pz-C⁴), 128.6 (p-Ph), 128.5 and 129.1 (o- and m-Ph), 131.7 (pz-C⁵), 138.5 (*ipso*-Ph), 141.5 ppm (pz-C³). IR (KBr pellet): v 1519 (s, C=N), 1620 (m, C=C), 1451 cm⁻¹ (s, C=C). MS (ESI+-TOF in $CH_2Cl_2/MeOH/NH_4HCOO 5 \text{ mM}$): $m/z 357.14 \text{ [M + Na]}^+$, 267.31 [M - pz]⁺, 199.23 [M - 2 pz - H]⁺.

(G1-dend)OCH₂C(pz)₃ (2). (G1-dend)Br (766 mg, 2.00 mmol) and NaOCH₂C(pz)₃ (532 mg, 2.00 mmol). Recrystallized by dissolving the crude reaction mixture in the minimum volume of diethyl ether, adding hexane, and stirring for several hours. Yield: 787 mg (72%). Anal. Calc. for C₃₂H₃₀N₆O₃ (546.63): C, 70.31; H, 5.53; N, 15.37%. Found: C, 70.31; H, 5.34; N, 15.07%. ¹H NMR (CDCl₃): δ 4.44 (s, 2 H, ArCH₂O), 4.97 (s, 4 H, PhCH₂O), 5.11 [s, 2 H, $CH_2C(pz)_3$], 6.31 (dd, $J_{H,H} = 1.5$, 2.4 Hz, 3 H, pz-H⁴), 6.43 (d, ${}^{4}J_{H,H} = 2.1$ Hz, 2 H, *o*-Ar), 6.51 (t, ${}^{4}J_{H,H} = 2.1$ Hz, 1 H, p-Ar), 7.30–7.38 (m, 10 H, Ph), 7.40 (d, $J_{H,H} = 2.4$ Hz, 3 H, pz-H⁵), 7.63 ppm (d, $J_{H,H} = 1.5$ Hz, 3 H, pz-H³). ¹³C{¹H} NMR (CDCl₃): δ 70.1 (PhCH₂O), 73.4 and 74.0 (-CH₂OCH₂-), 89.8 [C(pz)₃], 101.6 (p-Ar), 106.5 (pz-C⁴), 106.6 (o-Ar), 128.0 (p-Ph), 127.5 and 128.6 (o- and m-Ph), 130.9 (pz-C⁵), 136.7 (ipso-Ph), 139.5 (ipso-Ar), 141.3 (pz-C³), 160.0 ppm (m-Ar). IR (KBr pellet): v 1515 (m, C=N), 1595 and 1452 (s, C=C), 1297 (s, C-O-C_{as}), 1165 and 1028 cm⁻¹ (s, C-O-C_s). MS (ESI+-TOF in CH₂Cl₂/MeOH/ NH₄HCOO 5 mM): m/z 1115.47 [M₂ + Na]⁺, 569.23 [M + Na]⁺, 411.18 [M - 2 pz - H]⁺.

(G2-dend)OCH₂C(pz)₃ (3). (G2-dend)Br (500 mg, 0.62 mmol) and NaOCH₂C(pz)₃ (165 mg, 0.62 mmol). The resulting yellow oil was triturated with diethyl ether to give a solid. Yield: 518 mg (86%). Anal. Calc. for C₆₀H₅₄N₆O₇ (971.12): C, 74.21; H, 5.60; N, 8.65%. Found: C, 74.00; H, 5.73; N, 8.14%. ¹H NMR (CDCl₃): δ 4.43 (s, 2 H, G0-ArCH₂O), 4.89 (s, 4 H, G1-ArCH₂O), 5.01 (s, 8 H, PhCH₂O), 5.11 [s, 2 H, CH₂C(pz)₃], 6.29 (dd, $J_{H,H} = 1.5$, 2.0 Hz, 3 H, pz-H⁴), 6.40 (d, ${}^{4}J_{H,H} = 1.8$ Hz, 2 H, G0-*o*-Ar), 6.48 $(t, {}^{4}J_{H,H} = 1.8 \text{ Hz}, 1 \text{ H}, \text{ G0-}p\text{-Ar}), 6.55 (t, {}^{4}J_{H,H} = 2.1 \text{ Hz}, 2 \text{ H},$ G1-*p*-Ar), 6.64 (d, ${}^{4}J_{H,H} = 2.1$ Hz, 4 H, G1-*o*-Ar), 7.26–7.40 (m, 23 H, Ph and pz-H⁵ overlapping), 7.62 ppm (d, $J_{H,H} = 1.5$ Hz, 3 H, pz-H³). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 69.9 (G1-ArCH₂O), 70.1 (PhCH₂O), 73.4 and 74.0 (-CH₂OCH₂-), 89.8 [C(pz)₃], 101.5 (G0p-Ar and G1-p-Ar overlapping), 106.3 (G1-o-Ar), 106.4 (G0-o-Ar), 106.5 (pz-C⁴), 128.0 (p-Ph), 127.5 and 128.6 (o- and m-Ph), 130.9 (pz-C⁵), 136.7 (ipso-Ph), 139.2 (G1-ipso-Ar), 139.5 (G0-ipsoAr), 141.3 (pz-C³), 159.9 (G0-*m*-Ar), 160.1 ppm (G1-*m*-Ar). IR (KBr pellet): v 1517 (m, C=N), 1595 and 1451 (vs, C=C), 1296 (s, C-O-C_a), 1146 and 1037 cm⁻¹ (s, C-O-C_s). MS (ESI⁺-TOF in CH₂Cl₂/MeOH/NH₄HCOO 5 mM): *m*/*z* 1804.78 [(M - pz - H)₂]⁺, 1010.22 [M + K]⁺, 992.40 [M + Na - H]⁺, 767.30 [M - 3 pz - 2H]⁺.

(G3-dend)OCH₂C(pz)₃ (4). (G3-dend)Br (993 mg, 0.60 mmol) and NaOCH₂C(pz)₃ (160 mg, 0.60 mmol). The resulting yellow oil was triturated repeatedly with diethyl ether to give a solid. Yield: 895 mg (82%). Anal. Calc. for C₁₁₆H₁₀₂N₆O₁₅ (1820.12): C, 76.55; H, 5.65; N, 4.62%. Found: C, 76.25; H, 5.59; N, 4.58%. ¹H NMR (CDCl₃): δ 4.42 (s, 2 H, G0–ArCH₂O), 4.88 (s, 4 H, G1– ArCH₂O), 4.94 (s, 8 H, G2–ArCH₂O), 4.99 (s, 16 H, PhCH₂O), 5.09 [s, 2 H, $CH_2C(pz)_3$], 6.27 (dd, $J_{H,H} = 1.6, 2.5$ Hz, 3 H, pz-H⁴), 6.41 (d, ${}^{4}J_{H,H} = 1.8$ Hz, 2 H, G0-o-Ar), 6.50 (t, ${}^{4}J_{H,H} = 1.7$ Hz, 1 H, G0-*p*-Ar), 6.52 (t, ${}^{4}J_{H,H} = 2.0$ Hz, 2 H, G1-*p*-Ar), 6.54 (t, ${}^{4}J_{\rm H,H} = 2.2$ Hz, 4 H, G2-*p*-Ar), 6.62 (d, ${}^{4}J_{\rm H,H} = 2.0$ Hz, 4 H, G1-o-Ar), 6.65 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 8 H, G2-o-Ar), 7.26–7.40 (m, 43 H, Ph and pz-H⁵ overlapping), 7.62 ppm (d, $J_{H,H} = 1.6$ Hz, 3 H, pz-H³). ¹³C{¹H} NMR (CDCl₃): δ 70.0 (G1-ArCH₂O), 70.1 (G2-ArCH₂O and PhCH₂O overlapping), 73.4 and 73.9 (-CH₂OCH₂-), 89.8 [C(pz)₃], 101.5 (G0-*p*-Ar, G1-*p*-Ar and G2-*p*-Ar overlapping), 106.3 (G1-o-Ar, G2-o-Ar overlapping), 106.4 (G0-o-Ar), 106.5 (pz-C⁴), 127.9 (*p*-Ph), 127.5 and 128.5 (*o*- and *m*-Ph), 130.8 (pz-C⁵), 136.7 (ipso-Ph), 139.1 (G1-ipso-Ar and G2-ipso-Ar overlapping), 139.5 (G0-ipso-Ar), 141.2 (pz-C3), 159.9 (G0-m-Ar), 160.0 (G1-m-Ar), 160.1 ppm (G2-*m*-Ar). IR (KBr pellet): *v* 1516 (w, C=N), 1595 and 1451 (vs, C=C), 1295 (s, C–O– C_{as}), 1155 and 1047 cm⁻¹ (vs, C–O–C_s). MS (ESI⁺-TOF in CH₂Cl₂/MeOH/NH₄HCOO 5 mM): m/z 1842.73 [M + Na]⁺, 1797.47 [M - pz + HCOO]⁺, 242.28 $[OCH_2C(pz)_3 - H]^+$.

