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Abstract: A convenient, one-step synthetic approach to fluoro-
alkyl-substituted 1,3-oxathiolanones and benzoxathianones, based
on readily accessible N-acyl and N-sulfonyl imidoyl chlorides, has
been developed. The novel heterocyclization involves previously
unknown participation of the imidoyl carbon atom as a bifunctional
1,1-electrophile.

Key words: imidoyl chlorides, oxathiolanone, benzoxathianone,
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Imidoyl chlorides combine the properties of both acid
chlorides and azomethines. They are reactive and versatile
chemical agents that have found wide application in or-
ganic synthesis and in the study of chemical reactivity.1

Trifluoroacetimidoyl chlorides are regarded as promising
new building blocks for the synthesis of functionalized
fluorine-containing compounds.2

Recently, we developed a syntheses of fluoro-3 and tri-
fluoroacetimidoyl chlorides,4 containing electron-with-
drawing acyl or sulfonyl groups at the nitrogen atom, that
represent a new type of highly electrophilic fluorine-con-
taining synthons.

We have already demonstrated the use of these com-
pounds in the synthesis of biologically important acyclic
and heterocyclic derivatives containing, simultaneously,
fragments of aminophosphonic acids and trifluoromethyl,
fluoro or difluoromethylene groups.3–5

Now we report a novel synthesis of oxathiolanones and
oxathianones, with both fluoroalkyl substituents and an
amine function at the carbon atom of the S–C–O se-
quence, based on heterocyclization of activated imidoyl
chlorides.

Specifically, derivatives of 1,3-oxathiolanones have ap-
plications as fungicides, herbicides, growth regulators,
precursors of modified nucleosides possessing antiviral
properties,6 and can be used for the introduction of a-mer-
captocarboxylic acid fragments into peptides.7 Related
oxathiolanones, containing a trichloromethyl group at the
C-2 atom, have proven to be plant growth regulators6a,8

and enzyme inhibitors6a–6c (Figure 1). To the best of our
knowledge, oxathiolanes containing both fluorinated sub-
stituents and an amino group at the C-2 atom, remain un-
known.

Figure 1 Some biologically active oxathiolanones

We present a convenient preparative method for the syn-
thesis of oxathiolanones, based on accessible fluoroacet-
imidoyl chlorides, activated by N-acyl- or N-sulfonyl
substituents. Thus, heterocyclization of imidoyl chlorides
1 with a-mercaptocarboxylic acids 2, affords the corre-
sponding oxathiolanones 3 in high yields (Table 1).

The method can be used for synthesis of oxathiolanones
containing alkyl substituents with varying electron-with-
drawing properties (CH2F, CF3) at the C-2 atom and either
a sulfonyl, acyl or alkoxycarbonyl group at the nitrogen
atom. The latter is important as removal of the N-protec-
tive groups can be accomplished under various condi-
tions.

Previously known heterocyclizations involved participa-
tion of electrophilic (carbon atom) and nucleophilic (ni-
trogen atom) centers of C=N imine systems, interacting
with the corresponding sites of bifunctional reagents.1a,2

Indeed, common imines, on interaction with thioglycol-
ates, either form stable addition products or undergo cy-
clization, through the C=N bond, to give thiazolidones.9

Our strategy uses imidoyl chlorides as 1,1-electrophiles,
with the imine nitrogen atom not participating in hetero-
cycle formation.

It is also notable that condensation of polyfluorocarbonyl
compounds with mercaptocarboxylic acids allows the
synthesis of oxathiolanones with only carbon-centered
substituents at the C-2 atom.7,10

Virtually pure oxathiolanones 3 were obtained merely on
mixing the reagents in an organic solvent at room temper-
ature or brief heating. The unusually facile transformation
of 1 to 3 most likely results from the highly electrophilic
nature of imines 1 and from a beneficial, five-membered
ring formation. The fact that interaction of 1 with b-mer-
captopropionic acid leads to non-cyclic thioimidates 4
(Scheme 1), even upon prolonged heating or acidic catal-
ysis, supports this assumption.