General procedure for the preparation of $[Mo(CO)_3{(Gn-dend)-OCH_2C(pz)_3}]$ (5–8). Molybdenum compounds 5–8 were prepared by combining the corresponding ligand 1–4 and $[Mo(CO)_3(\eta^6-1,3,5-C_6H_3Me_3)]$ in THF (30 mL) in a Schlenk tube at room temperature and stirring for 4–5 h. The solvent was removed under reduced pressure and the residue washed with pentane or diethyl ether to give 5–8 as yellow solids.

 $[Mo(CO)_3\{(G0-dend)OCH_2C(pz)_3\}]$ (5). (G0-dend)OCH₂-C(pz)₃ (1; 100 mg, 0.30 mmol) and [Mo(CO)₃(η⁶-1,3,5-C₆H₃Me₃)] (88 mg, 0.29 mmol). Yield: 133 mg (86%). Anal. Calcd. for C₂₁H₁₈MoN₆O₄ (514.35): C, 49.04; H, 3.53; N, 16.34%. Found: C, 48.62; H, 3.69; N, 16.53%. ¹H NMR ([D₆]acetone): δ 5.20 (s, 2 H, PhCH₂O), 5.87 [s, 2 H, CH₂C(pz)₃], 6.47 (dd, $J_{H,H} = 1.5$, 2.5 Hz, 3 H, pz-H⁴), 7.35–7.45 (m, 3 H, Ph), 7.50–7.55 (m, 2 H, Ph), 8.02 (d, $J_{H,H} = 2.5$ Hz, 3 H, pz-H⁵), 8.42 ppm (d, $J_{H,H} =$ 1.5 Hz, 3 H, pz-H³). ¹³C{¹H} NMR ([D₆]acetone): δ 68.7 and 74.3 (-CH₂OCH₂-), 85.2 [C(pz)₃], 107.6 (pz-C⁴), 129.2, 129.3 and 129.5 (Ph), 133.9 (pz-C⁵), 137.0 (*ipso-Ph*), 146.3 (pz-C³), 229.9 ppm (CO). IR (KBr pellet): v 1906 and 1795 (vs, CO), 1517 (m, C=N). MS (ESI⁺-TOF in THF/MeOH/NH₄HCOO 5 mM): m/z 1028.70 $[M_2]^+$, 515.36 $[M + H]^+$, 486.34 $[M - CO]^+$, 458.33 [M- 2 CO]⁺, 430.32 [M - 3 CO]⁺, 357.37 [1 + Na]⁺, 335,39 [1 + H]⁺, 199.23 [1 – 2 pz – H]⁺.

 $[Mo(CO)_3\{(G1-dend)OCH_2C(pz)_3\}]$ (6). $(G1-dend)OCH_2-C(pz)_3$ (2; 109 mg, 0.20 mmol) and $[Mo(CO)_3(\eta^6-1,3,5-C_6H_3Me_3)]$ (60 mg, 0.20 mmol). Yield: 123 mg (85%). Anal. Calc. for C₃₅H₃₀MoN₆O₆ (726.60): C, 57.86; H, 4.16; N, 11.57%. Found: C, 57.28; H, 3.96; N, 11.76%. ¹H NMR ([D₆]acetone): δ 5.10 (s, 6 H, ArCH₂O and PhCH₂O overlapping), 5.82 [s, 2 H, CH₂C(pz)₃], 6.45 (m, 3 H, pz-H⁴), 6.69 (t, ⁴J_{H,H} = 2.0 Hz, 1 H, *p*-Ar), 6.78 (d, ⁴J_{H,H} = 2.0 Hz, 2 H, *o*-Ar), 7.30–7.45 (m, 10 H, Ph), 8.02 (m, 3 H, pz-H³), 8.38 ppm (m, 3 H, pz-H³). ¹³C{¹H} NMR ([D₆]acetone): δ 70.5 (PhCH₂O), 68.6 and 74.2 (-CH₂OCH₂-), 85.2 [C(pz)₃], 102.6 (*p*-Ar), 107.7 (pz-C⁴), 108.2 (*o*-Ar), 128.7 (*p*-Ph), 128.4 and 129.3 (*o*- and *m*-Ph), 133.8 (pz-C⁵), 138.1 (*ipso*-Ph), 139.1 (*ipso*-Ar), 146.3 (pz-C³), 161.1 (*m*-Ar), 229.9 ppm (CO). IR (KBr pellet): ν 1900 and 1774 (vs, CO), 1519 (m, C=N), 1598 and 1448 (s, C=C), 1297 (s, C–O–C_{as}), 1160 and 1061 cm⁻¹ (s, C–O–C_s). MS (ESI⁺-TOF in THF/MeOH/NH₄HCOO 5 mM): *m*/*z* 1454.20 [M₂]⁺, 1189.20 [M₂ – Mo(CO)₆]⁺, 1116.25 [(**2**)₂Na]⁺, 727.61 [M + H]⁺, 569.23 [**2** + Na]⁺, 411.18 [**2** – 2 pz – H]⁺.

 $[Mo(CO)_3\{(G2-dend)OCH_2C(pz)_3\}] \quad (7). \quad (G2-dend)OCH_2 C(pz)_3$ (3; 110 mg, 0.11 mmol) and $[Mo(CO)_3(\eta^6-1, 3, 5-C_6H_3Me_3)]$ (32 mg, 0.11 mmol). Yield: 105 mg (83%). Anal. Calc. for C₆₃H₅₄MoN₆O₁₀ (1151.10): C, 65.74; H, 4.73; N, 7.30%. Found: C, 65.35; H, 4.64; N, 7.19%. ¹H NMR ([D₆]acetone): δ 5.06 (s, 4 H, G1-ArCH₂O), 5.08 (s, 8 H, PhCH₂O), 5.10 (s, 2 H, G0-ArCH₂O), 5.80 [s, 2 H, CH₂C(pz)₃], 6.42 (m, 3 H, pz-H⁴), 6.64 (t, ${}^{4}J_{H,H} =$ 2.1 Hz, 2 H, G1-*p*-Ar), 6.68 (t, ${}^{4}J_{H,H} = 2.1$ Hz, 1 H, G0-*p*-Ar), 6.72 (d, ${}^{4}J_{H,H} = 2.1$ Hz, 4 H, G1-*o*-Ar), 6.81 (d, ${}^{4}J_{H,H} = 2.1$ Hz, 2 H, G0-o-Ar), 7.26-7.45 (m, 20 H, Ph), 7.98 (m, 3 H, pz-H⁵), 8.36 ppm (m, 3 H, pz-H³). ${}^{13}C{}^{1}H$ NMR ([D₆]acetone): δ 70.3 (G1-ArCH₂O), 70.5 (PhCH₂O), 68.5 and 74.4 (-CH₂OCH₂-), 85.1 [C(pz)₃], 101.9 (G1-*p*-Ar), 102.7 (G0-*p*-Ar), 107.2 (G1-*o*-Ar), 107.6 (pz-C⁴), 108.6 (G0-o-Ar), 128.6 (p-Ph), 128.5 and 129.3 (oand m-Ph), 133.8 (pz-C⁵), 138.1 (ipso-Ph), 139.0 (G0-ipso-Ar), 140.5 (G1-ipso-Ar), 146.1 (pz-C³), 161.0 (G1-m-Ar), 161.1 (G0-m-Ar), 229.9 ppm (CO). IR (KBr pellet): v 1904 and 1785 (vs, CO), 1517 (m, C=N), 1594 and 1451 (vs, C=C), 1295 (s, C-O-C_{as}), 1155 and 1053 cm⁻¹ (s, C-O-C_s). MS (ESI⁺-TOF in THF/MeOH/NH₄HCOO 5 mм): *m/z* 1152.10 [M + H]⁺, 994.11 $[3 + Na]^+$, 768.91 $[3-3 pz - H]^+$.

 $[Mo(CO)_3{(G3-dend)OCH_2C(pz)_3}]$ (8). $(G2-dend)OCH_2$ -C(pz)₃ (4; 114 mg, 0.06 mmol) and [Mo(CO)₃(η⁶-1,3,5-C₆H₃Me₃)] (18 mg, 0.06 mmol). Yield: 102 mg (85%). Anal. Calc. for C₁₁₉H₁₀₂MoN₆O₁₈ (2000.09): C, 71.46; H, 5.14; N, 4.20%. Found: C, 71.21; H, 4.93; N, 3.85%. ¹H NMR ([D₆]acetone): δ 5.00 (s, 8 H, G2-ArCH₂O), 5.02 (s, 4 H, G1-ArCH₂O), 5.06 (s, 18 H, PhCH₂O and G0-ArCH₂O overlapping), 5.77 [s, 2 H, CH₂C(pz)₃], 6.40 (m, 3 H, pz-H⁴), 6.61 (m, 7 H, G0-p-Ar, G1-p-Ar and G2-p-Ar overlapping), 6.68 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 4 H, G1-o-Ar), 6.71 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 8 H, G2-o-Ar), 6.78 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 2 H, G0-o-Ar), 7.26–7.45 (m, 40 H, Ph), 7.97 (m, 3 H, pz-H⁵), 8.32 ppm (m, 3 H, pz-H³). ${}^{13}C{}^{1}H{}$ NMR ([D₆]acetone): δ 70.4 (G1-ArCH₂O), 70.5 (G2-ArCH₂O and PhCH₂O overlapping), 68.6 and 74.4 (-CH₂OCH₂-), 85.1 [C(pz)₃], 102.0 (G2-*p*-Ar and G1-*p*-Ar overlapping), 102.8 (G0-p-Ar), 107.3 (G2-o-Ar), 107.4 (G1-o-Ar), 107.7 (pz-C⁴), 108.6 (G0-o-Ar), 128.6 (p-Ph), 128.5 and 129.3 (oand m-Ph), 133.7 (pz-C⁵), 138.1 (ipso-Ph), 139.0 (G0-ipso-Ar), 140.5 (G1-ipso-Ar), 140.6 (G2-ipso-Ar), 146.3 (pz-C³), 161.0 (G1-*m*-Ar), 161.1 (G2-*m*-Ar), 161.2 (G0-*m*-Ar), 230.0 ppm (CO). IR (KBr pellet): v 1905 and 1787 (vs, CO), 1518 (w, C=N), 1595 and 1449 (vs, C=C), 1294 (s, C–O– C_{as}), 1152 and 1051 cm⁻¹ (vs,

C–O–C_s). MS (ESI⁺-TOF in THF/MeOH/NH₄HCOO 5 mM): m/z 2001.10 [M + H]⁺.

General procedure for the preparation of $[MoCl_2O_2\{(Gn-dend)-CH(3,5-Me_2pz)_2\}]$ (9–12). $[MoCl_2O_2]$ was weighed into a Schlenk tube in a dry-box and THF (15 mL) added. A THF (15 mL) solution of one equivalent (see below) of the corresponding chelating ligand $(Gn-dend)CH(3,5-Me_2pz)_2$ (n = 0-3) was added, and the resulting yellow solution was stirred for 1 h at room temperature. The solvent was then removed under vacuum and the residue either washed with diethyl ether or recrystallized from a mixture of toluene and hexane to give compounds 9–12 as white or pale-yellow solids.

[MoCl₂O₂{(G0-*dend*)CH(3,5-Me₂pz)₂] (9). (G0-*dend*)CH(3,5-Me₂pz)₂ (79 mg, 0.27 mmol) and [MoCl₂O₂] (50 mg, 0.25 mmol). Yield: 110 mg (89%). Anal. Calcd for C₁₈H₂₂Cl₂MoN₄O₂ (493.24): C, 43.83; H, 4.50; N, 11.36. Found: C, 43.6; H, 4.05; N, 11.55. ¹H NMR (CDCl₃): δ 2.10 (s, 6H, pz-Me⁵), 2.74 (s, 6H, pz-Me³), 3.63 (d, $J_{\rm H,H} = 7.5$ Hz, 2 H, CH₂), 5.98 (s, 2 H, pz-H⁴), 6.09 (t, $J_{\rm H,H} = 7.5$ Hz, 1 H, CH), 6.81–6.84 (m, 2 H, Ph), 7.14–7.22 ppm (m, 3 H, Ph). ¹³C{¹H} NMR (CDCl₃): δ 11.6 (pz-Me⁵), 15.6 (pz-Me³), 43.0 (CH₂), 69.8 (CH), 109.7 (pz-C⁴), 128.9 (*p*-Ph), 128.8 and 129.1 (*o*- and *m*-Ph), 134.4 (*ipso*-Ph), 144.2 (pz-C⁵), 157.8 ppm (pz-C³). IR (KBr pellet): *v* 1562 (s, C=N), 1620 (w, C=C), 1459 (s, C=C), 950 (s, Mo=O_{ax}), 914 cm⁻¹ (s, Mo=O_s). MS (ESI⁺TOF in THF/MeOH/NH₄HCOO 5 mM): *m*/*z* 611.79 [(L₂Na]⁺, 317.39 [L + Na]⁺, 294.40 [L]⁺, 199.28 [L − Me₂pz]⁺; L = (G0-*dend*)CH(3,5-Me₂pz)₂.