Since thioimidates 4 contain an activated azomethine
bond and a peripheral carboxylic function, they can serve
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as promising building blocks for the synthesis of function-
ally substituted, fluorine-containing compounds.

The position of the reactive centers is an important factor
controlling ring closure. Thus, thiosalicylic acid, with a
fixed cis-configuration of the HS- and HO- reactive cen-
ters, in contrast to b-mercaptopropionic acid, easily un-
dergoes heterocyclization with imidoyl chlorides 1 to
form 1,3-benzoxathian-4-ones 5 (Scheme 2).

Scheme 2

Heterocyclic compounds 3,5 and thioimidates 4 are easily
identified in the reaction mixture. The most important
structural feature for identification is the fluorine chemi-
cal shift in 19F NMR spectra (dF = –81 to –84 ppm for
compounds 3, 5 and –65 to –66 ppm for thioimidates 4).
The observed differences stem from the sp3- and sp2-hy-
bridization of the carbon atom attached to the CF3 group.
Thus, transformation of 1 to 4 is accompanied by a down-
field shift of the fluorine signals of the starting imidoyl

chloride 1 (dF = –70 to –72 ppm), whereas the formation
of heterocycles 3, 5 results in an upfield displacement.
Generation of a new chiral center upon formation of com-
pounds 3, 5 provides additional evidence that ring closure
involves the imine carbon atom. This is clearly revealed in
magnetic non-equivalence of diastereotopic hydrogen at-
oms of CH2 group in the 1H NMR spectra of compounds
3 and 5. With R = Me, oxathiolanones 3c,d are formed as
a diastereomeric mixtures (1:1) that can be partially sepa-
rated, in the case of 3c, through fractional recrystalliza-
tion.

It is important to note that the reactions studied here are
all highly selective. Exclusively cyclic (3, 5) or acyclic (4)
compounds are formed, depending on the reagent struc-
ture. It is apparent that the transformation of 1 to 3 is a
complex process, but we were unable to detect any inter-
mediates spectroscopically. Only a decrease in intensity
of the 19F NMR signal of 1 accompanied by a correspond-
ing increase of the respective signal of 3 was observed
upon spectral monitoring of the reaction.

It is quite possible that substitution of the chlorine atom by
the thio-function is accompanied by fast intramolecular
ring closure of immonium salts of types A or B (Figure 2).
The remarkable ease of heterocyclization can be ex-
plained by the high electrophilicity of the immonium C-
atom and the geometrically favorable location of the reac-
tive centers.

In summary, we have developed a simple and efficient
synthesis of 1,3-oxathiolane-5-ones and 3,1-benzoxa-
thian-4-ones, containing a protected amino function and a
fluoroalkyl group at the C-2 atom of the heterocycle. A
characteristic feature of the new heterocyclization is the
fact that the imine carbon atom acts as a 1,1-electrophile,
while the carboxylic group of the mercaptocarboxylic
acid reacts through its O-nucleophilic center.

Figure 2

IR spectra were obtained with an UR-20 instrument in KBr pellets
or as thin films. 1H NMR, 19F NMR, and 13C NMR spectra were re-
corded on a Varian VXR-300 spectrometer operating at 299.95
MHz, 282.20 MHz, and 75.43 MHz, respectively. Chemical shifts
are reported relative to TMS (1H, 13C), or CFCl3 (

19F) as the internal
standards. Melting points are uncorrected. Solvents were dried be-
fore use according to standard methods. 

Preparation of Compounds 3; General Procedure
To a stirred solution of the imidoyl chloride 1 (0.3 mmol) in ben-
zene (5 mL), mercaptoacetic acid 2 (0.3 mmol) was added. After re-
acting for 4 h at r.t. or heating at 80 °C for 0.5 h, the solvent was
evaporated under vacuum and the solid or oily residue was washed
with hexane.