[MoCl₂O₂{(G1-dend)CH(3,5-Me₂pz)₂}] (10). (G1-dend)CH-(3,5-Me₂pz)₂ (127 mg, 0.25 mmol) and [MoCl₂O₂] (48 mg, 0.24 mmol). Yield: 146 mg (86%). Anal. Calc. for C₃₂H₃₄Cl₂-MoN₄O₄ (705.49): C, 54.48; H, 4.86; N, 7.94%. Found: C, 54.44; H, 4.71; N, 8.32%. ¹H NMR (CDCl₃): δ 2.05 (s, 6 H, pz-Me⁵), 2.73 (s, 6 H, pz-Me³), 3.53 (d, $J_{H,H} = 7.5$ Hz, 2 H, CH₂), 4.90 (s, 4 H, PhCH₂O), 5.97 (s, 2 H, pz-H⁴), 6.00 (t, $J_{H,H} = 7.5$ Hz, 1 H, CH partially overlapped), 6.04 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 2 H, *o*-Ar), 6.46 (t, ${}^{4}J_{\rm H,H} = 2.2$ Hz, 1 H, *p*-Ar), 7.30–7.40 ppm (m, 10 H, Ph). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 11.6 (pz-Me⁵), 16.6 (pz-Me³), 43.0 (CH₂), 69.6 (CH), 69.9 (PhCH₂O), 101.7 (*p*-Ar), 107.9 (pz-C⁴), 108.0 (*o*-Ar), 127.4 and 128.7 (o- and m-Ph), 128.1 (p-Ph), 136.5 (ipso-Ar), 136.6 (*ipso*-Ph), 144.3 (pz-C⁵), 157.7 (pz-C³), 159.9 ppm (*m*-Ar). IR (KBr pellet): v 1561 (s, C=N), 1595 and 1460 (s, C=C), 1295 (vs, C-O- C_{as}), 1151 and 1030 (s, C-O- C_s), 956 (s, Mo= O_{as}), 920 cm⁻¹ (s, Mo=O_s). MS (ESI⁺-TOF in THF/MeOH/NH₄HCOO 5 mM): $m/z = 1036.29 [(L)_2 Na]^+, 529.64 [L + Na]^+, 507.66 [L + H]^+, 411.52$ $[L - Me_2pz]^+$, 316.40 $[L - 2 Me_2pz]^+$; L = (G1-dend)CH(3,5- $Me_2pz)_2$.

[MoCl₂O₂{(G2-*dend*)CH(3,5-Me₂pz)₂}] (11). (G2-*dend*)CH-(3,5-Me₂pz)₂ (140 mg, 0.15 mmol) and [MoCl₂O₂] (30 mg, 0.15 mmol). Yield: 140 mg (87%). Anal. Calc. for C₆₀H₅₈Cl₂MoN₄O₈ (1129.99): C, 63.78; H, 5.17; N, 4.96%. Found: C, 63.81; H, 5.46; N, 5.01%. ¹H NMR (CDCl₃): δ 2.01 (s, 6 H, pz-Me⁵), 2.71 (s, 6 H, pz-Me³), 3.52 (d, J_{H,H} = 7.3 Hz, 2 H, CH₂), 4.84 (s, 4 H, ArCH₂O), 5.01 (s, 8 H, PhCH₂O), 5.95 (s, 2 H, pz-H⁴), 5.98 (t, J_{H,H} = 7.3 Hz, 1 H, CH partially overlapped), 6.01 (d, ⁴J_{H,H} = 2.2 Hz, 2 H, G0-*o*-Ar), 6.48 (t, ⁴J_{H,H} = 2.2 Hz, 1 H, G0-*p*-Ar), 6.55 (t, ⁴J_{H,H} = 2.2 Hz, 2 H, G1-*p*-Ar), 6.66 (d, ⁴J_{H,H} = 2.2 Hz, 4 H, G1-*o*-Ar), 7.30–7.44 ppm (m, 20 H, Ph). ¹H NMR (C_6D_6) : δ 1.32 (s, 6 H, pz-Me⁵), 2.75 (s, 6 H, pz-Me³), 3.57 (d, $J_{\rm H,H} = 7.5$ Hz, 2 H, CH₂), 4.75 (s, 12 H, ArCH₂O and PhCH₂O overlapping), 5.36 (s, 2 H, pz-H⁴), 5.65 (t, $J_{H,H} = 7.3$ Hz, 1 H, CH), 6.13 (d, ${}^{4}J_{H,H} = 2.0$ Hz, 2 H, G0-o-Ar), 6.60 (t, ${}^{4}J_{H,H} =$ 2.0 Hz, 2 H, G1-*p*-Ar), 6.64 (t, ${}^{4}J_{H,H} = 2.0$ Hz, 1 H, G0-*p*-Ar), 6.69 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 4 H, G1-*o*-Ar), 7.05–7.30 ppm (m, 20 H, Ph). ${}^{13}C{}^{1}H{} NMR (C_6D_6): \delta 11.0 (pz-Me^5), 16.7 (pz-Me^3), 43.1$ (CH₂), 69.8 (CH and ArCH₂O overlapping), 70.1 (PhCH₂O), 101.7 (G1-p-Ar), 102.3 (G0-p-Ar), 106.5 (G1-o-Ar), 108.2 (pz-C⁴), 109.5 (G0-o-Ar), 127.9 and 128.7 (o- and m-Ph), 128.1 (p-Ph), 137.2 (ipso-Ph), 137.3 (G0-ipso-Ar), 139.8 (G1-ipso-Ar), 144.2 (pz-C⁵), 157.7 (pz-C³), 160.6 (G0-m-Ar), 160.8 ppm (G1-m-Ar). IR (KBr pellet): v 1562 (s, C=N), 1595 and 1452 (vs, C=C), 1291 (vs, C-O- C_{as}), 1159 and 1046 (vs, C–O– C_s), 959 (s, Mo= O_{as}), 923 cm⁻¹ (s, Mo=O_s). MS (ESI⁺-TOF in toluene/MeOH/NH₄HCOO 5 mM): m/z 1885.28 [(L)₂Na]⁺,1169.09 [M + K]⁺, 1152.98 [M + Na]⁺, 954.13 [L + Na]⁺, 932.15 [L + H]⁺, 836.01 [L - $2Me_2pz$]⁺; L = $(G2-dend)CH(3,5-Me_2pz)_2$

[MoCl₂O₂{(G3-dend)CH(3,5-Me₂pz)₂}] (12). (G3-dend)CH-(3,5-Me₂pz)₂ (150 mg, 0.08 mmol) and [MoCl₂O₂] (16 mg, 0.08 mmol). Yield: 0.122 g (77%). Anal. Calc. for C₁₁₆H₁₀₆Cl₂-MoN₄O₁₆ (1978.98): C, 70.40; H, 5.40; N, 2.83%. Found: C, 69.85; H, 5.62; N, 2.93%. ¹H NMR (C_6D_6): δ 1.34 (s, 6 H, pz-Me⁵), 2.75 (s, 6 H, pz-Me³), 3.53 (d, $J_{H,H} = 8.1$ Hz, 2 H, CH₂), 4.68 (s, 4 H, G1-ArCH₂O), 4.72 (s, 16 H, PhCH₂O), 4.76 (s, 8 H, G2-ArCH₂O), 5.37 (s, 2 H, pz-H⁴), 5.64 (t, $J_{H,H} = 8.1$ Hz, 1 H, CH), 6.12 (broad d, 2 H, G0-o-Ar), 6.64 (broad t, 5 H, G0-p-Ar and G2-p-Ar overlapping), 6.70 (broad t, 2 H, G1-p-Ar), 6.73 (broad d, 4 H, G1-o-Ar), 6.76 (broad d, 8 H, G2-o-Ar), 7.00-7.30 ppm (m, 40 H, Ph). ${}^{13}C{}^{1}H$ NMR (C₆D₆): δ 11.0 (pz-Me⁵), 16.8 (pz-Me3), 43.0 (CH2), 69.7 (CH), 70.1 (G1-ArCH2O, G2-ArCH2O and PhCH₂O overlapping), 101.8 (G1-*p*-Ar), 101.9, (G2-*p*-Ar), 102.4 (G0-p-Ar), 106.6 (G1-o-Ar), 106.7 (G2-o-Ar), 108.3 (pz-C⁴), 109.6 (G0-o-Ar), 127.8 and 128.7 (o- and m-Ph), 127.9 (p-Ph), 137.3 (G0-ipso-Ar), 137.4 (ipso-Ph), 139.8 (G2-ipso-Ar), 139.9 (G1-ipso-Ar), 144.4 (pz-C⁵), 157.7 (pz-C³), 160.3 (G0-m-Ar), 160.7 (G1-m-Ar), 161.1 ppm (G2-m-Ar). IR (KBr pellet): v 1560 (s, C=N), 1598 and 1447 (vs, C=C), 1294 (vs, C-O-C_{as}), 1163 and 1047 (vs, C–O–C_s), 954 (s, Mo=O_{as}), 919 cm⁻¹ (s, Mo=O_s). MS (ESI+ in toluene/MeOH/NH₄HCOO 5 mM): m/z 1803.13 [L + Na]⁺, $1780.14 [L + H]^+; L = (G0-dend)CH(3,5-Me_2pz)_2.$

General procedure for the preparation of $[Mo(CO)_3L{(Gn-dend)-CH(3,5-Me_2pz)_2}][L = CO (13, 14) and NCMe (15)]. The molyb$ $denum precursor (<math>[Mo(CO)_6]$, $[Mo(CO)_3(\eta^6-1,3,5-C_6H_3Me_3)]$, or $[Mo(CO)_3(NCMe)_3]$) was placed in an ampoule equipped with a PTFE valve together with the appropriate amount of the corresponding ligand (Gn-dend)CH(3,5-Me_2pz)_2 (n = 0, 1, see below) and toluene (20 mL). The tube was sealed and the mixture stirred at room temperature for 4 h (15) or warmed at 55 °C for four (13) or seven days (14), applying vacuum briefly and periodically through the PTFE valve. Compounds 13–15 precipitated out of the reaction mixture as off-white to brown solids, which were filtered and washed with hexane and diethyl ether.

 $[Mo(CO)_4\{(G0-dend)CH(3,5-Me_2pz)_2\}]$ (13). $(G0-dend)CH-(3,5-Me_2pz)_2$ (100 mg, 0.34 mmol) and $[Mo(CO)_6]$ (90 mg, 0.34 mmol). Yield: 130 mg (76%). Anal. Calc. for $C_{22}H_{22}MoN_4O_4$ (502.38): C, 52.60; H, 4.41; N, 11.15%. Found: C, 52.58; H, 3.90;

N, 11.27%. ¹H NMR ([D₆]acetone): δ 2.16 (s, 6 H, pz-Me⁵), 2.55 (s, 6 H, pz-Me³), 4.11 (d, $J_{H,H} = 7.8$ Hz, 2 H, CH₂), 6.08 (s, 2 H, pz-H⁴), 6.45 (t, $J_{H,H} = 7.8$ Hz, 1 H, CH), 7.02–7.10 (m, 2 H, Ph), 7.22–7.30 ppm (m, 3 H, Ph). ¹³C{¹H} NMR ([D₆]acetone): δ 11.2 (pz-Me⁵), 16.7 (pz-Me³), 40.1 (CH₂), 69.6 (CH), 108.4 (pz-C⁴), 128.4 (*p*-Ph), 129.5 and 130.2 (*o*- and *m*-Ph), 135.5 (*ipso*-Ph), 144.3 (pz-C⁵), 155.5 (pz-C³), 206.5 and 208.0 (CO *cis* to pz), 221.1 ppm (CO *trans* to pz). IR (KBr pellet): *v* 2012, 1890, 1868 and 1809 (vs, CO), 1565 (s, C=N), 1495 cm⁻¹ (s, C=C). MS (ESI+ in THF/MeOH/NH₄HCOO 5 mM): *m/z* 894.74 [(M – 2 CO + H)₂]⁺, 475.38 [M–CO + H]⁺, 451.40 [M – 3 CO + MeOH +H]⁺, 447.37 [M – 2 CO + H]⁺, 419.36 [M – 3 CO + H]⁺, 391.34 [M – 4 CO + H]⁺, 317.39 [L + Na]⁺, 199.28 [L – Me₂pz]⁺; L = (G0-*dend*)-CH(3,5-Me₂pz)₂.

 $[Mo(CO)_4{(G1-dend)CH(3,5-Me_2pz)_2}]$ (14). (G1-dend)CH- $(3,5-Me_2pz)_2$ (106 mg, 0.21 mmol) and $[Mo(CO)_6]$ (66 mg, 0.25 mmol). Yield: 115 mg (77%). Anal. Calc. for C₃₆H₃₄MoN₄O₆ (714.63): C, 60.51; H, 4.80; N, 7.84%. Found: C, 60.25; H, 4.45; N, 7.32%. ¹H NMR ([D₆]acetone): δ 2.13 (s, 6 H, pz-Me⁵), 2.56 (s, 6 H, pz-Me³), 4.00 (d, $J_{H,H} = 7.7$ Hz, 2 H, CH₂), 5.02 (s, 4 H, PhCH₂O), 6.11 (s, 2 H, pz-H⁴), 6.30 (d, ${}^{4}J_{H,H} = 2.2$ Hz, 2 H, o-Ar), $6.37 (t, J_{H,H} = 7.5 \text{ Hz}, 1 \text{ H}, \text{CH}), 6.56 (t, {}^{4}J_{H,H} = 2.2 \text{ Hz}, 1 \text{ H}, p\text{-Ar}),$ 7.30–7.50 ppm (m, 10 H, Ph). ${}^{13}C{}^{1}H$ NMR ([D₆]acetone): δ 11.4 (pz-Me⁵), 16.8 (pz-Me³), 40.3 (CH₂), 69.4 (CH), 70.3 (PhCH₂O), 102.7 (p-Ar), 108.6 (pz-C⁴), 109.1 (o-Ar), 128.3 and 129.3 (oand m-Ph), 128.7 (p-Ph), 137.6 (ipso-Ph), 138.1 (ipso-Ar), 144.6 (pz-C⁵), 155.6 (pz-C³), 161.1 (m-Ar), 206.4 and 207.9 (CO cis to pz), 221.8 ppm (CO trans to pz). IR (KBr pellet): v 2012, 1883, 1869 and 1832 (vs, CO), 1562 (s, C=N), 1593 and 1459 (s, C=C), 1290 (s, C–O–C_{as}), 1150 and 1029 cm⁻¹ (s, C–O–C_s). MS (ESI+ in THF/MeOH/NH₄HCOO 5 mм): *m/z* 1036.28 [(L)₂Na]⁺, 687.63 [M-CO + H]⁺, 529.64 [L + Na]⁺, 507.27 [L + H]⁺, 411.52 [L - Me_2pz]⁺; L = (G1-dend)CH(3,5-Me_2pz)_2.

 $[Mo(CO)_3(NCMe){(G0-dend)CH(3,5-Me_2pz)_2}]$ (15). (G0dend)CH(3,5-Me₂pz)₂ (85 mg, 0.29 mmol) and [Mo(CO)₃-(NCMe)₃] (88 mg, 0.29 mmol). Yield: 120 mg (80%). Anal. Calc. for C₂₃H₂₅MoN₅O₃ (515.42): C, 53.60; H, 4.89; N, 13.59%. Found: C, 53.82; H, 4.85; N, 13.69%. ¹H NMR ([D₆]acetone): δ 2.05 (s, 3 H, CH₃CN), 2.15 (s, 6H, pz-Me⁵), 2.43 (s, 6H, pz-Me³), 4.38 (d, $J_{H,H} = 8.0$ Hz, 2 H, CH₂), 5.96 (s, 2 H, pz-H⁴), 6.45 (t, $J_{H,H} =$ 8.0 Hz, 1 H, CH), 7.15-7.20 (m, 2 H, Ph), 7.22-7.30 ppm (m, 3 H, Ph). ${}^{13}C{}^{1}H} NMR ([D_6]acetone): \delta 11.2 (pz-Me^5), 16.1 (pz-Me^3),$ 40.0 (CH₂), 69.8 (CH), 107.8 (pz-C⁴), 128.1 (p-Ph), 129.3 and 130.6 (o- and m-Ph), 136.4 (ipso-Ph), 142.7 (pz-C⁵), 154.2 (pz-C³), 206.7 (CO cis to pz), 227.6 ppm (CO trans to pz). IR (KBr pellet): v = 1906 and 1764 (vs, CO), 1562 (s, C=N), 1494 cm⁻¹ (s, C=C). MS (ESI+-TOF in THF/MeOH/NH₄HCOO 5 mM): *m/z* 611.79 $[(L)_2Na]^+$, 519.46 [M-CO + MeOH]⁺, 475.38 [M-MeCN + H]⁺, $451.40 [M - 2 CO-MeCN + MeOH + H]^+, 317.39 L + Na]^+,$ 199.28 $[L - Me_2pz]^+$; $L = (G0 - dend)CH(3, 5 - Me_2pz)_2$.