Table 1 Synthesis of Oxathiolanones 3

Compound Rf R Y Isolated yield (%)

3a CF3 H PhSO2 95

3b CF3 H Ts 95

3c CF3 CH3 PhSO2 92

3d CF3 CH3 Ts 72

3e CF3 H COOMe 76

3f CF3 H C(O)Ph 86

3g CH2F H C(O)CCl3 78

Rf N
Y

Cl
OS

OR

Rf
H
NY

HSCH(R)COOH (2)
72–95%

1 3a–g

benzene, r.t., 4 h
or 80 °C, 0.5 h

Scheme 1
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3a
White solid; mp 95–96 °C. 
1H NMR (CDCl3): d = 3.82 (d, 2JHAHB = 16.2 Hz, 1 H, CH2), 4.03
(d, 2JHBHA = 16.2 Hz, 1 H, CH2), 6.40 (s, 1 H, NH), 7.57 (t,
3JHH = 7.8 Hz, 2 H, Ar), 7.64 (t, 3JHH = 7.8 Hz, 1 H, Ar), 7.94 (d,
3JHH = 7.8 Hz, 2 H, Ar). 
19F NMR (CDCl3): d = –83.4. 

Anal. Calcd for C10H8F3NO4S2: C, 36.70; H, 2.46; N, 4.28; S, 19.59.
Found: C, 36.74; H, 2.51; N, 4.22; S, 19.47.

3b
White solid; mp 137–139 °C. 

IR (KBr): 1180, 1345 (S=O), 1820 (C=O), 3270 (NH) cm–1. 
1H NMR (CDCl3): d = 2.46 (s, 3 H, CH3), 3.81 (d, 2JHAHB = 16.2 Hz,
1 H, CH2), 4.01 (d, 2JHBHA = 16.2 Hz, 1 H, CH2), 6.19 (s, 1 H, NH),
7.35 (d, 3JHH = 8.6 Hz, 2 H, Ar), 7.81 (d, 3JHH = 8.6 Hz, 2 H, Ar). 
13C NMR (CDCl3): d = 21.6 (s, CH3), 33.0 (s, CH2), 93.0 (q,
2JCF = 35.8 Hz, CNH), 121.1 (q, 1JCF = 284 Hz, CF3), 127.4, 129.8,
137.4, 144.9 (s, Ar), 168.5 (s, C=O). 
19F NMR (CDCl3): d = –83.5. 

Anal. Calcd for C11H10F3NO4S2: C, 38.71; H, 2.95; N, 4.10; S,
18.79. Found: C, 38.68; H, 2.90; N, 4.19; S, 18.75.

3c
Mixture of diastereomers A and B (1:2) was obtained after a single
crystallization (benzene) of the 1:1 mixture.

White solid; mp 92–94 °C. 

IR (KBr): 1180, 1360 (S=O), 1780 (C=O), 3310 (NH) cm–1.
1H NMR (CDCl3): d = 1.58 (d, 3JHH

 = 6.7 Hz, 3 H, CH3, A), 1.61 (d,
3JHH

 = 7.2 Hz, 3 H, CH3, B), 4.16 (q, 3JHH
 = 6.7 Hz, 1 H, CH, A), 4.36

(q, 3JHH
 = 7.2 Hz, 1 H, CH, B), 6.43 (s, 1 H, NH, B), 6.49 (s, 1 H,

NH, A), 7.56 [t, 3JHH
 = 7.8 Hz, 2 H (A) + 2 H (B), Ar], 7.66 [t, 3JHH

 =
7.8 Hz, 1 H (A) + 1 H (B), Ar], 7.92–7.96 (m, 2 H (A) + 2 H (B), Ar]. 
19F NMR (CDCl3): d = –84.01 (A), –83.41 (B). 

Anal. Calcd for C11H10F3NO4S2: C, 38.71; H, 2.95; N, 4.10; S,
18.79. Found: C, 38.59; H, 2.97; N, 4.15; S, 18.68.

3d
Mixture of diastereomers A and B (1:1); white solid; mp 96–99 °C. 

IR (KBr): 1180, 1360 (S=O), 1795 (C=O), 3310 (NH) cm–1.
1H NMR (CDCl3): d = 1.60 (d, 3JHH = 7.0 Hz, 3 H, CH3CH, A), 1.61
(d, 3JHH = 7.0 Hz, 3 H, CH3CH, B), 2.46 (s, 3 H, CH3Ar, A), 2.48 (s,
3 H, CH3Ar, B), 4.17 (q, 3JHH = 7.0 Hz, 1 H, CH, A), 4.36 (q,
3JHH = 7.0 Hz, 1 H, CH, B), 6.18 (s, 1 H, NH, B), 6.22 (s, 1 H, NH,
A), 7.35 (d, 3JHH = 8.0 Hz, 2 H, Ar, A or B), 7.40 (d, 3JHH = 8.0 Hz,
2 H, Ar, A or B), 7.80 (d, 3JHH = 8.0 Hz, 2 H, Ar, A or B), 7.82 (d,
3JHH = 8.0 Hz, 2 H, Ar, A or B). 
19F NMR (CDCl3): d = –84.0 (A), –83.4 (B). 

Anal. Calcd for C12H12F3NO4S2: C, 40.56; H, 3.40; N, 3.94; S,
18.05. Found: C, 40.71; H, 3.37; N, 4.05; S, 18.12.

3e
Oil.

IR (film): 1750 (C=O), 1805 (C=O), 3340 (NH) cm–1.
1H NMR (CDCl3): d = 3.77 (s, 3 H, CH3O), 3.88 (d, 2JHAHB = 16.2
Hz, 1 H, CH2), 4.23 (d, 2JHBHA = 16.2 Hz, 1 H, CH2), 6.37 (s, 1 H,
NH). 
19F NMR (CDCl3): d = –83.0. 

Anal. Calcd for C6H6F3NO4S: C, 29.39; H, 2.47; N, 5.71; S, 13.08.
Found: C, 29.76; H, 2.59; N, 5.89; S, 12.97.

3f
White solid; mp 124–125 °C. 

IR (KBr): 1660 (C=O), 1805 (C=O), 3220 (NH) cm–1. 
1H NMR (CDCl3): d = 3.92 (d, 2JHAHB = 15.6 Hz, 1 H, CH2), 4.29
(d, 2JHBHA = 15.6 Hz, 1 H, CH2), 7.19 (s, 1 H, NH), 7.49 (t,
3JHH = 7.5 Hz, 2 H, Ar), 7.60 (t, 3JHH = 7.5 Hz, 1 H, Ar), 7.77 (d,
3JHH = 7.5 Hz, 2 H, Ar). 

19F NMR (CDCl3): d = –82.7. 

Anal. Calcd for C11H8F3NO3S: C, 45.36; H, 2.77; N, 4.81; S, 11.01.
Found: C, 45.51; H, 2.63; N, 4.92; S, 10.88.

3g
White solid; mp 105–106 °C. 

IR (KBr): 1730 (C=O), 1795 (C=O), 3370 (NH) cm–1. 
1H NMR (CDCl3): d = 3.83 (d, 2JHAHB = 16.2 Hz, 1 H, SCH2), 4.31
(d, 2JHBHA = 16.2 Hz, 1 H, SCH2), 4.67 (dd, 2JHF = 47.1 Hz,
2JHAHB = 10.8 Hz, H, FCH2), 4.77 (dd, 2JHF = 47.1 Hz,
2JHBHA = 10.8 Hz, 1 H, FCH2), 7.87 (s, 1 H, NH). 
19F NMR (CDCl3): d = –215.9 (t, 2JFH = 47.1 Hz). 

Anal. Calcd for C6H5Cl3FNO3S: C, 24.30; H, 1.70; N, 4.72; Cl,
35.87; S, 10.81. Found: C, 24.42; H, 1.63; N, 4.83; Cl, 35.69; S,
10.92.

Preparation of Compounds 4; General Procedure
3-Mercaptopropionic acid 2 (0.3 mmol) was added to a stirred solu-
tion of the appropriate imidoyl chloride 1 (0.3 mmol) in benzene (5
mL). After reacting for 0.5 h at 80 °C, the solvent was evaporated
in vacuum and the solid residue was washed with hexane.

4a
Yield: 93%; white solid; mp 110–112 °C. 