Spectroscopic characterization of [MoClO₂{G*n*-(*dend*)OCH₂C(pz)₃}]Cl

G0. ¹H NMR (CDCl₃): δ 4.26 (s, 2 H, PhCH₂O), 4.67 [s, 2 H, CH₂C(pz)₃], 6.55 (dd, $J_{H,H} = 1.5$, 2.8 Hz, 2 H, pz-H⁴), 6.63 (dd, $J_{H,H} = 1.5$, 2.8 Hz, 1 H, pz-H⁴), 6.86 (d, $J_{H,H} = 2.8$ Hz, 2 H, pz-H⁵), 7.10–7.15 (m, 2 H, Ph), 7.25–7.30 (m, 3 H, Ph), 7.94 (d,

 $J_{\rm H,H} = 1.5$ Hz, 1 H, pz-H³), 7.99 (d, $J_{\rm H,H} = 2.8$ Hz, 1 H, pz-H⁵), 8.93 ppm (d, $J_{\rm H,H} = 1.5$ Hz, 2 H, pz-H³).

G1. ¹H NMR (CDCl₃): δ 4.16 (s, 2 H, ArCH₂O), 4.62 [s, 2 H, CH₂C(pz)₃], 4.98 (s, 4 H, PhCH₂O), 6.37 (d, ⁴*J*_{H,H} = 2.2 Hz, 2 H, *o*-Ar), 6.55 (m, 3 H, pz-H⁴ and *p*-Ar overlapping), 6.63 (dd, *J*_{H,H} = 1.8, 2.6 Hz, 1 H, pz-H⁴), 6.81 (d, *J*_{H,H} = 2.6 Hz, 2 H, pz-H⁵), 7.30–7.38 (m, 10 H, Ph), 7.95 (2 broad d, 1 + 1 H, pz-H³ and pz-H⁵, overlapping), 8.91 ppm (d, *J*_{H,H} = 1.8 Hz, 2 H, pz-H³).

G2. ¹H NMR (CDCl₃): δ 4.17 (s, 2 H, G0-ArCH₂O), 4.64 [s, 2 H, CH₂C(pz)₃], 4.94 (s, 4 H, G1-ArCH₂O), 5.03 (s, 8 H, PhCH₂O), 6.37 (d, ⁴J_{H,H} = 1.9 Hz, 2 H, G0-*o*-Ar), 6.50 (t, ⁴J_{H,H} = 2.3 Hz, 2 H, G1-*p*-Ar), 6.57 (m, 3 H, pz-H⁴ and G0-*p*-Ar, overlapping), 6.62 (m, 1 H, pz-H⁴), 6.65 (d, ⁴J_{H,H} = 2.3 Hz, 4 H, G1-*o*-Ar), 6.82 (d, J_{H,H} = 2.4 Hz, 2 H, pz-H⁵), 7.30–7.40 (m, 20 H, Ph), 7.92 (d, J_{H,H} = 1.5 Hz, 1 H, pz-H³), 7.95 (d, J_{H,H} = 2.4 Hz, 1 H pz-H⁵), 8.91 ppm (d, J_{H,H} = 1.5 Hz, 2 H, pz-H³).

G3. ¹H NMR (CDCl₃): δ 4.13 (s, 2 H, G0-ArCH₂O), 4.59 [s, 2 H, CH₂C(pz)₃], 4.91 (s, 4 H, G1-ArCH₂O), 4.94 (s, 8 H, G2-ArCH₂O), 5.00 (s, 16 H, PhCH₂O), 6.36 (d, ⁴J_{H,H} = 2.0 Hz, 2 H, G0-o-Ar), 6.44 (t, ⁴J_{H,H} = 2.2 Hz, 2 H, G1-*p*-Ar), 6.52 (t, ⁴J_{H,H} = 2.2 Hz, 4 H, G2-*p*-Ar), 6.55 (m, 3 H, pz-H⁴ and G0-*p*-Ar, overlapping), 6.61 (d, ⁴J_{H,H} = 2.2 Hz, 4 H, G1-*o*-Ar), 6.62 (m, 1 H, pz-H⁴), 6.65 (d, ⁴J_{H,H} = 2.2 Hz, 8 H, G2-*o*-Ar), 6.78 (d, J_{H,H} = 2.4 Hz, 2 H, pz-H⁵), 7.25–7.40 (m, 40 H, Ph), 7.86 (d, J_{H,H} = 1.5 Hz, 1 H, pz-H³).

 Table 2
 Crystal data and structure refinement for compounds 13 and 15

DOSY experiments

The diffusion coefficients were measured at 25 °C by using the Dbppste (DOSY Bipolar Pulse Simulated Echo) pulse sequence in a Varian NMR System 500 equipped with a high accuracy variable temperature unit (\pm 0.1 °C), a Performa IV PFG amplifier, and a Z-PFG Triple Resonance 5-mm probe. Fine calibration of the PFG strength (DAC to G unit) was performed with an H₂O/HDO (2 Hz) sample as standard supplied by Varian ($D = 19.04 \times 10^{-10}$ m² s⁻¹ at 25 °C). The diffusion NMR data (Fig. 4) were acquired over 64 scans, with settings pw90, an acquisition time of 3 s, a relaxation delay of 2 s, in each one of the 15 steps of the gradient level array between 1 and 50 G cm⁻¹ (50 ms of diffusion delay and 2 ms of total defocusing time). The experimental data (32 K × 1 K) was treated with the "DOSY" software from VNMRJ2.1B.

X-Ray crystallographic studies

Single crystals of **13** and **15** suitable for X-ray diffraction studies were obtained from their corresponding reaction mixtures in C_6D_6 in NMR tubes. A summary of the crystal data, data collection, and refinement parameters for the structural analysis of each compound is given in Table 2. Suitable crystals were covered with mineral oil and mounted in the N₂ stream of a Bruker-Nonius Kappa-CCD diffractometer equipped with an area detector and an Oxford Cryostream 700 unit; data were collected using graphite-monochromated Mo-K α radiation ($\lambda =$ 0.71069 Å) at 200 K, with an exposure time of 10 s per frame (5 sets; 266 frames; phi and omega scan 2° scan-width) for compound

	13	15·C ₆ H ₆
Empirical formula	C ₂₂ H ₂₂ MoN ₄ O ₄	$C_{29}H_{31}MoN_5O_3$
Formula weight	502.938	593.537
Color	Yellow	Yellow
Temperature/K	200.0(2)	200.0(2) K
Wavelength $(\lambda)/\text{\AA}$	0.71069	0.71069 Å
Crystal system, space group Unit cell dimensions:	Monoclinic, $P2_1/n$	Triclinic, P-1
a/Å	12.651(5)	12.280(5)
b/Å	12.999(5)	12.284(5)
c/Å	13.437(5)	19.122(5)
$a/^{\circ}$		83.470(5)
β/°	96.271(5)	89.970(5)
y/°		89.760(5)
Volume/Å ³	2196.5(1.5)	2865.8(1.8)
Z, Calculated density/g cm ^{-3}	4, 1.519	4, 1.376
Absorption coefficient/mm ⁻¹	0.633	0.495
F(000)	1024	1224
Crystal size/mm	$0.40 \times 0.40 \times 0.3$	$0.50 \times 0.23 \times 0.23$
θ ranges/°	3.05 to 27.51	3.05 to 27.50
Limiting indices	$-16 \le h \le 16, -16 \le k \le 16, -17 \le l \le 17$	$-15 \le h \le 15, -15 \le k \le 15, -24 \le l \le 23$
Reflections collected/unique	$42259/5053 [R_{int} = 0.1094]$	$25236/13133 [R_{int} = 0.13120]$
Reflections observed	$4008 [I > 2\sigma (I)]$	5790 $[I > 2\sigma(I)]$
Completeness to θ (%)	99.8	99.8
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data/restraints/parameters	5053/0/368	13133/0/707
Goodness of fit on F^2	1.131	1.035
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0358, wR_2 = 0.0814$	$R_1 = 0.0755, wR_2 = 0.1729$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR_{2} = \{ [\Sigma \omega (F_{o}^{2} - F_{c}^{2})] / [\Sigma \omega (F_{o}^{2})^{2}] \}^{1/2}.$

Fig. 4 2D diffusion spectrum for compound 6.

13, and an exposure time of 36 s per frame (11 sets; 526 frames; phi and omega scans 1.8° scan-width) for compound **15**. Raw data were corrected for Lorentz and polarization effects.

The structure was solved by direct methods, completed by subsequent difference Fourier techniques, and refined by fullmatrix least-squares on F^2 with SHELXL-97.⁴⁰ Anisotropic thermal parameters were used in the last cycles of refinement for the non-hydrogen atoms. Most of the hydrogen atoms were introduced in the last cycle of refinement from geometrical calculations and refined using a riding model. All the calculations were made using the WINGX program.⁴¹ Space group $P2_1/c$ was also tested for 15 but neither refinement nor resolution was satisfactory.

CCDC reference numbers 652159 & 652160.

For crystallographic data in CIF or other electronic format see DOI: 10.1039/b710125b

Catalytic procedure using compounds 9-12

The corresponding catalyst precursor was weighed (3.7 μ mol, adjusted for catalytic Mo concentration of 0.05 mol%) into a 20-mL screw-capped Schlenk tube containing a magnetic stirrer. The vial was capped and sealed with a septum, purged by repeated argon/vacuum operations, and thermostatted at 55 °C. *n*-Dibutyl ether (800 mg as internal standard) and *cis*-cyclooctene (800 mg, 7.3 mmol) were then added with a syringe and the reaction was started by adding *tert*-butyl hydroperoxide (2 mL, 5.5 M in n-decane) with vigorous stirring. Stirring of the mixture was maintained and samples were withdrawn periodically, treated to remove hydroperoxide and water,²⁶ and analyzed by GC.

Acknowledgements

This work was financially supported by the Ministerio de Educación y Ciencia (project CTQ2005–00795/BQU), the Comunidad de Madrid (project S-0505/PPQ/0328–03), and the Universidad de Alcalá (FPI grant to A. S.-M. and Research Initiation grant for A. O. A.). P. G.-S. is also indebted to the "Factoria de Cristalización" (Consolider-Ingenio 2010). We thank Dr M. V. Galakhov (NMR centre of the University of Alcalá) for performing the DOSY experiments.

Notes and references

- (a) G. R. Newkome, C. N. Moorefield and F. Vögtle, *Dendrimers and Dendrons: Concepts, Syntheses, Applications*, Wiley-VCH, Weinheim, 1996; (b) J. M. J. Fréchet and D. A. Tomalia, *Dendrimers and Other Dendritic Polymers*, John Wiley & Sons, Chichester, 2002.
- 2 For reviews on metallodendrimers, see: (a) C. Gorman, Adv. Mater., 1998, 10, 295; (b) M. Venturi, S. Serroni, A. Juris, S. Campagna and V. Balzani, Top. Curr. Chem., 1998, 197, 193; (c) G. R. Newkome, E. He and C. N. Moorefield, Chem. Rev., 1999, 99, 1689; (d) F. J. Stoddart and T. Welton, Polyhedron, 1999, 18, 3575; (e) M. A. Hearshaw and J. R. Moss, Chem. Commun., 1999, 1; (f) I. Cuadrado, M. Morán, C. M. Casado, B. Alonso and J. Losada, Coord. Chem. Rev., 1999, 193–195, 395; (g) D. Astruc, J.-C. Blais, E. Cloutet, L. Djakovitch, S. Rigaut, J. Ruiz, V. Sartor and C. Valério, Top. Curr. Chem., 2000, 210, 229; (h) H.-J. van Manen, F. C. J. M. van Vergel and D. N. Reinhoudt, Top. Curr. Chem., 2001, 217, 121; (i) K. Onitsuka and S. Takahashi, Top. Curr. Chem., 2003, 228, 39; (j) O. Rossell, M. Seco and I. Angurell, C. R. Chim., 2003, 6, 803; (k) P. A. Chase, R. J. M. K. Gebbink and G. van Koten, J. Organomet. Chem., 2004, 689, 4016.
- 3 For reviews on catalysis with dendrimers, see: (a) G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer and P. W. N. M. van Leeuwen, Angew. Chem., Int. Ed., 2001, 40, 1828; (b) D. Astruc and F. Chardac, Chem. Rev., 2001, 101, 2991; (c) R. Kreiter, A. W. Kleij, R. J. M. K. Gebbink and G. van Koten, Top. Curr. Chem., 2001, 217, 163; (d) R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van Leeuwen and J. N. H. Reek, Chem. Rev., 2002, 102, 3717; (e) A. M. Caminade, V. Maraval, R. Laurent and J. P. Majoral, Curr. Org. Chem., 2002, 6, 739; (f) A. Dahan and M. Portnoy, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 235; (g) R. van de Coevering, R. J. M. Klein Gebbink and G. van Koten, Prog. Polym. Sci., 2005, 30, 474; (h) D. Méry and D. Astruc, Coord. Chem. Rev., 2006, 250, 1965; (i) J. N. H. Reek, S. Arévalo, R. van Heerbeek, P. C. J. Kamer and P. W. N. M. van Leeuwen in Advances in Catalysis, ed. B. Gates and H. Knözinger, Academic Press, San Diego, 2006, vol. 49, p. 71; (j) R. Andrés, E. de Jesús and J. C. Flores, New J. Chem., 2007, 31, 1161
- 4 (a) R. Andrés, E. de Jesús, F. J. de la Mata, J. C. Flores and R. Gómez, *Eur. J. Inorg. Chem.*, 2005, 3742; (b) R. Andrés, E. de Jesús, F. J. de la Mata, J. C. Flores and R. Gómez, *Eur. J. Inorg. Chem.*, 2002, 2281.
- 5 V. Amo, R. Andrés, E. de Jesús, F. J. de la Mata, J. C. Flores, R. Gómez, P. Gómez-Sal and J. F. C. Turner, *Organometallics*, 2005, 24, 2331.
- 6 R. Andrés, E. de Jesús, F. J. de la Mata, J. C. Flores and R. Gómez, J. Organomet. Chem., 2005, 690, 939.
- 7 F. Montilla, A. Galindo, R. Andrés, M. Córdoba, E. de Jesús and C. Bo, Organometallics, 2006, 25, 4138.
- 8 A. Sánchez-Méndez, G. F. Silvestri, E. de Jesús, F. J. de la Mata, J. C. Flores, R. Gómez and P. Gómez-Sal, *Eur. J. Inorg. Chem.*, 2004, 3287.
- 9 A. Sánchez-Méndez, J. M. Benito, E. de Jesús, F. J. de la Mata, J. C. Flores, R. Gómez and P. Gómez-Sal, *Dalton Trans.*, 2006, 5379.
- 10 A. Sánchez-Méndez, E. de Jesús, J. C. Flores and P. Gómez-Sal, *Inorg. Chem.*, 2007, 46, 4793.
- S. Trofimenko, in Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, Imperial College Press, London, 1999.
- 12 (a) A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejada and A. Lara-Sánchez, *Dalton Trans.*, 2004, 1499; (b) C. Pettinari and R. Pettinari, *J. Organomet. Chem.*, 2005, 249, 663.
- 13 (a) C. Pettinari and R. Pettinari, J. Organomet. Chem., 2005, 249, 525; (b) H. R. Bigmore, S. C. Lawrence, P. Mountford and C. S. Tredget, Dalton Trans., 2005, 635.
- 14 (a) D. L. Reger, T. C. Grattan, K. J. Brown, C. A. Little, J. J. S. Lamba, A. L. Rheingold and R. D. Sommer, J. Organomet. Chem., 2000, 607, 120; (b) S. Juliá, P. Sala, J. M. del Mazo, M. Sancho, C. Ochoa, J. Elguero, J.-P. Fayet and M.-C. Vertut, J. Heterocycl. Chem., 1982, 19, 1141; (c) S. Julia, J. M. del Mazo, L. Avila and J. Elguero, Org. Prep. Proced. Int., 1984, 16, 299.
- 15 (a) H. R. Bigmore, S. R. Dubberley, M. Kranenburg, S. C. Lawrence, A. J. Sealey, J. D. Selby, M. A. Zuideveld, A. R. Cowley and P. Mountford, *Chem. Commun.*, 2006, 436; (b) S. C. Lawrence, B. D. Ward, S. R. Dubberley, C. M. Kozak and P. Mountford, *Chem. Commun.*, 2003, 2880; (c) S. Milione, C. Montefusco, T. Cuenca and A. Grassi, *Chem. Commun.*, 2003, 1176.