IR (KBr): 1170, 1340 (S=O) 1595 (C=N), 1710 (C=O), 3200 (OH)
cm–1. 
1H NMR (CDCl3): d = 2.73 (t, 3JHH = 6.9 Hz, 2 H, CH2), 3.35 (t,
3JHH = 6.9 Hz, 2 H, CH2), 7.57 (t, 3JHH = 7.8 Hz, 2 H,  Ar), 7.66 (t,
3JHH = 7.8 Hz, 1 H, Ar), 7.99 (d, 3JHH = 7.8 Hz, 2 H, Ar). 
19F NMR (CDCl3): d = –65.9. 

Anal. Calcd for C11H10F3NO4S2: C, 38.71; H, 2.95; N, 4.10; S,
18.79. Found: C, 38.64; H, 3.07; N, 4.26; S, 18.82.

4b
Yield: 82%; white solid; mp 114–115 °C. 

IR (KBr): 1170, 1340 (S=O) 1595 (C=N), 1720 (C=O), 3260 (OH)
cm–1. 
1H NMR (CDCl3): d = 2.45 (s, 3 H, CH3), 2.72 (t, 3JHH = 6.9 Hz,
2 H, CH2), 3.35 (t, 3JHH = 6.9 Hz, 2 H, CH2), 7.35 (d, 3JHH = 8.4 Hz,
2 H, Ar), 7.87 (d, 3JHH = 8.4 Hz, 2 H, Ar). 
19F NMR (CDCl3): d = –65.8. 

Anal. Calcd for C12H12F3NO4S2: C, 40.56; H, 3.40; N, 3.94; S,
18.05. Found: C, 40.71; H, 3.32; N, 4.08; S, 18.13.

Preparation of Compounds 5; General Procedure
Thiosalicylic acid (0.3 mmol) was added to a stirred solution of the
appropriate imidoyl chloride 1 (0.3 mmol) in benzene (5 mL). After
reacting for 4 h at 80 °C, the precipitate formed was filtered and
washed with hexane. 
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5a
Yield: 95%; white solid; mp 180–181 °C. 

IR (KBr): 1180, 1350 (S=O), 1745 (C=O), 3170 (NH) cm–1. 
1H NMR (CDCl3): d = 2.44 (s, 3 H, CH3), 6.84 (s, 1 H, NH), 7.18
(d, 3JHH = 7.8 Hz, 1 H, Ar), 7.26 (d, 3JHH = 7.8 Hz, 2 H, Ar), 7.38 (t,
3JHH = 7.8 Hz, 1 H, Ar), 7.54 (t, 3JHH = 7.8 Hz, 1 H, Ar), 7.70 (d,
3JHH = 7.8 Hz, 2 H, Ar), 8.10 (d, 3JHH = 7.8 Hz, 1 H, Ar). 
19F NMR (CDCl3): d = –83.5. 

Anal. Calcd for C16H12F3NO4S2: C, 47.64; H, 3.00; N, 3.47; S,
15.90. Found: C, 47.84; H, 2.97; N, 3.51; S, 15.76.

5b
Yield: 96%; white solid; mp 169–170 °C (dec.). 

IR (KBr): 1735 (C=O), 3300 (NH) cm–1. 

1H NMR (DMSO-d6): d = 5.02 (d, 2JHF = 46 Hz, 1 H, FCH2), 5.03
(d, 2JHF = 46 Hz, 1 H, FCH2), 7.44 (t, 3JHH = 7.8 Hz, 1 H, Ar), 7.52
(t, 3JHH = 7.8 Hz, 1 H, Ar), 7.65 (d, 3JHH = 7.8 Hz, 1 H, Ar), 8.05 (d,
3JHH = 7.8 Hz, 1 H, Ar), 10.80 (s, 1 H, NH). 
19F NMR (DMSO-d6): d = –222.1 (t, 2JFH = 46 Hz). 

Anal. Calcd for C11H7Cl3FNO3S: C, 36.84; H, 1.97; Cl, 29.66; N,
3.91; S, 8.94. Found: C, 37.04; H, 2.13; Cl, 29.53; N, 4.02; S, 8.86.
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