- 17 For leading references see the following and references cited therein: (a) A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejada, A. Lara-Sánchez, L. Sánchez-Barba, M. Sánchez-Molina, S. Franco, I. López-Solera and A. M. Rodríguez, *Eur. J. Inorg. Chem.*, 2006, 707; (b) A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejada, A. Lara-Sánchez, L. Sánchez-Barba, E. Martínez-Caballero, A. M. Rodríguez and I. López-Solera, *Inorg. Chem.*, 2005, 44, 5336.
- 18 For leading references see the following and references cited therein: (a) D. Adhikari, G. Zhao, F. Basuli, J Tomaszewski, J. C. Huffman and D. J. Mindiola, *Inorg. Chem.*, 2006, 45, 1604; (b) R. G. Howe, C. S. Tredget, S. C. Lawrence, S. Subongkoj, A. R. Cowley and P. Mountford, *Chem. Commun.*, 2006, 223.
- 19 For leading references see the following and references cited therein: (a) D. L. Reger, R. F. Semeniuc, J. R. Gardinier, J. O'Neal, B. Reinecke and M. D. Smith, *Inorg. Chem.*, 2006, 45, 4337; (b) D. L. Reger, J. R. Gardinier and M. D. Smith, *Inorg. Chem.*, 2004, 43, 3825.
- 20 For leading references see the following and references cited therein: (a) D. L. Reger, J. R. Gardinier, J. D. Elgin and M. D. Smith, *Inorg. Chem.*, 2006, 45, 8862; (b) D. L. Reger, R. F. Semeniuc, V. Rassolov and M. D. Smith, *Inorg. Chem.*, 2004, 43, 537.
- 21 (a) D. L. Reger, R. F. Semeniuc and M. D. Smith, J. Organomet. Chem., 2003, 666, 87; (b) D. L. Reger, R. F. Semeniuc and M. D. Smith, J. Chem. Soc., Dalton Trans., 2002, 476.
- 22 (a) M. A. Casado, V. Hack, V. J. A. Camerano, M. A. Ciriano, C. Tejel and L. A. Oro, *Inorg. Chem.*, 2005, 44, 9122; (b) J. A. Camerano, M. A. Casado, M. A. Ciriano and L. A. Oro, *Dalton Trans.*, 2006, 5287.
- 23 C. J. Hawker and J. M. J. Fréchet, J. Am. Chem. Soc., 1990, 112, 7638.
- 24 S. Trofimenko, J. Am. Chem. Soc., 1970, 92, 5118.
- 25 Other references related:(a) E. E. Pullen, D. Rabinovich, C. D. Incarvito, T. E. Concolino and A. L. Rheingold, *Inorg. Chem.*, 2000, **39**, 1561; (b) I. K. Dhawan, M. A. Bruck, B. Schilling, C. Grittini and J. H. Enemark, *Inorg. Chem.*, 1995, **34**, 3801; (c) S. Dilsky, *J. Organomet. Chem.*, 2007, **692**, 2887.

- View Article Online
- 26 A. M. Santos, F. E. Kühn, K. Bruus-Jensen, I. Lucas and C. C. Romão, J. Chem. Soc., Dalton Trans., 2001, 1332.
- 27 (a) G. G. Lobbia and F. Bonati, J. Organomet. Chem., 1989, 366, 121;
 (b) K.-B. Shiu and C.-J. Chang, J. Chin. Chem. Soc. (Taipei, Taiwan), 1987, 34, 297; (c) K.-B. Shiu and K.-S. Liou, J. Chin. Chem. Soc. (Taipei, Taiwan), 1988, 35, 187.
- 28 (a) K.-B. Shiu and C.-J. Chang, J. Chin. Chem. Soc. (Taipei, Taiwan), 1989, 36, 25; (b) K.-B. Shiu, C.-C. Chou, S.-L. Wang and S.-C. Wei, Organometallics, 1990, 9, 286; (c) K.-B. Shiu, S.-T. Lin, C.-C. Chou, S.-M. Peng, M.-C. Cheng, S.-L. Wang and F.-L. Liao, J. Organomet. Chem., 1994, 469, 169.
- 29 K. Heinz, Chem.-Eur. J., 2001, 7, 2922.
- 30 N. Arroyo, F. Gómez-de la Torre, F. A. Jalón, B. R. Manzano, B. Moreno-Lara and A. M. Rodríguez, J. Organomet. Chem., 2000, 603, 174.
- 31 Y. Cohen, L. Avram and L. Frish, Angew. Chem., Int. Ed., 2005, 44, 520.
- 32 (a) K. F. Morris and C. S. Johnson, Jr., J. Am. Chem. Soc., 1993, 115, 4291; (b) C. S. Johnson, Jr., Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 203.
- 33 J. M. Riley, S. Alkan, A. Chen, M. Shapiro, W. A. Khan, W. R. Murphy, Jr. and J. E. Hanson, *Macromolecules*, 2001, 34, 1797.
- 34 L.-F. Tang, Z.-H. Wang, Y.-M. Xu, J.-T. Wang, H.-G. Wang and X.-K. Yao, *Transition Met. Chem.*, 1999, 24, 708.
- 35 M. Pratt, J. B. Harper and S. B. Colbran, *Dalton Trans.*, 2007, 2746.
- 36 S. Tsuji, D. C. Swenson and R. F. Jordan, *Organometallics*, 1999, 18, 4758.
- 37 R. J. Angelici, Synthesis and Techniques in Inorganic Chemistry, W. B. Saunders, Philadelphia, 1977, p. 237.
- 38 K. M. Al-Kathumi and L. A. P. Kane-Maguire, J. Chem. Soc., Dalton Trans., 1974, 428.
- 39 D. P. Perrin and W. L. F. Armarego, in *Purification of Laboratory Chemicals*, 3rd edn, Pergamon Press, Oxford, 1988.
- 40 G. M. Sheldrick, SHELXL-97. Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- 41 L. J. Farrugia, WinGX System, J. Appl. Crystallogr., 1999, 32, 837.